首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine A1 receptor delayed preconditioning (PC) against myocardial infarction has been well described; however, there have been limited investigations of the signaling mechanisms that mediate this phenomenon. In addition, there are multiple conflicting reports on the role of inducible nitric oxide synthase (iNOS) in mediating A1 late-phase PC. The purpose of this study was to determine the roles of the p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs) in in vivo delayed A1 receptor PC and whether this protection at the myocyte level is due to upregulation of iNOS. Myocardial infarct size was measured in open-chest anesthetized rats 24 h after treatment with vehicle or the adenosine A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA; 100 microg/kg ip). Additional rats receiving CCPA were pretreated with the p38 inhibitor SB-203580 (1 mg/kg ip) or the MAPK/ERK kinase (MEK) inhibitor PD-098059 (0.5 mg/kg ip). At 24 h after CCPA administration, a group of animals was given the iNOS inhibitor 1400 W 10 min before ischemia. Treatment with CCPA reduced infarct size from 48 +/- 2 to 28 +/- 2% of the area at risk, an effect that was blocked by both SB-203580 and PD-098059 but not 1400 W. Ventricular myocytes isolated 24 h after CCPA injection exhibited significantly reduced oxidative stress during H2O2 exposure compared with myocytes from vehicle-injected animals, and this effect was not blocked by the iNOS inhibitor 1400 W. Western blot analysis of whole heart and cardiac myocyte protein samples revealed no expression of iNOS 6 or 24 h after CCPA treatment. These results indicate that adenosine A1 receptor delayed PC in rats is mediated by MAPK-dependent mechanisms, but this phenomenon is not associated with the early or late expression of iNOS.  相似文献   

2.
Protein kinase C (PKC) plays a central role in both early and late preconditioning (PC) but its association with inducible nitric oxide synthase (iNOS) is not clear in late PC. This study investigates the PKC signaling pathway in the late PC induced by activation of adenosine A(1) receptor (A(1)R) with adenosine agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) and the effect on iNOS upregulation. Adult male mice were pretreated with saline or CCPA (100 microg/kg iv) or CCPA (100 microg/kg iv) with PKC-delta inhibitor rottlerin (50 microg/kg ip). Twenty-four hours later, the hearts were isolated and perfused in the Langendorff mode. Hearts were subjected to 40 min of ischemia, followed by 30 min reperfusion. After ischemia, the left ventricular end-diastolic pressure (LVEDP) was significantly improved and the rate-pressure product (RPP) was significantly higher in the CCPA group compared with the ischemia-reperfusion (I/R) control group. Creatine kinase release and infarct size were significantly lower in the CCPA group compared with the I/R control group. These salutary effects of CCPA were abolished in hearts pretreated with rottlerin. Immunoblotting of PKC showed that PKC-delta was upregulated (150.0 +/- 11.4% of control group) whereas other PKC isoforms remained unchanged, and iNOS was also significantly increased (146.2 +/- 9.0%, P < 0.05 vs. control group) after 24 h of treatment with CCPA. The data show that PKC is an important component of PC with adenosine agonist. It is concluded that activation of A(1)R induces late PC via PKC-delta and iNOS signaling pathways.  相似文献   

3.
In the present study, we addressed the role of intercellular adhesion molecule type 1 (ICAM-1/CD54) in neutrophil migration to inflammatory site and whether the inhibitory effect of nitric oxide (NO) upon the neutrophil rolling, adhesion and migration involves down-modulation of ICAM-1 expression through a cyclic GMP (cGMP) dependent mechanism. It was observed that neutrophil migration induced by intraperitoneal administration of endotoxin (LPS), carrageenan (Cg) or N-formyl peptide (fMLP) in ICAM-1 deficient (ICAM-1-/-) is similar to that observed in wild type (WT) mice. The treatment of mice with NO synthase (NOS) inhibitors, NG-nitro-l-arginine, aminoguanidine or with a soluble guanylate cyclase (sGC) inhibitor, ODQ enhanced LPS- or Cg-induced neutrophil migration, rolling and adhesion on venular endothelium. These parameters induced by LPS were also enhanced by 1400 W, a specific iNOS inhibitor, treatment. On the other hand, the treatment of the mice with S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, reduced these parameters induced by LPS or Cg by a mechanism sensitive to ODQ pretreatment. The NOS inhibitors did not enhance LPS-, Cg- or fMLP-induced migration and adhesion in ICAM-1-/- mice. Moreover, genetic (iNOS-/- mice) or pharmacological inhibition of NOS or of sGC enhanced LPS-induced ICAM-1 expression on mesenteric microcirculation vessels of WT mice. By contrast, SNAP reduced the ICAM-1 expression by a mechanism dependent on cGMP. In conclusion, the results suggest that although during inflammation, ICAM-1 does not contribute to neutrophil migration, it is necessary for the down-modulatory effect of inflammation-released NO on the adhesion and transmigration of neutrophils. Moreover, these NO effects are mediated via cGMP.  相似文献   

4.
5.
Endothelin-1 (ET-1) exhibits potent proinflammatory and profibrotic properties. Moreover, inflammation is a potent stimulus for inducible NO synthase (iNOS), which has been shown to contribute to cardiac injury. We thus hypothesized that ET-1-induced cardiac injury is attenuated by concomitant lack of iNOS. We established crossbred animals of ET-1 transgenic mice (ET+/+) and iNOS knockout mice (iNOS-/-). At 13 months of age, mice were allocated according to their genotype to one of 4 study groups: wild type (WT) controls (n=8); ET-1 transgenic (ET+/+) mice (n=10); iNOS knockout (iNOS-/-) mice (n=7); and crossbred (ET+/+ iNOS-/-) mice (n=15). Left ventricular function was determined in vivo by using a tip catheter. Animals were subsequently euthanized and hearts were harvested for weight assessment and histologic evaluation. No cardiac hypertrophy was present, as evidenced by similar mean cardiac weight and myocyte diameter in all groups. Cardiac perivascular fibrosis was significantly increased in ET+/+ and iNOS-/- groups versus WT, whereas ET+/+ iNOS-/- mice did not differ from WT. Regarding left ventricular function, plasma B-type natriuretic peptide was elevated in ET+/+ and iNOS-/- mice, but again in crossbred animals this effect was blunted. Heart catheterization revealed a significantly increased stiffness constant in both ET-overexpressing groups versus WT, but this increase was significantly attenuated in the ET+/+iNOS-/- group versus the ET+/+ group. Parameters indicating systolic heart failure (EF, cardiac output), however, were not different between all study groups. Our study demonstrates that ET transgenic mice develop left ventricular stiffening with subsequent diastolic dysfunction in a slow, age-dependent manner. Additional knock out of iNOS significantly attenuates cardiac injury. We thus conclude that ET-1-induced cardiac injury is at least partially mediated by iNOS.  相似文献   

6.
Endothelial nitric oxide synthase (eNOS) activation with subsequent inducible NOS (iNOS), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase-2 (COX2) activation is essential to statin inhibition of myocardial infarct size (IS). In the rat, the peroxisome proliferator-activated receptor-gamma agonist pioglitazone (Pio) limits IS, upregulates and activates cPLA2 and COX2, and increases myocardial 6-keto-PGF1alpha levels without activating eNOS and iNOS. We asked whether Pio also limits IS in eNOS-/- and iNOS-/- mice. Male C57BL/6 wild-type (WT), eNOS-/-, and iNOS-/- mice received 10 mg.kg(-1).day(-1) Pio (Pio+) or water alone (Pio-) for 3 days. Mice underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts were harvested and subjected to ELISA and immunoblotting. As a result, Pio reduced IS in the WT (15.4+/-1.4% vs. 39.0+/-1.1%; P<0.001), as well as in the eNOS-/- (32.0+/-1.6% vs. 44.2+/-1.9%; P<0.001) and iNOS-/- (18.0+/-1.2% vs. 45.5+/-2.3%; P<0.001) mice. The protective effect of Pio in eNOS-/- mice was smaller than in the WT (P<0.001) and iNOS-/- (P<0.001) mice. Pio increased myocardial Ser633 and Ser1177 phosphorylated eNOS levels in the WT and iNOS-/- mice. iNOS was undetectable in all six groups. Pio increased cPLA2, COX2, and PGI2 synthase levels in the WT, as well as in the eNOS-/- and iNOS-/-, mice. Pio increased the myocardial 6-keto-PGF1alpha levels and cPLA2 and COX2 activity in the WT, eNOS-/-, and iNOS-/- mice. In conclusion, the myocardial protective effect of Pio is iNOS independent and may be only partially dependent on eNOS. Because eNOS activity decreases with age, diabetes, and advanced atherosclerosis, this effect may be relevant in a clinical setting and should be further characterized.  相似文献   

7.
Although it has been shown that endothelial nitric oxide synthase (eNOS)-derived nitric oxide downregulates mitochondrial oxygen consumption during early reperfusion, its effects on inducible NOS (iNOS) induction and myocardial injury during late reperfusion are unknown. Wild-type (WT) and eNOS(-/-) mice were subjected to 30 min of coronary ligation followed by reperfusion. Expression of iNOS mRNA and protein levels and peroxynitrite production were lower in postischemic myocardium of eNOS(-/-) mice than levels in WT mice 48 h postreperfusion. Significantly improved hemodynamics (+/-dP/dt, left ventricular systolic pressure, mean arterial pressure), increased rate pressure product, and reduced myocardial infarct size (18 +/- 2.5% vs. 31 +/- 4.6%) were found 48 h after reperfusion in eNOS(-/-) mice compared with WT mice. Myocardial infarct size was also significantly decreased in WT mice treated with the specific iNOS inhibitor 1400W (20.5 +/- 3.4%) compared with WT mice treated with PBS (33.9 +/- 5.3%). A marked reperfusion-induced hyperoxygenation state was observed by electron paramagnetic resonance oximetry in postischemic myocardium, but Po(2) values were significantly lower from 1 to 72 h in eNOS(-/-) than in WT mice. Cytochrome c-oxidase activity and NADH dehydrogenase activity were significantly decreased in postischemic myocardium in WT and eNOS(-/-) mice compared with baseline control, respectively, and NADH dehydrogenase activity was significantly higher in eNOS(-/-) than in WT mice. Thus deficiency of eNOS exerted a sustained beneficial effect on postischemic myocardium 48 h after reperfusion with preserved mitochondrial function, which appears to be due to decreased iNOS induction and decreased iNOS-derived peroxynitrite in postischemic myocardium.  相似文献   

8.
There is increasing evidence for interactions among adenosine receptor subtypes in the brain and heart. The purpose of this study was to determine whether the adenosine A(2a) receptor modulates the infarct size-reducing effect of preischemic administration of adenosine receptor agonists in intact rat myocardium. Adult male rats were submitted to in vivo regional myocardial ischemia (25 min) and 2 h reperfusion. Vehicle-treated rats were compared with rats pretreated with the A(1) agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA, 10 mug/kg), the nonselective agonist 5'-N-ethylcarboxamidoadenosine (NECA, 10 mug/kg), or the A(2a) agonist 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-methylcarboxamidoadenosine (CGS-21680, 20 mug/kg). Additional CCPA- and NECA-treated rats were pretreated with the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 mug/kg), the A(2a)/A(2b) antagonist 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM-241385, 1.5 mg/kg) or the A(3) antagonist 3-propyl-6-ethyl-5[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridine carboxylate (MRS-1523, 2 mg/kg). CCPA and NECA reduced myocardial infarct size by 50% and 35%, respectively, versus vehicle, but CGS-21680 had no effect. DPCPX blunted the bradycardia associated with CCPA and NECA, whereas ZM-241385 attenuated their hypotensive effects. Both DPCPX and ZM-241385 blocked the protective effects of CCPA and NECA. The A(3) antagonist did not alter the hemodynamic effects of CCPA or NECA, nor did it alter adenosine agonist cardioprotection. None of the antagonists alone altered myocardial infarct size. These findings suggest that although preischemic administration of an A(2a) receptor agonist does not induce cardioprotection, antagonism of the A(2a) and/or the A(2b) receptor blocks the cardioprotection associated with adenosine agonist pretreatment.  相似文献   

9.
Inducible NO synthase (iNOS) present in human atherosclerotic plaques could contribute to the inflammatory process of plaque development. The role of iNOS in atherosclerosis was tested directly by evaluating the development of lesions in atherosclerosis-susceptible apolipoprotein E (apoE)-/- mice that were also deficient in iNOS. ApoE-/- and iNOS-/- mice were cross-bred to produce apoE-/-/iNOS-/- mice and apoE-/-/iNOS+/+ controls. Males and females were placed on a high fat diet at the time of weaning, and atherosclerosis was evaluated at two time points by different methods. The deficiency in iNOS had no effect on plasma cholesterol, triglyceride, or nitrate levels. Morphometric measurement of lesion area in the aortic root at 16 wk showed a 30-50% reduction in apoE-/-/iNOS-/- mice compared with apoE-/-/iNOS+/+ mice. Although the size of the lesions in apoE-/-/iNOS-/- mice was reduced, the lesions maintained a ratio of fibrotic:foam cell-rich:necrotic areas that was similar to controls. Biochemical measurements of aortic cholesterol in additional groups of mice at 22 wk revealed significant 45-70% reductions in both male and female apoE-/-/iNOS-/- mice compared with control mice. The results indicate that iNOS contributes to the size of atherosclerotic lesions in apoE-deficient mice, perhaps through a direct effect at the site of the lesion.  相似文献   

10.
The relative roles of free-radical production, mitochondrial ATP-sensitive K+ (mitoKATP) channels and possible receptor cross-talk in both opioid and adenosine A1 receptor (A1AR) mediated protection were assessed in a rat model of myocardial infarction. Sprague-Dawley rats were subjected to 30 min of occlusion and 90 min of reperfusion. The untreated rats exhibited an infarct of 58.8 +/- 2.9% [infarct size (IS)/area at risk (AAR), %] at the end of reperfusion. Pretreatment with either the nonselective opioid receptor agonist morphine or the selective A1AR agonist 2-chloro-cyclopentyladenosine (CCPA) dramatically reduced IS/AAR to 41.1 +/- 2.2% and 37.9 +/- 5.5%, respectively (P < 0.05). Protection afforded by either morphine or CCPA was abolished by the reactive oxygen species scavenger N-(2-mercaptopropionyl)glycine or the mitoKATP channel blocker 5-hydroxydecanoate. Both morphine- and CCPA-mediated protection were attenuated by the selective A1AR antagonist 1,3-dipropyl-8-cyclopentylxanthine and the selective delta1-opioid receptor (DOR) antagonist 7-benzylidenealtrexone. Simultaneous administration of morphine and CCPA failed to enhance the infarct-sparing effect of either agonist alone. These data suggest that both DOR and A1AR-mediated cardioprotection are mitoKATP and reactive oxygen species dependent. Furthermore, these data suggest that there are converging pathways and/or receptor cross-talk between A1AR- and DOR-mediated cardioprotection.  相似文献   

11.
Inducible nitric oxide synthase (iNOS) and nitric oxide (NO) can ameliorate apoptosis induced by toxic glycochenodeoxycholate (GCDC) in hepatocytes. However, the underlying molecular mechanisms are not yet understood in detail. This study is to clarify the function of iNOS/NO and its mechanisms during the apoptotic process. The apoptosis was brought about by GCDC in rat primary hepatocytes. iNOS/NO signaling was then investigated. iNOS inhibitor 1400 W enhanced the GCDC-induced apoptosis as reflected by caspase-3 activity and TUNEL assay. Exogenous NO regulated the apoptosis subsequent to NO donor S-nitroso-N-acetyl-penicillamine (SNAP) or sodium nitroprusside (SNP). The GCDC-induced apoptosis was decreased with 0.1 mM SNAP or 0.15 mM SNP, while it was increased with 0.8 mM SNAP or 1.2 mM SNP. The endogenous iNOS inhibited apoptosis, but the exogenous NO played a dual role during the GCDC-induced apoptosis. There was a potential iNOS/Akt/survivin axis that inhibited the hepatocyte apoptosis in low doses of NO donors. In contrast, high doses of NO donors activated CHOP through p38MAP-kinase (p38MAPK), upregulated TRAIL receptor DR5, and suppressed survivin. Consequently the high doses of NO donors promoted the apoptosis in hepatocytes. Our data suggest that the iNOS/NO signaling can modulate Akt/survivin and p38MAPK/CHOP pathways to mediate the GCDC-induced the apoptosis in hepatocytes. These signaling pathways may serve as targets for therapeutic intervention in cholestatic liver disease.  相似文献   

12.
It is unknown whether late preconditioning (PC) enhances the recovery of left ventricular (LV) function after a myocardial infarction. Thus 25 conscious rabbits were subjected to a 30-min coronary occlusion followed by 28 days of reperfusion after PC 24 h earlier with either ischemia or nitric oxide donor administration [S-nitroso-N-acetylpenicillamine (SNAP)]. The recovery of wall thickening (WTh) after reperfusion was significantly improved in the ischemic PC and SNAP PC groups compared with controls, both at rest and during dobutamine stress. Interestingly, neither ischemia- nor SNAP-induced late PC attenuated myocardial stunning from day 1 through day 14. Infarct size was smaller in the ischemic PC and SNAP PC groups compared with controls. In all groups, WTh at 28 days was positively and linearly related to the percentage of viable tissue in the region underlying the ultrasonic crystal (r = 0.90), indicating that the improvement in LV function after both ischemia-induced and NO donor-induced late PC can be fully explained by the reduction in infarct size; a separate effect of late PC on LV remodeling or LV contractility need not be invoked. In conclusion, in conscious rabbits late PC, induced either by ischemia or pharmacologically, not only limits infarct size but also enhances the recovery of LV function after myocardial infarction. This finding has important clinical implications and provides triphenyltetrazolium chloride-independent evidence that late PC limits myocellular death after sustained ischemia.  相似文献   

13.
Using inducible nitric oxide (NO) synthase (iNOS) knockout mice (iNOS-/-), we tested the hypotheses that 1) lack of iNOS attenuates cardiac remodeling and dysfunction and improves cardiac reserve postmyocardial infarction (MI), an effect that is partially mediated by reduction of oxidative stress due to reduced interaction between NO and reactive oxygen species (ROS); and 2) the cardioprotection afforded by iNOS deletion is eliminated by Nomega-nitro-L-arginine methyl ester (L-NAME) due to inhibition of endothelial NOS (eNOS) and neuronal NOS (nNOS). MI was induced by ligating the left anterior descending coronary artery. Male iNOS-/- mice and wild-type controls (WT, C57BL/6J) were divided into sham MI, MI+vehicle, and MI+l-NAME (100 mg.kg(-1).day(-1) in drinking water for 8 wk). Cardiac function was evaluated by echocardiography. Left ventricular (LV) maximum rate of rise of ventricular pressure divided by pressure at the moment such maximum occurs (dP/dt/instant pressure) in response to isoproterenol (100 ng.kg(-1).min(-1) iv) was measured with a Millar catheter. Collagen deposition, myocyte cross-sectional area, and expression of nitrotyrosine and 4-hydroxy-2-nonenal (4-HNE), markers for ROS, were determined by histopathological and immunohistochemical staining. We found that the MI-induced increase in LV chamber dimension and the decrease in ejection fraction, an index of systolic function, were less severe in iNOS-/- compared with WT mice. L-NAME worsened LV remodeling and dysfunction further, and these detrimental effects were also attenuated in iNOS-/- mice, associated with better preservation of cardiac function. Lack of iNOS also reduced nitrotyrosine and 4-HNE expression after MI, indicating reduced oxidative stress. We conclude that iNOS does not seem to be a pathological mediator of heart failure; however, the lack of iNOS improves cardiac reserve post-MI, particularly when constitutive NOS isoforms are blocked. Decreased oxidative stress and other adaptive mechanisms independent of NOS may be partially responsible for such an effect, which needs to be studied further.  相似文献   

14.
Mitochondrial permeability transition (MPT) pores have recently been implicated as a potential mediator of myocardial ischemic injury. Nitric oxide (NO) donors induce a powerful late phase of cardioprotection against ischemia-reperfusion injury; however, the cellular mechanisms involved are poorly understood. The role of MPT pores as a target of cardioprotective signaling pathways activated by NO has never been explored in detail. Thus mice were administered the NO donor diethylenetriamine (DETA)/NO (4 doses of 0.1 mg/kg i.v. each) 24 h before 30 min of coronary artery occlusion followed by 24 h of reperfusion. Infarct size was significantly reduced in DETA/NO-treated mice (30 +/- 2% of risk region in treated mice vs. 50 +/- 2% in control mice; P < 0.05), which demonstrates powerful cardioprotection. To examine the role of MPT pores, mice were administered atractyloside (Atr; 25 mg/kg i.v.), which induces adenine nucleotide translocase-dependent MPT, 20 min before ischemia. Atr blocked the infarct-sparing effects of DETA/NO (infarct size, 58 +/- 1 vs. 30 +/- 2% of risk region in DETA/NO; P < 0.05), whereas Atr alone had no effect. Mitochondria isolated from DETA/NO-treated mice exhibited increased resistance to Ca(2+)-induced swelling by 20 micromol/l CaCl(2) or by the higher concentration of 200 micromol/l, which suggests that cardioprotection involves decreased propensity for MPT. Preincubation of mitochondria from control hearts with 30 nmol/l of the pore inhibitor cyclosporin A prevented swelling by 200 micromol/l CaCl(2), thereby confirming that Ca(2+) induces mitochondrial swelling via MPT. In accordance with the effects on infarct size, administration of Atr to the mice significantly abrogated DETA/NO-induced protection against Ca(2+)-induced mitochondrial swelling. These phenotypic alterations were associated with an increase in the antiapoptotic protein Bcl-2, which suggests that the underlying mechanisms may involve inhibition of cell death by Bcl-2. These data suggest that a critical process during NO donor-induced cardioprotection is to prevent MPT pore opening potentially via targeting of the adenine nucleotide translocator.  相似文献   

15.
Apoptosis(programmed cell death) is induced in pulmonary cells and contributes to the pathogenesis of acute lung injury in septic humans. Previous studies have shown that nitric oxide (NO) is an important modulator of apoptosis; however, the functional role of NO derived from inducible NO synthase (iNOS) in sepsis-induced pulmonary apoptosis remains unknown. We measured pulmonary apoptosis in a rat model of Escherichia coli lipopolysaccharide (LPS)-induced sepsis in the absence and presence of the selective iNOS inhibitor 1400W. Four groups were studied 24 h after saline (control) or LPS injection in the absence and presence of 1400W pretreatment. Apoptosis was evaluated using DNA fragmentation, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining, and caspase activation. LPS administration significantly augmented pulmonary cell apoptosis and caspase-3 activity in airway and alveolar epithelial cells. Pretreatment with 1400W significantly enhanced LPS-induced pulmonary apoptosis and increased caspase-3 and -7 activation. The antiapoptotic effect of iNOS was confirmed in iNOS-/- mice, which developed a greater degree of pulmonary apoptosis both under control conditions and in response to LPS compared with wild-type mice. By comparison, genetic deletion of the neuronal NOS had no effect on LPS-induced pulmonary apoptosis. We conclude that NO derived from iNOS plays an important protective role against sepsis-induced pulmonary apoptosis.  相似文献   

16.
Intracellular killing of Francisella tularensis by macrophages depends on interferon-gamma (IFN-gamma)-induced activation of the cells. The importance of inducible nitric oxide synthase (iNOS) or NADPH phagocyte oxidase (phox) for the cidal activity was studied. Murine IFN-gamma-activated peritoneal exudate cells (PEC) produced nitric oxide (NO), measured as nitrite plus nitrate, and superoxide. When PEC were infected with the live vaccine strain, LVS, of F. tularensis, the number of viable bacteria was at least 1000-fold lower in the presence than in the absence of IFN-gamma after 48 h of incubation. PEC from iNOS-gene-deficient (iNOS-/-) mice killed F. tularensis LVS less effectively than did PEC from wild-type mice. PEC from phox gene-deficient (p47phox-/-) mice were capable of killing the bacteria, but killing was less efficient, although still significant, in the presence of NG-monomethyl-L-arginine (NMMLA), an inhibitor of iNOS. A decomposition catalyst of ONOO-, FeTPPS, completely reversed the IFN-gamma-induced killing of F. tularensis LVS. Under host cell-free conditions, F. tularensis LVS was exposed to S-nitroso-acetyl-penicillamine (SNAP), which generates NO, or 3-morpholinosydnonimine hydrochloride (SIN-1), which generates NO and superoxide, leading to formation of ONOO-. During 6 h of incubation, SNAP caused no killing of F. tularensis LVS, whereas effective killing occurred in the presence of equimolar concentrations of SIN-1. The results suggest that mechanisms dependent on iNOS and to a minor degree, phox, contribute to the IFN-gamma-induced macrophage killing of F. tularensis LVS. ONOO- is likely to be a major mediator of the killing.  相似文献   

17.
Expression of inducible nitric oxide synthase (iNOS) and effects of iNOS gene ablation on the hepatocarcinogenesis associated with fibrosis caused by a choline-deficient, L-amino acid-defined (CDAA) diet, were examined in male F344 rats and C57BL/6J wild-type and iNOS-/- mice. Western blot, RT-PCR and immunohistochemical analyses revealed increased expression of iNOS protein and mRNA in the livers of rats and wild-type mice fed a CDAA diet for 12-80 weeks, associated with elevated serum NO(x) and liver nitrotyrosine levels. iNOS-/- mice demonstrated greater liver injury and fibrosis in the early stage than their wild-type counterparts, but this did not significantly affect the incidence and multiplicity of altered foci, adenomas and hepatocellular carcinomas in spite of immunohistochemical iNOS expression in these lesions. Results suggested no major determinant roles of the expressed iNOS in the development of liver tumors caused by the CDAA diet.  相似文献   

18.
We hypothesized that constitutive endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) have opposite effects on the regulation of endothelin and its receptors. We therefore sought to determine whether deletions of iNOS or eNOS genes in mice modulate pressor responses to endothelin and the expression of ETA and ETB receptors in a similar fashion. Despite unchanged baseline hemodynamic parameters, anesthetized iNOS-/- mice displayed reduced pressor responses to endothelin-1, but not to that of IRL-1620, a selective ETB agonist. Protein content of cardiac ETA receptors was reduced in iNOS-/- mice compared with wild-type mice, but that of ETB receptors was unchanged. Anesthetized eNOS-/- mice presented a hypertensive state, accompanied by an enhanced pressor response to intravenous endothelin-1, whereas the pressor response to IRL-1620 was reduced. Protein levels were also found to be increased for ETA receptors, but reduced for ETB receptors, in cardiac tissues of eNOS-/- mice. In conscious animals, both strains responded equally to the hypotensive effect of an ETA antagonist, ABT-627, whereas orally administered A-192621, an ETB antagonist, increased MAP to a greater extent in eNOS-/- than in wild-type mice. Furthermore, significant levels of immunoreactive endothelin were found in mesenteric arteries in eNOS-/- but not in iNOS-/- or wild-type congeners. Our study shows that repression of iNOS or eNOS has differential effects on endothelin-1 and its receptors. We have also shown that the heart is the main organ in which iNOS or eNOS repression induces important alterations in protein content of endothelin receptors in adult mice.  相似文献   

19.
Oxidative stress is involved in the tolerance to ischemia-reperfusion (I/R) injury. Because angiotensin II type 1 receptor blockers (ARBs) inhibit oxidative stress, there is concern that ARBs abolish the tolerance to I/R injury. Dahl salt-sensitive (DS) hypertensive and salt-resistant (DR) normotensive rats received an antioxidant, 2-mercaptopropionylglycine (MPG), or an ARB, losartan, for 7 days. Losartan and MPG significantly inhibited oxidative stress as determined by tissue malondialdehyde + 4-hydroxynoneal and increased expression of inducible nitric oxide synthase (iNOS) in the DS rat heart. However, losartan but not MPG activated endothelial nitric oxide synthase (eNOS) as assessed by phosphorylation of eNOS on Ser1177. Infarct size after 30-min left coronary artery occlusion followed by 2-h reperfusion was comparable between DS and DR rat hearts. Although MPG and losartan had no effect on infarct size in the DR rat heart, MPG but not losartan significantly increased infarct size in the DS rat heart. A selective iNOS inhibitor, 1400W, increased infarct size in the DS rat heart, but it had no effect on infarct size in the losartan-treated DS rat heart. However, a nonselective NOS inhibitor, Nomega-nitro-l-arginine methyl ester, increased infarct size in the losartan-treated DS rat heart. These results suggest that losartan preserves the tolerance to I/R injury by activating eNOS despite elimination of redox-sensitive upregulation of iNOS and iNOS-dependent cardioprotection in the DS rat heart.  相似文献   

20.
Chondrocytes in arthriticcartilage respond poorly to insulin-like growth factor I (IGF-I).Studies with inducible nitric oxide synthase (iNOS) knockout micesuggest that NO is responsible for part of the cartilage insensitivityto IGF-I. These studies characterize the relationship between NO andchondrocyte responses to IGF-I in vitro, and define a mechanism bywhich NO decreases IGF-I stimulation of chondrocyte proteoglycansynthesis. Lapine cartilage slices, chondrocytes, and cartilage fromosteoarthritic (OA) human knees were exposed to NO from the donorsS-nitroso-N-acetylpenicillamine (SNAP) or(Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate] (DETA NONOate), by transduction with adenoviral transfer of iNOS (Ad-iNOS), or by activation with interleukin-1 (IL-1). NOsynthesis was estimated from medium nitrite, and proteoglycan synthesis was measured as incorporation of 35SO4. IGF-Ireceptor phosphorylation was evaluated with Western analysis. SNAP,DETA NONOate, endogenously synthesized NO in Ad-iNOS-transduced cells,or IL-1 activation decreased IGF-I-stimulated proteoglycan synthesis incartilage and monolayer cultures of chondrocytes. OA cartilageresponded poorly to IGF-I; however, the response to IGF-I was restoredby culture withNG-monomethyl-L-arginine(L-NMA). IGF-I receptor phosphotyrosine was diminished inchondrocytes exposed to NO. These studies show that NO is responsiblefor part of arthritic cartilage/chondrocyte insensitivity to anabolicactions of IGF-I; inhibition of receptor autophosphorylation ispotentially responsible for this effect.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号