首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary artery constriction (PAC), a model of right ventricular (RV) pressure overload, flattens or inverts the septum and may flatten the left ventricular (LV) free wall. Finite element (FE) analysis predicts that such deformations may cause substantial compression. This study tests the hypothesis that deformation-induced myocardial compressive stress impedes coronary blood flow (CBF). Colored microspheres ( approximately 2 x 10(6)) were injected into the left atrium of 13 open-chest, anesthetized dogs under control conditions and during PAC, which decreased the end-diastolic transseptal pressure gradient (LV - RV) from 1.6 +/- 1.3 to -3.4 +/- 1.7 mmHg. Septal and LV deformation was assessed with the use of two-dimensional echocardiography, and by FE analysis, the hydrostatic component of stress was assessed. Postmortem, a 2.5-cm wide, LV equatorial ring was divided into 16 endocardial and epicardial samples. PAC decreased CBF in the FE-predicted compression zones, areas with the greatest compression having the greatest reductions in CBF. During PAC, compression reached a maximum of 25.3 +/- 1.8 mmHg on the (LV) endocardial sides of the RV insertion points, areas that saw CBF decrease from 1.05 +/- 0.08 to 0.68 +/- 0.05 ml.min(-1).g(-1) (P < 0.001), more than 30%. CBF decreased (from 1.08 +/- 0.07 to 0.81 +/- 0.07 ml.min(-1).g(-1); P < 0.001) on the RV side of the midseptum, an area with as much as 16.0 +/- 1.0 mmHg of compression. Overall, average compressions of 10 mmHg decreased CBF by approximately 30%. We conclude that acute RV pressure overload deforms the septum and LV and induces compressive stresses that reduce CBF substantially. This may help explain why some patients with pulmonary hypertension and no critical coronary disease have chest discomfort indistinguishable from angina pectoris.  相似文献   

2.
A chronic left anterior descending coronary artery (LAD) stenosis leads to the development of hibernating myocardium with severe regional hypokinesis but normal global ventricular function after 3 mo. We hypothesized that two-vessel occlusion would accelerate the progression to hibernating myocardium and lead to global left ventricular (LV) dysfunction and heart failure. Pigs were instrumented with a fixed 1.5-mm constrictor on the proximal LAD and circumflex arteries. After 2 mo, there were no overt signs of right-heart failure and triphenyl tetrazolium chloride infarction was trivial (1.4 +/- 0.1% of the LV). Compared with shams, regional function [myocardial systolic excursion (DeltaWT); 2.1 +/- 0.3 vs. 4.6 +/- 0.4 mm, P < 0.05] and resting perfusion (0.90 +/- 0.13 vs. 1.32 +/- 0.09 ml small middle dot min(-1) small middle dot g(-1), P < 0.05) were reduced, consistent with hibernating myocardium. Pulmonary systolic (45.9 +/- 3.3 vs. 36.5 +/- 2.2 mmHg, P < 0.05) and wedge pressures (19.1 +/- 1.6 vs. 11.2 +/- 0.9 mmHg, P < 0.05) were increased with global ventricular dysfunction (ejection fraction 43 +/- 2 vs. 50 +/- 2%, P < 0.05). Early LV remodeling was present with increased cavity size and mass. Reductions in sarcoplasmic reticulum Ca(2+)-ATPase and phospholamban were confined to the dysfunctional LAD region with no change in calsequestrin. Thus combined stenoses of the LAD and circumflex arteries accelerate the development of hibernating myocardium and result in compensated heart failure.  相似文献   

3.
We hypothesized that nitric oxide (NO) opposes ANG II-induced increases in arterial pressure and reductions in renal, splanchnic, and skeletal muscle vascular conductance during dynamic exercise in normal and heart failure rats. Regional blood flow and vascular conductance were measured during treadmill running before (unblocked exercise) and after 1) ANG II AT(1)-receptor blockade (losartan, 20 mg/kg ia), 2) NO synthase (NOS) inhibition [N(G)-nitro-L-arginine methyl ester (L-NAME); 10 mg/kg ia], or 3) ANG II AT(1)-receptor blockade + NOS inhibition (combined blockade). Renal conductance during unblocked exercise (4.79 +/- 0.31 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased after ANG II AT(1)-receptor blockade (6.53 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.12 +/- 0.20 ml x 100 g(-1) x min(-1) x mmHg(-1)) and combined inhibition (3.96 +/- 0.57 ml x 100 g(-1) x min(-1) x mmHg(-1); all P < 0.05 vs. unblocked). In heart failure rats, renal conductance during unblocked exercise (5.50 +/- 0.66 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased by ANG II AT(1)-receptor blockade (8.48 +/- 0.83 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.68 +/- 0.22 ml x 100 g(-1) x min(-1) x mmHg(-1); both P < 0.05 vs. unblocked), but it was unaltered during combined inhibition (4.65 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)). Because our findings during combined blockade could be predicted from the independent actions of NO and ANG II, no interaction was apparent between these two substances in control or heart failure animals. In skeletal muscle, L-NAME-induced reductions in conductance, compared with unblocked exercise (P < 0.05), were abolished during combined inhibition in heart failure but not in control rats. These observations suggest that ANG II causes vasoconstriction in skeletal muscle that is masked by NO-evoked dilation in animals with heart failure. Because reductions in vascular conductance between unblocked exercise and combined inhibition were less than would be predicted from the independent actions of NO and ANG II, an interaction exists between these two substances in heart failure rats. L-NAME-induced increases in arterial pressure during treadmill running were attenuated (P < 0.05) similarly in both groups by combined inhibition. These findings indicate that NO opposes ANG II-induced increases in arterial pressure and in renal and skeletal muscle resistance during dynamic exercise.  相似文献   

4.
Enhanced left-ventricular (LV) compliance is a common adaptation to endurance training. This adaptation may have differential effects under conditions of altered venous return. The purpose of this investigation was to assess the effect of cardiac (un)loading on right ventricular (RV) cavity dimensions and LV volumes in endurance-trained athletes and normally active males. Eight endurance-trained (Vo(2max), 65.4 +/- 5.7 ml.kg(-1).min(-1)) and eight normally active (Vo(2max), 45.1 +/- 6.0 ml.kg(-1).min(-1)) males underwent assessments of the following: 1) Vo(2max), 2) orthostatic tolerance, and 3) cardiac responses to lower-body positive (0-60 mmHg) and negative (0 to -80 mmHg) pressures with echocardiography. In response to negative pressures, echocardiographic analysis revealed a similar decrease in RV end-diastolic cavity area in both groups (e.g., at -80 mmHg: normals, 21.4%; athletes, 20.8%) but a greater decrease in LV end-diastolic volume in endurance-trained athletes (e.g., at -80 mmHg: normals, 32.3%; athletes, 44.4%; P < 0.05). Endurance-trained athletes also had significantly greater decreases in LV stroke volume during lower-body negative pressure. During positive pressures, endurance-trained athletes showed larger increases in LV end-diastolic volume (e.g., at +60 mmHg; normals, 14.1%; athletes, 26.8%) and LV stroke volume, despite similar responses in RV end-diastolic cavity area (e.g., at +60 mmHg: normals, 18.2%; athletes, 24.2%; P < 0.05). This investigation revealed that in response to cardiac (un)loading similar changes in RV cavity area occur in endurance-trained and normally active individuals despite a differential response in the left ventricle. These differences may be the result of alterations in RV influence on the left ventricle and/or intrinsic ventricular compliance.  相似文献   

5.
Preeclampsia (PE) is associated with increased total peripheral resistance (TPR), reduced cardiac output (CO), and diminished uterine and placental blood flow. We have developed an animal model that employs chronic reductions in uterine perfusion pressure (RUPP) in pregnant rats to generate a "preeclamptic-like" state during late gestation that is characterized by hypertension, proteinuria, and endothelial dysfunction. Although this animal model has many characteristics of human PE, the systemic hemodynamic and regional changes in blood flow that occur in response to chronic RUPP remains unknown. Therefore, we hypothesized that RUPP would decrease uteroplacental blood flow and CO, and increase TPR. Mean arterial pressure (MAP), CO, cardiac index (CI), TPR, and regional blood flow to various tissues were measured using radiolabeled microspheres in the following two groups of conscious rats: normal pregnant rats (NP; n = 8) and RUPP rats (n = 8). MAP was increased (132 +/- 4 vs. 99 +/- 3 mmHg) in the RUPP rats compared with the NP dams. The hypertension in RUPP rats was associated with increased TPR (2.15 +/- 0.02 vs. 0.98 +/- 0.08 mmHg x ml(-1) x min(-1)) and decreased CI (246 +/- 20 vs. 348 +/- 19 ml x min(-1) x kg(-1), P < 0.002) when contrasted with NP dams. Furthermore, uterine (0.16 +/- 0.03 vs. 0.38 +/- 0.09 ml x min(-1) x g tissue(-1)) and placental blood flow (0.30 +/- 0.08 vs. 0.70 +/- 0.10 ml x min(-1) x g tissue(-1)) were decreased in RUPP compared with the NP dams. These data demonstrate that the RUPP model of pregnancy-induced hypertension has systemic hemodynamic and regional blood flow alterations that are strikingly similar to those observed in women with PE.  相似文献   

6.
Because of technical challenges very little is known about absolute myocardial perfusion in humans in vivo during physical exercise. In the present study we applied positron emission tomography (PET) in order to 1) investigate the effects of dynamic bicycle exercise on myocardial perfusion and 2) clarify the possible effects of endurance training on myocardial perfusion during exercise. Myocardial perfusion was measured in endurance-trained and healthy untrained subjects at rest and during absolutely the same (150 W) and relatively similar [70% maximal power output (W(max))] bicycle exercise intensities. On average, the absolute myocardial perfusion was 3.4-fold higher during 150 W (P < 0.001) and 4.9-fold higher during 70% W(max) (P < 0.001) than at rest. At 150 W myocardial perfusion was 46% lower in endurance-trained than in untrained subjects (1.67 +/- 0.45 vs. 3.00 +/- 0.75 ml x g(-1) x min(-1); P < 0.05), whereas during 70% W(max) perfusion was not significantly different between groups (P = not significant). When myocardial perfusion was normalized with rate-pressure product, the results were similar. Thus, according to the present results, myocardial perfusion increases in parallel with the increase in working intensity and in myocardial work rate. Endurance training seems to affect myocardial blood flow pattern during submaximal exercise and leads to more efficient myocardial pump function.  相似文献   

7.
Sex differences in neuroendocrine and metabolic responses to prolonged strenuous exercise (PSE) have been well documented. The aim of this investigation was to examine sex differences in left ventricular function and cardiac beta-receptor responsiveness following a single bout of PSE. Nine male and eight female triathletes were examined during three separate sessions: before, immediately after, and 24 h following a half-ironman triathlon using dobutamine stress echocardiography. Steady-state graded infusions of dobutamine were used to assess beta-receptor responsiveness. Slopes calculated from linear regressions between dobutamine doses and changes in heart rate and contractility for each participant were used as an index of beta-receptor responsiveness. Despite no change in preload, fractional area change decreased from baseline after the race in both men and women, with a greater decrease in men [men: 54.1% (SD 2.1) to 50.7% (SD 3.4) vs. women: 55.4% (SD 2.7) to 53.3% (SD 2.5); P < 0.05]. The amount of dobutamine necessary to increase heart rate by 25 beats/min [men: 29.6 microg x kg(-1) x min(-1) (SD 6.6) to 42.7 microg x kg(-1) x min(-1) (SD 12.9) vs. women: 23.5 microg x kg(-1) x min(-1) (SD 4.0) to 30.0 microg x kg(-1) x min(-1) (SD 7.8); P < 0.05] and contractility by 10 mmHg/cm2 [men: 20.9 microg x kg(-1) x min(-1) (SD 5.1) to 37.0 microg x kg(-1) x min(-1) (SD 11.5) vs. women: 22.6 microg x kg(-1) x min(-1) (SD 6.4) to 30.7 microg x kg(-1) x min(-1) (SD 7.2); P < 0.05] was greater in both men and women postrace. However, the amount of dobutamine required to induce these changes was greater in men, reflecting larger beta-receptor alterations in male triathletes following PSE relative to women. These data suggest that following an acute bout of PSE, male triathletes demonstrate an attenuated chronotropic and inotropic response to beta-adrenergic stimulation compared with female triathletes.  相似文献   

8.
To test the hypothesis that coronary flow and coronary flow reserve are developmentally regulated, we used fluorescent microspheres to investigate the effects of acute (6 h) pulmonary artery banding (PAB) on baseline and adenosine-enhanced right (RV) and left ventricular (LV) blood flow in two groups of twin ovine fetuses (100 and 128 days of gestation, term 145 days, n = 6 fetuses/group). Within each group, one fetus underwent PAB to constrict the main pulmonary artery diameter by 50%, and the other twin served as a nonbanded control. Physiological measurements were made 6 h after the surgery was completed; tissues were then harvested for analysis of selected genes that may be involved in the early phase of coronary vascular remodeling. Within each age group, arterial blood gas values, heart rate, and mean arterial blood pressure were similar between control and PAB fetuses. Baseline endocardial blood flow in both ventricles was greater in 100 than 128-day fetuses (RV: 341 +/- 20 vs. 230 +/- 17 ml*min(-1)*100 g(-1); LV: 258 +/- 18 vs. 172 +/- 23 ml*min(-1)*100 g(-1), both P < 0.05). In both age groups, RV and LV endocardial blood flows increased significantly in control animals during adenosine infusion and were greater in PAB compared with control fetuses. After PAB, adenosine further increased RV blood flow in 128-day fetuses (from 416 +/- 30 to 598 +/- 33 ml*min(-1)*g(-1), P < 0.05) but did not enhance blood flow in 100-day animals (490 +/- 59 to 545 +/- 42 ml*min(-1)*100 g(-1), P > 0.2). RV vascular endothelial growth factor and Flk-1 mRNA levels were increased relative to controls (P < 0.05) in 128 but not 100-day PAB fetuses. We conclude that in the ovine fetus, developmentally related differences exist in 1) baseline myocardial blood flows, 2) the adaptive response of myocardial blood flow to acute systolic pressure load, and 3) the responses of selected genes involved in vasculogenesis to increased load in the fetal myocardium.  相似文献   

9.
Left ventricular (LV) systolic torsion is a primary mechanism contributing to stroke volume (SV). We hypothesized that change in LV torsion parallels changes in global systolic performance during dyssynchrony and cardiac resynchronization therapy (CRT). Seven anesthetized open chest dogs had LV pressure-volume relationship. Apical, basal, and mid-LV cross-sectional echocardiographic images were studied by speckle tracking analysis. Right atrial (RA) pacing served as control. Right ventricular (RV) pacing simulated left bundle branch block. Simultaneous RV-LV free wall and RV-LV apex pacing (CRTfw and CRTa, respectively) modeled CRT. Dyssynchrony was defined as the time difference in peak strain between earliest and latest segments. Torsion was calculated as the maximum difference between the apical and basal rotation. RA pacing had minimal dyssynchrony (52 ± 36 ms). RV pacing induced dyssynchrony (189 ± 61 ms, P < 0.05). CRTa decreased dyssynchrony (46 ± 36 ms, P < 0.05 vs. RV pacing), whereas CRTfw did not (110 ± 96 ms). Torsion during baseline RA was 6.6 ± 3.7°. RV pacing decreased torsion (5.1 ± 3.6°, P < 0.05 vs. control), and reduced SV, stroke work (SW), and dP/dt(max) compared with RA (21 ± 5 vs. 17 ± 5 ml, 252 ± 61 vs. 151 ± 64 mJ, and 2,063 ± 456 vs. 1,603 ± 424 mmHg/s, respectively, P < 0.05). CRTa improved torsion, SV, SW, and dP/dt(max) compared with RV pacing (7.7 ± 4.7°, 23 ± 3 ml, 240 ± 50 mJ, and 1,947 ± 647 mmHg/s, respectively, P < 0.05), whereas CRTfw did not (5.1 ± 3.6°, 18 ± 5 ml, 175 ± 48 mJ, and 1,699 ± 432 mmHg/s, respectively, P < 0.05). LV torsion changes covaried across conditions with SW (y = 0.94x+12.27, r = 0.81, P < 0.0001) and SV (y = 0.66x+0.91, r = 0.81, P < 0.0001). LV dyssynchrony changes did not correlate with SW or SV (r = -0.12, P = 0.61 and r = 0.08, P = 0.73, respectively). Thus, we conclude that LV torsion is primarily altered by dyssynchrony, and CRT that restores LV performance also restores torsion.  相似文献   

10.
Cardiovascular surgery requiring cardiopulmonary bypass (CPB) is frequently complicated by postoperative lung injury. Bronchial artery (BA) blood flow has been hypothesized to attenuate this injury. The purpose of the present study was to determine the effect of BA blood flow on CPB-induced lung injury in anesthetized pigs. In eight pigs (BA ligated) the BA was ligated, whereas in six pigs (BA patent) the BA was identified but left intact. Warm (37 degrees C) CPB was then performed in all pigs with complete occlusion of the pulmonary artery and deflated lungs to maximize lung injury. BA ligation significantly exacerbated nearly all aspects of pulmonary function beginning at 5 min post-CPB. At 25 min, BA-ligated pigs had a lower arterial Po(2) at a fraction of inspired oxygen of 1.0 (52 +/- 5 vs. 312 +/- 58 mmHg) and greater peak tracheal pressure (39 +/- 6 vs. 15 +/- 4 mmHg), pulmonary vascular resistance (11 +/- 1 vs. 6 +/- 1 mmHg x l(-1) x min), plasma TNF-alpha (1.2 +/- 0.60 vs. 0.59 +/- 0.092 ng/ml), extravascular lung water (11.7 +/- 1.2 vs. 7.7 +/- 0.5 ml/g blood-free dry weight), and pulmonary vascular protein permeability, as assessed by a decreased reflection coefficient for albumin (sigma(alb); 0.53 +/- 0.1 vs. 0.82 +/- 0.05). There was a negative correlation (R = 0.95, P < 0.001) between sigma(alb) and the 25-min plasma TNF-alpha concentration. These results suggest that a severe decrease in BA blood flow during and after warm CPB causes increased pulmonary vascular permeability, edema formation, cytokine production, and severe arterial hypoxemia secondary to intrapulmonary shunt.  相似文献   

11.
This prospective, longitudinal study examined the effects of participation in team-based exercise training on cardiac structure and function. Competitive endurance athletes (EA, n = 40) and strength athletes (SA, n = 24) were studied with echocardiography at baseline and after 90 days of team training. Left ventricular (LV) mass increased by 11% in EA (116 +/- 18 vs. 130 +/- 19 g/m(2); P < 0.001) and by 12% in SA (115 +/- 14 vs. 132 +/- 11 g/m(2); P < 0.001; P value for the compared Delta = NS). EA experienced LV dilation (end-diastolic volume: 66.6 +/- 10.0 vs. 74.7 +/- 9.8 ml/m(2), Delta = 8.0 +/- 4.2 ml/m(2); P < 0.001), enhanced diastolic function (lateral E': 10.9 +/- 0.8 vs. 12.4 +/- 0.9 cm/s, P < 0.001), and biatrial enlargement, while SA experience LV hypertrophy (posterior wall: 4.5 +/- 0.5 vs. 5.2 +/- 0.5 mm/m(2), P < 0.001) and diminished diastolic function (E' basal lateral LV: 11.6 +/- 1.3 vs. 10.2 +/- 1.4 cm/s, P < 0.001). Further, EA experienced right ventricular (RV) dilation (end-diastolic area: 1,460 +/- 220 vs. 1,650 +/- 200 mm/m(2), P < 0.001) coupled with enhanced systolic and diastolic function (E' basal RV: 10.3 +/- 1.5 vs. 11.4 +/- 1.7 cm/s, P < 0.001), while SA had no change in RV parameters. We conclude that participation in 90 days of competitive athletics produces significant training-specific changes in cardiac structure and function. EA develop biventricular dilation with enhanced diastolic function, while SA develop isolated, concentric left ventricular hypertrophy with diminished diastolic relaxation.  相似文献   

12.
We aimed to investigate the toxicity of carbon monoxide (CO) in rats with right ventricle (RV) remodeling induced by hypoxic pulmonary hypertension (PHT). A group of Wistar rats was exposed to 3-wk hypobaric hypoxia (H). A second group was exposed to 50 ppm CO for 1 wk (CO). A third group was exposed to chronic hypoxia including 50 ppm CO during the third week (H+CO). These groups were compared with controls. RV and left ventricle (LV) functions were assessed by echocardiography and transparietal catheterization. Ventricular perfusion was estimated with the fluorescent microsphere method. Results were confirmed by histology. PHT induced RV hypertrophy and function enhancement. In the H group, RV shortening fraction (RVSF; 71 +/- 12% vs. 41 +/- 2%) and RV end-systolic pressure (RVESP; 54 +/- 6 vs. 19 +/- 2 mmHg) were increased compared with controls. Moreover, myocardial perfusion was increased in the RV (36 +/- 2% vs. 22 +/- 2%) and decreased in the LV (64 +/- 3% vs. 78 +/- 2%). In the H+CO group, RVSF (45 +/- 3% vs. 71 +/- 12%) and RVESP (38 +/- 3 vs. 54 +/- 6 mmHg) were decreased compared with the H group. RV perfusion was decreased in the H+CO group compared with the H group (21 +/- 5% vs. 36 +/- 2%), and LV perfusion was increased (79 +/- 5% vs. 64 +/- 3%). PHT and RV hypertrophy were still present in the H+CO group, and fibroses localized in the RV were detected. Similar lesions were observed in an additional group exposed simultaneously to hypoxia and 50 ppm CO over 3 wk. We demonstrated that rats with established PHT were more sensitive to CO, which dramatically alters the RV adaptive response to PHT, leading to ischemic lesions.  相似文献   

13.
In patients with obstructive sleep apnea (OSA), substantial elevations of systemic blood pressure (BP) and depressions of oxyhemoglobin saturation (SaO2) accompany apnea termination. The causes of the BP elevations, which contribute significantly to nocturnal hypertension in OSA, have not been defined precisely. To assess the relative contribution of arterial hypoxemia, we observed mean arterial pressure (MAP) changes following obstructive apneas in 11 OSA patients during non-rapid-eye-movement (NREM) sleep and then under three experimental conditions: 1) apnea with O2 supplementation; 2) hypoxemia (SaO2 80%) without apnea; and 3) arousal from sleep with neither hypoxemia nor apnea. We found that apneas recorded during O2 supplementation (SaO2 nadir 93.6% +/- 2.4; mean +/- SD) in six subjects were associated with equivalent postapneic MAP elevations compared with unsupplemented apneas (SaO2 nadir 79-82%): 18.8 +/- 7.1 vs. 21.3 +/- 9.2 mmHg (mean change MAP +/- SD); in the absence of respiratory and sleep disruption in eight subjects, hypoxemia was not associated with the BP elevations observed following apneas: -5.4 +/- 19 vs. 19.1 +/- 7.8 mmHg (P less than 0.01); and in five subjects, auditory arousal alone was associated with MAP elevation similar to that observed following apneas: 24.0 +/- 8.1 vs. 22.0 +/- 6.9 mmHg. We conclude that in NREM sleep postapneic BP elevations are not primarily attributable to arterial hypoxemia. Other factors associated with apnea termination, including arousal from sleep, reinflation of the lungs, and changes of intrathoracic pressure, may be responsible for these elevations.  相似文献   

14.
Animal experiments have shown that the coronary circulation is pressure distensible, i.e., myocardial blood volume (MBV) increases with perfusion pressure. In humans, however, corresponding measurements are lacking so far. We sought to quantify parameters reflecting coronary distensibility such as MBV and coronary resistance (CR) during and after coronary angioplasty. Thirty patients with stable coronary artery disease underwent simultaneous coronary perfusion pressure assessment and myocardial contrast echocardiography (MCE) of 37 coronary arteries and their territories during and after angioplasty. MCE yielded MBV and myocardial blood flow (MBF; in ml · min(-1) · g(-1)). Complete data sets were obtained in 32 coronary arteries and their territories from 26 patients. During angioplasty, perfusion pressure, i.e., coronary occlusive pressure, and MBV varied between 9 and 57 mmHg (26.9 ± 11.9 mmHg) and between 1.2 and 14.5 ml/100 g (6.7 ± 3.7 ml/100 g), respectively. After successful angioplasty, perfusion pressure and MBV increased significantly (P < 0.001 for both) and varied between 64 and 118 mmHg (93.5 ± 12.8 mmHg) and between 3.7 and 17.3 ml/100 g (9.8 ± 3.4 ml/100 g), respectively. Mean MBF increased from 31 ± 20 ml · min(-1) · g(-1) during coronary occlusion, reflecting collateral flow, to 121 ± 33 ml · min(-1) · g(-1) (P < 0.01), whereas mean CR, i.e., the ratio of perfusion pressure and MBF, decreased by 20% (P < 0.001). In conclusion, the human coronary circulation is pressure distensible. MCE allows for the quantification of CR and MBV in humans.  相似文献   

15.
Sex-specific influence of aging on exercising leg blood flow.   总被引:1,自引:0,他引:1  
Our previous work suggests that healthy human aging is associated with sex-specific differences in leg vascular responses during large muscle mass exercise (2-legged cycling) (Proctor DN, Parker BA. Microcirculation 13: 315-327, 2006). The present study determined whether age x sex interactions in exercising leg hemodynamics persist during small muscle mass exercise that is not limited by cardiac output. Thirty-one young (20-30 yr; 15 men/16 women) and 31 older (60-79 yr; 13 men/18 women) healthy, normally active adults performed graded single-leg knee extensions to maximal exertion. Femoral artery blood velocity and diameter (Doppler ultrasound), heart rate (ECG), and beat-to-beat arterial blood pressure (mean arterial pressure, radial artery tonometry) were measured during each 3-min work rate (4.8 and 8 W/stage for women and men, respectively). The results (means +/- SE) were as follows. Despite reduced resting leg blood flow and vascular conductance, older men exhibited relatively preserved exercising leg hemodynamic responses. Older women, by contrast, exhibited attenuated hyperemic (young: 52 +/- 3 ml.min(-1).W(-1); vs. older: 40 +/- 4 ml.min(-1).W(-1); P = 0.02) and vasodilatory responses (young: 0.56 +/- 0.06 ml.min(-1).mmHg(-1).W(-1) vs. older: 0.37 +/- 0.04 ml.min(-1).mmHg(-1) W(-1); P < 0.01) to exercise compared with young women. Relative (percentage of maximal) work rate comparisons of all groups combined also revealed attenuated vasodilator responses in older women (P < 0.01 for age x sex x work rate interaction). These sex-specific age differences were not abolished by consideration of hemoglobin, quadriceps muscle, muscle recruitment, and mechanical influences on muscle perfusion. Collectively, these findings suggest that local factors contribute to the sex-specific effects of aging on exercising leg hemodynamics in healthy adults.  相似文献   

16.
Clinical studies have documented an abrupt rise in plasma endothelin-1 (ET-1) coincident with an increase in mean arterial pressure (MAP) during the response to acute stress. We therefore examined the ET(A) and ET(B) receptor-dependent effects of ET-1 on the pressor response to acute environmental stress in ET-1-dependent hypertension. Stress was induced by administration of air jet pulses (3 min) in ET(B) receptor-deficient (ET(B) sl/sl) rats fed normal salt (NS; 0.8% NaCl), high salt (HS; 8% NaCl), and HS plus the ET(A) receptor antagonist ABT-627 (5 mg.kg(-1).day(-1)) on successive weeks. MAP was chronically monitored by telemetry. Total pressor response (area under the curve) was significantly reduced in ET(B) sl/sl rats maintained on a HS vs. NS diet [-6.8 mmHg (SD 18.7) vs. 29.3 mmHg (SD 8.1) x 3 min, P < 0.05]. Conversely, the total pressor response was augmented in both wild-type [34.2 mmHg (SD 29.2) x 3 min, P < 0.05 vs. NS] and ET(B) sl/sl rats [49.1 mmHg (SD 11.8) x 3 min, P < 0.05 vs. NS] by ABT-627. Blockade of ET(B) receptors in Sprague-Dawley rats caused an increase in basal MAP that was enhanced by HS and lowered by mixed ET(A)/ET(B) receptor antagonism; none of these treatments, however, had any effect on the pressor response. These data demonstrate that increasing endogenous ET-1 suppresses the pressor response to acute stress through ET(A) receptor activation in a genetic model of ET-1-dependent hypertension. These results are consistent with reports that ET-1 can attenuate sympathetically mediated responses.  相似文献   

17.
The effects of neonatal sympathectomy of donors or recipients on posttransplantation arterial pressure were investigated in spontaneously hypertensive rats (SHR) by renal transplantation experiments. Conscious mean arterial pressure (MAP) and renal vascular resistance were 136 +/- 1 mmHg and 15.5 +/- 1.2 mmHg x ml(-1) x min x g in sympathectomized SHR (n = 8) vs. 158 +/- 4 mmHg (P < 0.001) and 20.8 +/- 1.1 mmHg x ml(-1) x min x g (P < 0.05) in controls (n = 10). Seven weeks after transplantation of a kidney from neonatally sympathectomized SHR donors, MAP in SHR recipients (n = 10) was 20 mmHg lower than in controls transplanted with a kidney from hydralazine-treated SHR (n = 10) (P < 0.05) associated with reduced sodium sensitivity of MAP. Neonatal sympathectomy also lowered MAP in F1-hybrids (F1H; SHR x Wistar-Kyoto rats). Within 6 wk after transplantation, renal grafts from untreated SHR increased MAP by 20 mmHg in sympathectomized F1H (n = 10) and by 35 mmHg in sham-treated F1H (n = 8) (P < 0.05). Neonatal sympathectomy induces chronic changes in SHR kidney function leading to a MAP reduction even when extrarenal sympathetic tone is restored. Generalized reduction in sympathetic tone resets the kidney-fluid system to reduced MAP and blunts the extent of arterial pressure rise induced by an SHR kidney graft.  相似文献   

18.
We aimed to investigate the interaction between the arterial baroreflex and muscle metaboreflex [as reflected by alterations in the dynamic responses shown by leg blood flow (LBF: by the ultrasound Doppler method), leg vascular conductance (LVC), mean arterial blood pressure (MAP), and heart rate (HR)] in humans. In 12 healthy subjects (10 men and 2 women), who performed sustained 1-min handgrip exercise at 50% maximal voluntary contraction followed immediately by an imposed postexercise muscle ischemia (PEMI), 5-s periods of neck pressure (NP; 50 mmHg) or neck suction (NS; -60 mmHg) were used to evaluate carotid baroreflex function both at rest (Con) and during PEMI. First, the decreases in LVC and LBF and the augmentation of MAP elicited by NP were all greater during PEMI than in Con (DeltaLVC, -1.2 +/- 0.2 vs. -1.9 +/- 0.2 ml.min(-1).mmHg(-1); DeltaLBF, -97.3 +/- 11.2 vs. -177.0 +/- 21.8 ml/min; DeltaMAP, 6.7 +/- 1.2 vs. 11.5 +/- 1.4 mmHg, Con vs. PEMI; each P < 0.05). Second, in Con, NS significantly increased both LVC and LBF (DeltaLVC, 0.9 +/- 0.2 ml.min(-1).mmHg(-1); DeltaLBF, 46.6 +/- 9.8 ml/min; significant change from baseline: each P < 0.05), and, whereas during PEMI no significant increases in LVC and LBF occurred during NS itself (DeltaLVC, 0.2 +/- 0.1 ml.min(-1).mmHg(-1); DeltaLBF, 10.8 +/- 9.6 ml/min; each P > 0.05), a decrease was evident in each parameters at 5 s after the cessation of NS. Third, during PEMI, the decrease in MAP elicited by NS was smaller (DeltaMAP, -8.4 +/- 1.0 vs. -5.8 +/- 0.4 mmHg, Con vs. PEMI; P < 0.05), and it recovered to its initial level more quickly after NS (vs. Con). Finally, however, the HR responses to NS and NP were not different between PEMI and Con. These results suggest that during muscle metaboreflex activation in humans, the arterial baroreflex dynamic effect on peripheral vascular conductance is modulated, as exemplified by 1) an augmentation of the NP-induced LVC decrease, and 2) a loss of the NS-induced LVC increase.  相似文献   

19.
Dependent pooling occurs in postural orthostatic tachycardia syndrome (POTS) related to defective vasoconstriction. Increased venous pressure (Pv) >20 mmHg occurs in some patients (high Pv) but not others (normal Pv). We compared 22 patients, aged 12-18 yr, with 13 normal controls. Continuous blood pressure and strain-gauge plethysmography were used to measure supine forearm and calf blood flow, resistance, venous compliance, and microvascular filtration, and blood flow and swelling during 70 degrees head-up tilt. Supine, high Pv had normal resistance in arms (26 +/- 2 mmHg x ml(-1) x 100 ml x min) and legs (34 +/- 3 mmHg x ml(-1) x 100 ml x min) but low leg blood flow (1.5 +/- 0.4 ml x 100 ml(-1) x min(-1)). Supine leg Pv (30 +/- 2 vs. 13 +/- 1 mmHg in control) exceeded the threshold for edema (isovolumetric pressure = 19 +/- 3 mmHg). Supine, normal Pv had high blood flow in arms (4.1 +/- 0.2 vs. 3.5 +/- 0.2 ml x 100 ml(-1) x min(-1) in control) and legs (3.8 +/- 0.4 vs. 2.7 +/- 0.3 ml x 100 ml(-1) x min(-1) in control) with low resistance. With tilt, calf blood flow increased steadily in POTS with high Pv and transiently increased in normal Pv. Calf volume increased in all POTS patients. Arm blood flow increased in normal Pv only with forearm maintained at heart level. These data suggest that there are (at least) two subgroups of POTS characterized by high Pv and low flow or normal Pv and high flow. These may correspond to abnormalities in local or baroreceptor-mediated vasoconstriction, respectively.  相似文献   

20.
The objective of this study was to determine whether acute volume loading elevates T-wave alternans (TWA) in dogs with structurally normal hearts. TWA predicts sudden cardiac arrest in patients with left ventricular dysfunction and congestive heart failure. However, volume load and ventricular stretch may themselves precipitate arrhythmias. It is unclear to what extent volume load causes TWA. In six male mongrel dogs [25.8 kg (SD 4.2)] under general anesthesia, we measured TWA during progressive atrial pacing to 160 beats/min. Pacing was performed at baseline, at the midpoint and peak of a saline infusion designed to induce acute CHF, and then during diuresis. Dog 1 was hypothermic throughout the protocol and excluded from analysis. For dogs 2-6, 102 ml/kg (SD 30) were infused over 315 min (SD 50), causing pulmonary capillary wedge pressure to rise from 9.6 (SD 3.5) to 21.2 mmHg (SD 1.6) (P < 0.01), and heart rate variability to fall (P < 0.01). TWA magnitude (Valt) rose in all dogs with volume load (P < 0.001). Compared with baseline, TWA at peak infusion had higher magnitude [Valt 3.4 (SD 1.95) vs. 0.5 muV (SD 0.35); P = 0.011] and occurred at lower heart rates [128 (SD 6) vs. 151 beats/min (SD 12); P = 0.008]. Net volume load was linearly related to Valt (P < 0.01), with each 10 ml/kg net volume load increasing Valt by 0.23 muV. Acute volume overload elevates TWA in normal canine hearts. Although dramatic, however, this effect may contribute clinically to abnormal TWA only in patients with marked volume overload. Future studies should examine the interaction of fluid overload, myocardial disease, and arrhythmia susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号