首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
Garat C  Arend WP 《Cytokine》2003,23(1-2):31-40
Interleukin-1 (IL-1) plays a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). IL-1 action is regulated in part by its naturally occurring inhibitor, the IL-1 receptor antagonist (IL-1Ra). Four splice variants of IL-1Ra gene product have been described, one secreted (sIL-1Ra) and three intracellular (icIL-1Ra1, 2, 3). Although sIL-1Ra and icIL-1Ra1 bind to type I IL-1 receptor with equal affinity, icIL-1Ra1 may carry out unique functions inside cells. The goal of this study was to determine the role of icIL-1Ra1 in regulation of cytokine-induced IL-6 and IL-8 production in Caco-2 intestinal epithelial cells. icIL-1Ra1 inhibited IL-1-induced IL-6 and IL-8 production. IL-1 activated all three mitogen-activated protein (MAP) kinase family members: p38 MAP kinase, extracellular-regulated kinases (ERK), and c-Jun amino-terminal kinases (JNK). Specific inhibitors of each MAP kinase pathway decreased IL-1-induced IL-6 and IL-8 production. Overexpression of icIL-1Ra1 inhibited p38 MAP kinase phosphorylation, but had no effect on ERK and JNK phosphorylation. In addition, icIL-1Ra1 inhibited nuclear translocation of NF-kappaB after IL-1 stimulation. In conclusion, these data indicate that icIL-1Ra1, acting in the cytoplasm of Caco-2 cells, decreased IL-1-induced IL-6 and IL-8 production. This intracellular anti-inflammatory activity of icIL-1Ra1 was mediated through inhibition of p38 MAP kinase and NF-kappaB signal transduction pathways.  相似文献   

2.
Human neutrophil peptides (HNP) kill microorganisms but also modulate immune responses through upregulation of the chemokine IL-8 by activation of the nucleotide P2Y(6) receptor. However, the intracellular signaling mechanisms remain yet to be determined. Human lung epithelial cells (A549) and monocytes (U937) were stimulated with HNP in the absence and presence of the specific kinase inhibitors for Src, extracellular signal-regulated kinase-1 and -2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinases (JNK), and Akt. HNP induced a rapid phosphorylation of the kinases in both cell types associated with a dose-dependent, selective production of IL-8 among 10 cytokines assayed. The HNP-induced IL-8 production was blocked by the Src tyrosine kinase inhibitor PP2, MEK1/2 inhibitor U0126, and the phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002, but not by the JNK inhibitor SP600125 in both cell types. Treatment with the p38 inhibitor SB203580 attenuated the HNP-induced IL-8 production only in monocytes. Blockade of Src kinase blunted HNP-induced phosphorylation of the ERK1/2 and Akt but not p38 in monocytes. In contrast, Src inhibition had no effect on phosphorylation of the other kinases in the lung epithelial cells. We conclude that the activation of ERK1/2 and PI3K/Akt pathways is required for HNP-induced IL-8 release which occurs in a Src-independent manner in lung epithelial cells, while is Src-dependent in monocytes.  相似文献   

3.
We investigated activation of mitogen-activated protein kinase (MAPK) subtype cascades in human neutrophils stimulated by IL-1beta. IL-1beta induced phosphorylation and activation of p38 MAPK and phosphorylation of MAPK kinase-3/6 (MKK3/6). Maximal activation of p38 MAPK was obtained by stimulation of cells with 300 U/ml IL-1beta for 10 min. Extracellular signal-regulated kinase (ERK) was faintly phosphorylated and c-Jun N-terminal kinase (JNK) was not phosphorylated by IL-1beta. IL-1beta primed neutrophils for enhanced release of superoxide (O(2)(-)) stimulated by FMLP in parallel with increased phosphorylation of p38 MAPK. IL-1beta also induced O(2)(-) release and up-regulation of CD11b and CD15, and both responses were inhibited by SB203580 (p38 MAPK inhibitor), suggesting that p38 MAPK activation mediates IL-1beta-induced O(2)(-) release and up-regulation of CD11b and CD15. Combined stimulation of neutrophils with IL-1beta and G-CSF, a selective activator of the ERK cascade, resulted in the additive effects when the priming effect and phosphorylation of p38 MAPK and ERK were assessed. IL-1beta induced phosphorylation of ERK and JNK as well as p38 MAPK in human endothelial cells. These findings suggest that 1) in human neutrophils the MKK3/6-p38 MAPK cascade is selectively activated by IL-1beta and activation of this cascade mediates IL-1beta-induced O(2)(-) release and up-regulation of CD11b and CD15, and 2) the IL-1R-p38 MAPK pathway and the G-CSF receptor-ERK pathway work independently for activation of neutrophils.  相似文献   

4.
Asthma, a chronic inflammatory disease of the airways, involves the increased expression of inflammatory mediators, including granulocyte-monocyte colony-stimulating factor (GM-CSF). Heme oxygenase-1 (HO-1), a stress-response protein, confers protection against oxidative stress. We hypothesized that carbon monoxide (CO), a byproduct of HO-1-dependent heme catabolism, regulates GM-CSF synthesis in human airway smooth muscle cells (HASMC). IL-1beta treatment induced a time-dependent induction of GM-CSF in HASMC. Furthermore, IL-1beta stimulated the major MAPK pathways, including ERK1/ERK2, JNK, and p38 MAPK. Exposure of HASMC to CO at low concentration (250 ppm) markedly inhibited IL-1beta-induced GM-CSF synthesis (>90%) compared with air-treated controls. CO treatment inhibited IL-1beta-induced ERK1/2 activation but did not inhibit JNK and p38 MAPK. Furthermore, CO increased cGMP levels in HASMC. Inhibition of guanylate cyclase by IH-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-1 (ODQ) abolished the inhibitory effects of CO on GM-CSF synthesis and ERK1/2 activation. Collectively, these data demonstrate that the inhibitory effect of CO on GM-CSF synthesis depends on ERK1/2 MAPK and guanylate cyclase/cGMP-dependent pathways.  相似文献   

5.
6.
Tissue hypoxia is a common sequel of trauma-hemorrhage but can occur even without blood loss under hypoxic conditions. Although hypoxia is known to upregulate Kupffer cells (KC) to release cytokines, the precise mechanism of release remains unknown. We hypothesized that Src family kinases play a role in mediating KC mitogen-activated protein kinase (MAPK) signaling and their cytokine production after hypoxia. Male C3H/HeN mice received either Src inhibitor PP1 (1.5 mg/kg body wt) or vehicle 1 h before hypoxia. KCs were isolated 1 h after hypoxia, lysed, and immunoblotted with antibodies to Src, p38, ERK1/2, or JNK proteins. In addition, KCs were cultured to measure interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) production. Hypoxia produced a significant increase in KC Src and MAPK (p38, ERK, JNK) activity compared with normoxic controls. This was associated with an increase in IL-6 and MCP-1 production. Treatment with PP1 abolished the increase in KC Src activation as well as p38 activity. However, PP1 did not prevent the increase in KC ERK1/2 or JNK phosphorylation. Furthermore, administration of PP1 prevented the hypoxia-induced increase in IL-6 but not MCP-1 release by KC. Additional in vitro results suggest that p38 but not ERK1/2 or JNK are critical for KC IL-6 production. In contrast, the production of MCP-1 by KC was found to be independent of MAPK. Thus hypoxia increases KC IL-6 production by p38 MAPK activation via Src-dependent pathway. Src kinases may therefore be a novel therapeutic target for preventing immune dysfunction following low-flow conditions in trauma patients. innate immunity; macrophages; cell signaling  相似文献   

7.
Prolonged and excessive inflammation is implicated in resistance to the biological actions of IGF-I and contributes to the pathophysiology of neurodegenerative, metabolic, and muscle-wasting disorders. IL-10 is a critical anti-inflammatory cytokine that restrains inflammatory responses in macrophages and T cells by inhibiting cytokine and chemokine synthesis and reducing expression of their receptors. Here we demonstrate that IL-10 plays a protective role in nonhematopoietic cells by suppressing the ability of exogenous IL-1beta to inhibit IGF-I-induced myogenin and myosin heavy chain expression in myoblasts. This action of IL-10 is not caused by impairment of IL-1beta-induced synthesis of IL-6 or the ability of IL-1beta to activate two members of the MAPK family, ERK1/2 and p38. Instead, this newly defined protective role of IL-10 occurs by specific reversal of IL-1beta activation of the JNK kinase pathway. IL-10 blocks IL-1beta-induced phosphorylation of JNK, but not ERK1/2 or p38, indicating that only the JNK component of the IL-1beta-induced MAPK signaling pathway is targeted by IL-10. This conclusion is supported by the finding that a specific JNK inhibitor acts similarly to IL-10 to restore IGF-I-induced myogenin expression, which is suppressed by IL-1beta. Collectively, these data demonstrate that IL-10 acts in a novel, nonclassical, protective manner in nonhematopoietic cells to inhibit the IL-1beta receptor-induced JNK kinase pathway, resulting in prevention of IGF-I resistance.  相似文献   

8.
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.  相似文献   

9.
10.
Interleukin-1beta (IL-1beta) has been shown to induce the expression of intercellular adhesion molecule-1 (ICAM-1) on airway epithelial cells and contributes to inflammatory responses. However, the mechanisms regulating ICAM-1 expression by IL-1beta in human A549 cells was not completely understood. Here, the roles of mitogen-activated protein kinases (MAPKs) and NF-kappaB pathways for IL-1beta-induced ICAM-1 expression were investigated in A549 cells. IL-1beta induced expression of ICAM-1 protein and mRNA in a time- and concentration-dependent manner. The IL-1beta induction of ICAM-1 mRNA and protein were partially inhibited by U0126 and PD98059 (specific inhibitors of MEK1/2) and SP600125 [a specific inhibitor of c-Jun-N-terminal kinase (JNK)]. U0126 was more potent than other inhibitors to attenuate IL-1beta-induced ICAM-1 expression. Consistently, IL-1beta stimulated phosphorylation of p42/p44 MAPK and JNK which was attenuated by pretreatment with U0126 or SP600125, respectively. Moreover, transfection with dominant negative mutants of MEK1/2 (MEK K97R) or ERK2 (ERK2 K52R) also attenuated IL-1beta-induced ICAM-1 expression. The combination of PD98059 and SP600125 displayed an additive effect on IL-1beta-induced ICAM-1 gene expression. IL-1beta-induced ICAM-1 expression was almost completely blocked by a specific NF-kappaB inhibitor helenalin. Consistently, IL-1beta stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha which was blocked by helenalin, U0126, or SP600125. Taken together, these results suggest that activation of p42/p44 MAPK and JNK cascades, at least in part, mediated through NF-kappaB pathway is essential for IL-1beta-induced ICAM-1 gene expression in A549 cells. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in the airway disease.  相似文献   

11.
Thy-1 (CD90) crosslinking by monoclonal antibodies (mAb) in the context of costimulation causes the activation of mouse T-lymphocytes; however, the associated signal transduction processes have not been studied in detail. In this study we investigated the role of mitogen-activated protein kinases (MAPKs) in Thy-1-mediated T-lymphocyte activation using mAb-coated polystyrene microspheres to crosslink Thy-1 and costimulatory CD28 on murine T-lymphocytes. Concurrent Thy-1 and CD28 crosslinking induced DNA synthesis by T-lymphocytes, as well as interleukin (IL)-2 and IL-2 receptor (IL-2R) α chain (CD25) expression. Increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and c-Jun N-terminal protein kinase (JNK) was also observed. Pharmacologic inhibition of ERK1/2 or JNK activation inhibited Thy-1-induced DNA synthesis and IL-2 production by T-lymphocytes. p38 MAPK inhibition also decreased DNA synthesis in Thy-1-stimulated T-lymphocytes; however, IL-2 production was increased in these cells. Inhibition of JNK, but not ERK1/2 or p38 MAPK, caused a marked reduction in Thy-1-induced CD25 expression. In addition, inhibition of p38 MAPK or JNK, but not ERK1/2, impaired the growth of IL-2-dependent CTLL-2 T-lymphocytes but did not substantially affect CD25 expression. Finally, exogenous IL-2 reversed the inhibitory effect of ERK1/2 or JNK inhibition on Thy-1-stimulated DNA synthesis by T-lymphocytes but did not substantially reverse JNK inhibition of CD25 expression. Collectively, these results suggest that during Thy-1-induced T-lymphocyte activation, ERK1/2 and JNK promoted IL-2 production whereas p38 MAPK negatively regulated IL-2 expression. JNK signalling was also required for CD25 expression. IL-2R signalling involved both p38 MAPK and JNK in CTLL-2 cells, whereas p38 MAPK was most important for IL-2R signalling in primary T-lymphocytes. MAPKs are therefore essential signalling intermediates for the Thy-1-driven proliferation of mouse T-lymphocytes.  相似文献   

12.
Bacteria have developed mechanisms to sequester host iron via chelators such as deferoxamine (DFO). Interestingly, DFO has been shown to stimulate acute intestinal epithelial cell inflammatory cytokine production in the absence of bacteria; however, this mechanism has not been elucidated. Intestinal epithelial cell production of IL-6 and TNF-alpha is elevated in various gastrointestinal pathologies, including acute intestinal ischemia. Similarly, VEGF and HGF are essential to intestinal epithelial cell integrity. Therapeutic strategies that decrease IL-6 and TNF-alpha while increasing VEGF and HGF therefore have theoretical appeal. We hypothesized that 1) fetal human intestinal epithelial cells acutely produce increased IL-6, TNF-alpha, VEGF, and HGF during iron chelation and 2) the MAPK pathway mediates these effects. Fetal human intestinal epithelial cells were stimulated by iron chelation (1 mM DFO) with and without p38 MAPK, ERK, or JNK inhibition. Supernatants were harvested after 24 h of incubation, and IL-6, TNF-alpha, VEGF, and HGF levels were quantified by ELISA. Activation of MAPK pathways was confirmed by Western blot analysis. DFO stimulation resulted in a significant increase in epithelial cell IL-6 and VEGF production while yielding a decrease in HGF production (P<0.05). Unexpectedly, TNF-alpha was not detectable. p38 MAPK, ERK, and JNK inhibition significantly decreased IL-6, VEGF, and HGF production (P<0.05). In conclusion, DFO acutely increases fetal human intestinal epithelial cell IL-6 and VEGF expression while causing an unexpected decrease in HGF expression and no detectable TNF-alpha production. Furthermore, chelator-induced intestinal epithelial cell cytokine expression depends on p38, ERK, and JNK MAPK pathways.  相似文献   

13.
Park YD  Kim YS  Jung YM  Lee SI  Lee YM  Bang JB  Kim EC 《Cytokine》2012,60(1):284-293
Increased interleukin (IL)-17 and IL-23 levels exist in the gingival tissue of periodontitis patients, but the precise molecular mechanisms that regulate IL-17 and IL-23 production remain unknown. The aim of this study was to explore the role of SIRT1 signaling on Porphyromonas gingivalis lipopolysaccharide (LPS)-induced IL-17 and IL-23 production in human periodontal ligament cells (hPDLCs). IL-17 and IL-23 production was significantly increased in LPS-treated cells. LPS treatment also led to the upregulation of SIRT1 mRNA and protein expression. LPS-induced IL-17 and IL-23 upregulation was attenuated by pretreatment with inhibitors of phosphoinositide 3-kinase (PI3K), p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), and NF-κB, as well as neutralizing antibodies against Toll-like receptors (TLRs) 2 and 4. Sirtinol treatment (a known SIRT1 inhibitor) or SIRT1 knockdown by small interfering RNA blocked LPS-stimulated IL-17 and IL-23 expression. Further investigation showed that LPS decreased osteoblast markers (i.e., ALP, OPN, and BSP) and concomitantly increased osteoclast markers (i.e., RANKL and M-CSF). This response was attenuated by inhibitors of the PI3K, p38, ERK, JNK, NF-κB, and SIRT1 pathways. These findings, for the first time, suggest that human periodontopathogen P. gingivalis LPS is implicated in periodontal disease bone destruction and may mediate IL-17 and IL-23 release from hPDLCs. This process is dependent, at least in part, on SIRT1-Akt/PI3K-MAPK-NF-κB signaling.  相似文献   

14.
15.
Interleukins IL-4 and IL-10 are considered to be central regulators for the limitation and eventual termination of inflammatory responses in vivo, based on their potent anti-inflammatory effects toward LPS-stimulated monocytes/macrophages and neutrophils. However, their role in T cell-dependent inflammatory responses has not been fully elucidated. In this study, we investigated the effects of both cytokines on the production of PGE(2), a key molecule of various inflammatory conditions, in CD40-stimulated human peripheral blood monocytes. CD40 ligation of monocytes induced the synthesis of a significant amount of PGE(2) via inducible expression of the cyclooxygenase (COX)-2 gene. Both IL-10 and IL-4 significantly inhibited PGE(2) production and COX-2 expression in CD40-stimulated monocytes. Using specific inhibitors for extracellular signal-related kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), we found that both kinase pathways are involved in CD40-induced COX-2 expression. CD40 ligation also resulted in the activation of NF-kappaB. Additional experiments exhibited that CD40 clearly induced the activation of the upstream kinases MAPK/ERK kinase 1/2, MAPK kinase 3/6, and I-kappaB in monocytes. IL-10 significantly inhibited CD40-induced activation of the ERK, p38 MAPK, and NF-kappaB pathways; however, inhibition by IL-4 was limited to the ERK pathway in monocytes. Neither IL-10 nor IL-4 affected the recruitment of TNFR-associated factors 2 and 3 to CD40 in monocytes. Collectively, IL-10 and IL-4 use novel regulatory mechanisms for CD40-induced prostanoid synthesis in monocytes, thus suggesting a potential role for these cytokines in regulating T cell-induced inflammatory responses, including autoimmune diseases.  相似文献   

16.
17.
Activation of interleukin-1 family receptor ST2L by its ligand interleukin-33 (IL-33) is an important component in inflammatory responses. Peripheral blood basophils, recognized as major effector cells in allergic inflammation that play a role in both innate and adaptive immunity, are activated by IL-33 through ST2L. However, studies are challenging due to the paucity of this cell population, representing less than 1% of peripheral blood leukocytes. We identified a basophil-like chronic myelogenous leukemia cell line, KU812, that constitutively expresses ST2L and demonstrates functional responses to IL-33 stimulation. IL-33 induced production of multiple inflammatory mediators in KU812 cells that were blocked by anti-ST2L and anti-IL-33 antibodies. The interaction of IL-33 and ST2L activated NF-κB, JNK, and p38 MAPK, but not ERK1/2 signaling pathways. Studies using pharmacological inhibitors to IKK-2 and MAP kinases revealed that one of the functional responses, IL-33-induced IL-13 production, was regulated through NF-κB, but not JNK or p38 MAPK signaling. The requirement of NF-κB was confirmed by IKK-2 knockdown using shRNA. KU812 represents the first human cell line-based in vitro model of the IL-33/ST2L axis and provides a valuable tool to aid in understanding the mechanism and significance of IL-33 and ST2L interaction and function.  相似文献   

18.
Liu H  Xu R  Feng L  Guo W  Cao N  Qian C  Teng P  Wang L  Wu X  Sun Y  Li J  Shen Y  Xu Q 《PloS one》2012,7(8):e37168
The p38 MAPK signaling pathway plays a pivotal role in inflammation. Targeting p38 MAPK may be a potential strategy for the treatment of inflammatory diseases. In the present study, we show that a novel chromone derivative, DCO-6, significantly reduced lipopolysaccharide (LPS)-induced production of nitric oxide, IL-1β and IL-6, decreased the levels of iNOS, IL-1β and IL-6 mRNA expression in both RAW264.7 cells and mouse primary peritoneal macrophages, and inhibited LPS-induced activation of p38 MAPK but not of JNK, ERK. Moreover, DCO-6 specifically inhibited TLR4-dependent p38 activation without directly inhibiting its kinase activity. LPS-induced production of intracellular reactive oxygen species (ROS) was remarkably impaired by DCO-6, which disrupted the formation of the TRAF6-ASK1 complex. Administering DCO-6 significantly protected mice from LPS-induced septic shock in parallel with the inhibition of p38 activation and ROS production. Our results indicate that DCO-6 showed anti-inflammatory properties through inhibition of ROS-dependent activation of TRAF6-ASK1-p38 pathway. Blockade of the upstream events required for p38 MAPK action by DCO-6 may provide a new therapeutic option in the treatment of inflammatory diseases.  相似文献   

19.
20.
Macrophage metalloelastase (MMP-12) is described to be involved in pulmonary inflammatory response. To determine the mechanisms linking MMP-12 and inflammation, we examined the effect of recombinant human MMP-12 (rhMMP-12) catalytic domain on IL-8/CXCL8 production in cultured human airway epithelial (A549) cells. Stimulation with rhMMP-12 resulted in a concentration-dependent IL-8/CXCL8 synthesis 6 h later. Similar results were also observed in cultured BEAS-2B bronchial epithelial cells. In A549 cells, synthetic matrix metalloproteinase (MMP) inhibitors prevented rhMMP-12-induced IL-8/CXCL8 release. We further demonstrated that in A549 cells, rhMMP-12 induced transient, peaking at 5 min, activation of ERK1/2. Selective MEK inhibitors (U0126 and PD-98059) blocked both IL-8/CXCL8 release and ERK1/2 phosphorylation. IL-8/CXCL8 induction and ERK1/2 activation were preceded by EGF receptor (EGFR) tyrosine phosphorylation, within 2 min, and reduced by selective EGFR tyrosine kinase inhibitors (AG-1478 and PD168393) by a neutralizing EGFR antibody and by small interfering RNA oligonucleotides directed against EGFR, implicating EGFR activation. In addition, we observed an activation of c-Fos in A549 cells stimulated by rhMMP-12, dependent on ERK1/2. Using small interfering technique, we showed that c-Fos is involved in rhMMP-12-induced IL-8/CXCL8 production. From these results, we conclude that one mechanism, by which MMP-12 induces IL-8/CXCL8 release from the alveolar epithelium, is the EGFR/ERK1/2/activating protein-1 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号