首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Dansyl-labeled tetrapeptide Gly-His-Arg-Pro which mimics the central fibrin polymerization site was used to investigate its binding to a number of fibrinogen fragments containing different numbers of domains. The tetrapeptide was found to bind to fragments DH(95 kDa), DL(82 kDa) and DY(63 kDa) but not to the TSD(28 kDa) fragment. The DY fragment differs from the TSD by the presence of β and βC domains. Therefore these domains, which are formed by the C-terminal part of the β chain, possess a polymerization site complementary to the Gly-His-Arg containing counterpart.  相似文献   

3.
The treatment of crude culture medium from human rheumatoid synovial cells with 4-aminophenylmercuric acetate (APMA) or trypsin results in the activation of procollagenase. This process was shown to be dependent on the presence of matrix metalloproteinase 3 (MMP-3). MMP-3 can directly activate procollagenase without changing the apparent molecular weight of procollagenase. This activity was accelerated in the presence of APMA. We propose that MMP-3 plays an important role in connective tissue destruction through the activation of procollagenase in addition to its direct action on components of the extracellular matrix.  相似文献   

4.
Protein phosphorylation in peroxisomes   总被引:2,自引:0,他引:2  
The possible presence of phosphorylated proteins in peroxisomes was studied in hepatocytes from nafenopin-treated and normal rats. A 63 kDa phosphorylated protein was consistently and exclusively found in the membrane of peroxisomes from hepatocytes incubated in the presence of 32P-phosphate. The peroxisomes were isolated in metrizamide isopycnic gradients of postnuclear supernatants and were subfractionated by alkaline extraction to separate the membrane and the matrix proteins. Polyacrylamide gel electrophoresis, autoradiography and densitometry were employed to characterize the proteins. The 63 kDa membrane protein copurifies with peroxisomes in metrizamide gradients and apparently can be phosphorylated, in purified peroxisomes, with ATP and catalytic subunit of cAMP-dependent protein kinase.  相似文献   

5.
An oxygen-evolving Photosystem (PS) II preparation was isolated after Triton X-100 treatment of spinach thylakoids in the presence of Mg2+. The structural and functional components of this preparation have been identified by SDS-polyacrylamide gel electrophoresis and sensitive spectrophotometric analysis. The main findings were: (1) The concentration of the primary acceptor Q of PS II was 1 per 230 chlorophyll molecules. (2) There are 6 to 7 plastoquinone molecules associated with a ‘quinone-pool’ reducible by Q. (3) The only cytochrome present in significant amounts (cytochrome b-559) occurred at a concentration of 1 per 125 chlorophyll molecules. (4) The only kind of photochemical reaction center complex present was identified by fluorescence induction kinetic analysis as PS IIα. (5) An Em = ? 10 mV has been measured at pH 7.8 for the primary electron acceptor Qα of PS IIα. (6) With conventional SDS-polyacrylamide gel electrophoresis, the preparation was resolved into 13 prominent polypeptide bands with relative molecular masses of 63, 55, 51, 48, 37, 33, 28, 27, 25, 22, 15, 13 and 10 kDa. The 28 kDa band was identified as the PS II light-harvesting chlorophyll ab-protein. In the presence of 2 M urea, however, SDS-polyacrylamide gel electrophoresis showed seven prominent polypeptides with molecular masses of 47, 39, 31, 29, 27, 26 and 13 kDa as well as several minor components. CP I under identical conditions had a molecular mass of 60–63 kDa.  相似文献   

6.
In order to define mechanisms regulating the synthesis of procollagenase in human rheumatoid synovial fibroblasts, the proteins synthesized by cultured cells were labeled with [35S]methionine. Labeled medium proteins were analyzed by SDS-PAGE directly and after immunocomplexing with a specific antibody to human fibroblast collagenase. Labeling of both the predominant form of the enzyme (Mr approximately 55 000) as well as a minor species (Mr approximately 61 000) was increased following incubation with the monokine, mononuclear cell factor/interleukin 1. The approximately 61 kDa form of the procollagenase appears to be a glycosylated form of the approximately 55 kDa precursor based on binding to Con A-Sepharose and decrease in the approximately 61 kDa form after culture in the presence of tunicamycin. Thus, mononuclear cell factor, homologous with interleukin 1, partially purified from monocyte conditioned medium increased incorporation of [35S]methionine into several medium proteins, including those complexed by the anticollagenase antibody. In the presence of mononuclear cell factor/interleukin 1, labeling of the procollagenase was increased 12-14-fold over control cultures incubated with medium alone. Therefore, one of the mechanisms involved in increase of collagenase activity in the medium of cultured synovial fibroblasts in the presence of mononuclear cell factor/interleukin 1 is a stimulation of enzyme protein synthesis.  相似文献   

7.
The gelatin-degrading matrix metalloproteinase (MMP) activities and their inhibitors produced by rabbit articular chondrocytes have been characterized by gel substrate analysis ('zymography') after electrophoresis on non-reducing sodium dodecyl sulfate-polyacrylamide gels containing gelatin. Differentiated chondrocytes in confluent primary culture produced constitutively only one gelatinase which presented the main characteristics of proMMP-2 ('72 kDa type IV procollagenase'). It had an apparent Mr of 66,000 (unreduced), which was partially or totally converted to 61,000 by, respectively, trypsin or APMA treatment; exogenous TIMP (tissue inhibitor or metalloproteinases) inhibited the conversion triggered by APMA but not that induced by trypsin. This proMMP-2 was also the predominant gelatinase found, together with its 61 kDa activation product, in extracts of articular cartilage. Differentiated chondrocytes simultaneously produced MMP inhibitors which on reverse zymograms were distributed over two bands with Mr of 27,500 and 20,400, resistant to both pH 2 and 100 degrees C, corresponding, respectively, presumably, to TIMP and TIMP-2. Interleukin-1 (IL1) and tumor necrosis factor alpha (TNF alpha) did not affect the production of the proMMP-2 nor of the two species of TIMP. However, IL1 induced the coordinated production of 91 and 55 kDa gelatinases. The 91 kDa activity is likely to correspond to proMMP-9. It could be converted to a 81 kDa gelatinase by trypsin or APMA treatment, in a process that was inhibited in both cases by exogenous TIMP. The 55 kDa gelatinolytic activity most probably represents the sum of the activities of proMMP-1 (procollagenase) and proMMP-3 (prostromelysin). It was sequentially converted to lower size forms (49 to 35 kDa) by either trypsin or APMA; that conversion was inhibited by TIMP, with the exception, however, of the first steps (from 55 to 49, then to 42 kDa) induced by trypsin. The 55 kDa and its conversion forms were all active on both gelatin and casein. TNF alpha did also stimulate the production of proMMP-9, although less efficiently than IL1, but it did not induce, or very poorly, that of the 55 kDa proMMP-1/proMMP-3 activity. Low levels of proMMP-9 and of its 81 kDa product of activation were also found in extracts of cartilage. With increasing passage number and cell dedifferentiation, confluent chondrocytes produced increasing amounts of proMMP-2 and of the two species of TIMP. A spontaneous low production of proMMP-9 and proMMP-1/proMMP-3 was only occasionally observed in cultures of dedifferentiated chondrocytes, accompanying a spontaneous low production of procollagenase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
A unique protein that promotes ectopic osteoinduction in the rat has been isolated and characterized. Osteoinductive factor (OIF) was extracted from the organic matrix of bovine bone with 4 M guanidine HCl and purified by gel filtration, ion-exchange chromatography, affinity chromatography, and reversed phase high performance liquid chromatography. OIF is a glycoprotein with an apparent molecular mass of 22-28 kDa based on sodium dodecyl sulfate gel electrophoresis. Enzymatic or chemical deglycosylation of OIF reduces its mass to about 12 kDa with apparent loss of activity. OIF activity in the model used is substantially increased by addition of transforming growth factor (TGF)-beta 1 or TGF-beta 2, suggesting an important role for TGF-beta 1 and -2 in bone regeneration and repair. The N-terminal sequence of OIF has no homology to other reported proteins.  相似文献   

9.
Alterations in the amount of fibronectin and in the number of its receptors during myoblast differentiation of chicken embryo were investigated. The amount of fibronectin in the cell surface pool as measured by immunoblotting decreased during myogenesis To identify and characterize the fibronectin receptors on the myoblasts, the interactions of the 28,000 dalton (28 kDa) amino terminal fragment and 85,000 dalton (85 kDa) cell-binding fragment of fibronectin with my-oblasts were examined. The binding of the 28 kDa fragment was found to be time-dependent and reached a maximum level within 60 min. The unlabeled 28 kDa fragment inhibited the binding of the radioiodinated 28 kDa fragment, whereas the unlabeled 85 kDa fragment and antibody to integrin did not inhibit it, suggesting that the 28 kDa fragment interacts with the matrix assembly receptors but not with the cell adhesion receptors. There was a single class of 3.4 × 105 binding sites per cell with an apparent dissociation constant of 1.4 × 10?7 M on 30 hr old myoblasts. The specific binding of the radioiodinated 28 kDa fragment to myoblasts decreased as the fusion proceeded. This decrease of binding was consistent with the decrease in the amount of fibronectin. Furthermore, the levels of fibronectin and binding of the radioiodinated 28 kDa fragment in the fusion-blocked myoblasts by EGTA treatment appeared to remain constant. These results suggest that the decrease and/or loss of fibronectin during myoblast fusion is closely correlated with the alteration of fibronectin receptors and with the fusion of myoblasts.  相似文献   

10.
11.
Binding of calpain fragments to calpastatin   总被引:1,自引:0,他引:1  
Their cDNA-derived amino acid sequences predict that the 80-kDa subunits of the micromolar and millimolar Ca(2+)-requiring forms of the Ca(2+)-dependent proteinase (mu- and m-calpain, respectively) each consist of four domains and that the 28-kDa subunit common to both mu- and m-calpain consists of two domains. The calpains were allowed to autolyze to completion, and the autolysis products were separated and were characterized by using gel permeation chromatography, calpastatin affinity chromatography, and sequence analysis. Three major fragments were obtained after autolysis of either calpain. The largest fragment (34 kDa for mu-calpain, 35 kDa for m-calpain) contains all of domain II, the catalytic domain, plus part of domain I of the 80-kDa subunit of mu- or m-calpain. This fragment does not bind to calpastatin, a competitive inhibitor of the calpains, and has no proteolytic activity in either the absence or presence of Ca2+. The second major fragment (21 kDa for mu-calpain and 22 kDa for m-calpain) contains domain IV, the calmodulin-like domain, plus approximately 50 amino acids from domain III of the 80-kDa subunit of mu- or m-calpain. The third major fragment (18 kDa) contains domain VI, the calmodulin-like domain of the 28-kDa subunit. The second and third major fragments bind to a calpastatin affinity column in the presence of Ca2+ and are eluted with EDTA. The second and third fragments are noncovalently bound, so the 80- and 28-kDa subunits of the intact calpain molecules are noncovalently bound at domains IV and VI. After separation in 1 M NaSCN, the 28-kDa subunit binds completely to calpastatin, approximately 30-40% of the 80-kDa subunit of mu-calpain binds to calpastatin, and the 80-kDa subunit of m-calpain does not bind to calpastatin in the presence of 1 mM Ca2+.  相似文献   

12.
The membrane-spanning domain of bovine band 3, the anion transport protein of erythrocyte membrane, was purified in the presence of nonaethyleneglycol lauryl ether (C12E9) and the effect of a covalent attachment of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), a potent transport inhibitor, on the state of association of the domain isolated (the 58 kDa fragment) was studied via gel filtration, gel electrophoresis and sedimentation velocity experiments. It was indicated that the DIDS-unlabeled fragment in C12E9 solution forms heterogeneous aggregates which are larger in size than the dimer. This contrasted with the behavior that bovine band 3 is present as dimers or tetramers in the same medium (Nakashima and Makino (1980) J. Biochem. 88, 933-947). When DIDS was covalently attached, the fragment was present as a single molecular species which was indicated to be a dimer by molecular weight determination. The secondary structure of the fragment was not affected by DIDS. The change in the state of association caused by the DIDS-binding was also found in the presence of sucrose monolaurate (SE12), which was a more potent detergent for extraction of the 58 kDa fragment from membranes than C12E9. However, the complex with SE12 was extremely unstable.  相似文献   

13.
The thermal denaturation of the myosin subfragment 1 (S1) from rabbit skeletal muscle and of its derivatives obtained by tryptic digestion has been studied by means of differential scanning calorimetry. Two distinct thermal transitions were revealed in the isolated complex of the C-terminal 20 kDa fragment of the S1 heavy chain with the alkali light chain. These transitions were identified by means of a thermal gel analysis method. It has been shown that the thermal denaturation of the 20 kDa fragment of the S1 heavy chain correlates with the melting of the most thermostable domain in the S1 molecule. It is concluded that this domain is located in the C-terminal 20 kDa segment of the S1 heavy chain.  相似文献   

14.
T Vartio  M Baumann 《FEBS letters》1989,255(2):285-289
Gelatin zymograms revealed in human plasma a constant 66 kDa proteolytically active polypeptide. In most plasma samples other major proteolytic activities were seen at Mr 92,000, 130,000 and 225,000. All four proteases were Ca2+-dependent metalloproteases and bound quantitatively to gelatin-Sepharose. Immunoblotting results indicated that the 66 kDa protease was the human fibroblast gelatinase/type IV procollagenase and that the other three proteases were macrophage/granulocyte-derived gelatinase components. The 66 kDa protease did not bind to conA- nor lentil lectin-Sepharose allowing its separation from the 92, 130 and 225 kDa proteases. During the isolation procedure the plasma gelatinase/type IV procollagenase tended to form a proteolytically active spontaneous disulfide-bonded dimer and a 62 kDa component that could also be obtained by digestion with trypsin. The same polypeptide changes occurred also in stored preparations of the corresponding protease isolated from fibroblast culture medium while the freshly purified protein contained only the 66 kDa proform.  相似文献   

15.
In vitro activation of matrix metalloproteinase-9 (MMP-9) (Gelatinase B) with MMP-3 shows the presence of two different forms: an 82 kDa, N-terminal truncated form, and a 65 kDa, N- and C-terminal truncated form. So far the presence of the 65 kDa form has not been reported in vivo. Affinity chromatography was performed to separate MMP-9 from MMP-2 and immunoprecipitation to isolate ~65 kDa MMP-9 from 82 kDa MMP-9 in sera of healthy donors. The presence of ~65 kDa active MMP-9 was demonstrated both with gelatin zymography and western blot analysis. The ~65 kDa MMP-9 lacks the haemopexin domain required for the high-affinity binding of the tissue inhibitor TIMP-1, and can be evaluated by activity assay in the presence of TIMP-1. This opens the possibility to investigate the role of this form of MMP-9 that escapes physiological regulation.  相似文献   

16.
The validity of the enzymatic assay of procollagenase within crude biological media containing also the collagenase inhibitor TIMP (tissue inhibitor of metalloproteinases) as well as other (pro)metalloproteinases and sometimes, metalloproteinase-TIMP complexes, has been reevaluated. To be enzymatically assayed, procollagenase has to be activated. The standard activation procedures by either trypsin or 4-aminophenylmercuric acetate (APMA) both allow an optimal recovery of collagenase from procollagenase when the media do not contain free TIMP. However, they do not destroy TIMP nor do they reactivate the collagenase present in enzyme-inhibitor complexes. Therefore, the collagenase formed by the activation of procollagenase in the presence of free TIMP is immediately inactivated by binding to the inhibitor. As a result, both the bound collagenase and TIMP can no longer be assayed by enzymatic methods. An optimal recovery of collagenase can, however, be obtained if free TIMP is neutralized by the binding of other tissue metalloproteinases (such as those present in culture media of rabbit bone marrow-derived macrophages) prior to the activation and assay of procollagenase. Similarly, it is possible to recover under an active free form a large part of the TIMP present in collagenase- (or other metalloproteinase-)TIMP complexes by heating the complexes at acid pH under conditions which inactivate the collagenase.  相似文献   

17.
Matrix metalloproteinase-2 (MMP-2) has been suggested to play a crucial role in tumor invasion and angiogenesis. In order to understand the mechanisms underlying proMMP-2 activation, we compared the biochemical and cellular events triggered by two potent MMP-2 activators, the lectin concanavalin A (ConA) and the cytoskeleton disrupting agent cytochalasin D (CytoD). Incubation of U87 human glioma cells for 24 h in the presence of ConA or CytoD induced a marked activation of proMMP-2 and this activation was correlated in both cases with an increase in the mRNA levels of MT1-MMP. At the protein level, proMMP-2 activation induced by CytoD or ConA strongly correlated with the appearance of a 43-kDa MT1-MMP proteolytic breakdown product in cell lysates. Interestingly, CytoD also induced a very rapid (2 h) activation of proMMP-2 that was independent of protein synthesis. Under these conditions, CytoD also promoted the rapid proteolytic breakdown of the 63 kDa pro form of MT1-MMP, resulting in the appearance of the 43 kDa MT1-MMP processed form. Overexpression of a recombinant full-length MT1-MMP protein in glioma cells resulted in the activation of proMMP-2 that was correlated with the generation of the 43 kDa fragment of the protein. By contrast, overexpression of the protein in COS-7 cells promoted proMMP-2 activation without inducing the production of the 43 kDa fragment. These results thus suggest that activation of proMMP-2 occurs through both translational and post-translational mechanisms, both involving proteolytic processing of membrane-associated MT1-MMP. This processing of MT1-MMP is, however, not essential to proMMP-2 activation but may represent a regulatory mechanism to control the activity of MT1-MMP.  相似文献   

18.
1. We previously reported an endogenous activator of procollagenase from the culture medium of rabbit uterine cervical fibroblasts (Ishibashi et al. (1987) Biochem. J. 241, 527-534). 2. Similar activator was also purified and characterized from rabbit synovial fibroblasts (Vater et al. (1983) J. biol. Chem. 258, 9374-9382), but its mode of activation of procollagenase was reported to be different from that of purified activator from uterine cervical fibroblasts. 3. Here we report the comparative studies of the two activators of procollagenase and demonstrate that they are identified as matrix metalloproteinase 3 (stromelysin) by their immunological and functional criteria. The specific role of the activator in procollagenase activation is also described.  相似文献   

19.
Bovine pulmonary artery smooth muscle possesses the tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) as revealed by Western immunoblot study of its cytosol fraction with bovine polyclonal TIMP-2 antibody. This potent polypeptide inhibitor of matrix metalloproteinases (MMPs) was purified to homogeneity from cytosol fraction of bovine pulmonary artery smooth muscle. This inhibitor was purified by ammonium sulfate precipitation followed by gelatin sepharose and lentil lectin sepharose affinity chromatography and continuous elution electrophoresis by Prep Cell Model 491 (Bio-Rad, USA). SDS-PAGE revealed that the inhibitor has an apparent molecular mass of 21 kDa and was confirmed as TIMP-2 by (i) Western immunoblot assay using bovine polyclonal TIMP-2 antibody; and also by (ii) amino terminal amino acid sequence analysis of the purified inhibitor is found to be identical with TIMP-2 obtained from other sources. The purified 21 kDa inhibitor was found to be active against matrix metalloproteinase-2 (MMP-2, 72 kDa gelatinase) and matrix metalloproteinase-9 (MMP-9, 92 kDa gelatinase), the ambient MMPs in the pulmonary artery smooth muscle. The inhibitor was also found to be sensitive to the activated 72 kDa gelatinase-TIMP-2 complex and also active human interstitial collagenase. By contrast, it was found to be insensitive to the serine proteases: trypsin and plasmin. The inhibitor was heat and acid resistant and it had the sensitivity to trypsin degradation and reduction-alkylation. Treatment of the inhibitor with hydrogen peroxide, superoxide generating system (hypoxanthine plus xanthine oxidase) and peroxynitrite inactivated the inhibitor.  相似文献   

20.
Optic Nerve Regeneration in Adult Fish and Apolipoprotein A-I   总被引:3,自引:2,他引:1  
Fish optic nerves, unlike mammalian optic nerves, are endowed with a high capacity to regenerate. Injury to fish optic nerves causes pronounced changes in the composition of pulse-labeled substances derived from the surrounding non-neuronal cells. The most prominent of these injury-induced changes is in a 28-kilodalton (kDa) polypeptide whose level increases after injury, as revealed by one-dimensional gel electrophoresis and autoradiography. The present study identified as apolipoprotein A-I (apo-A-I) a polypeptide of 28 kDa in media conditioned by regenerating fish optic nerves. The level of this polypeptide increased after injury by approximately 35%. Apo-A-I was isolated by gel-permeation chromatography from delipidated high-density lipoproteins (HDL) that had been obtained from carp plasma by sequential ultracentrifugation. Further identification of the purified protein as apo-A-I was based on its molecular mass (28 kDa) as determined by gel electrophoresis, amino acid composition, and microheterogeneity studies. The isolated protein was further analyzed by immunoblots of two-dimensional gels and was found to contain six isoforms. Western blot analysis using antibodies directed against the isolated plasma protein showed that the 28-kDa polypeptide in the preparation of soluble substances derived from the fish optic nerves (conditioned media, CM) cross-reacted immunologically with the isolated fish plasma apo-A-I. Immunoblots of two-dimensional gels revealed the presence of three apo-A-I isoforms in the CM of regenerating fish optic nerves (pIs: 6.49, 6.64, and 6.73). At least some of the apo-A-I found in the CM is derived from the nerve, as was shown by pulse labeling with [35S]methionine, followed by immunoprecipitation. The apo-A-I immunoactive polypeptides in the CM of the fish optic nerve were found in high molecular-weight, putative HDL-like particles. Immunocytochemical staining revealed that apo-A-I immunoreactive sites were present in the fish optic nerves. Higher labeling was found in injured nerves (between the site of injury and the brain) than in non-injured nerves. The accumulation of apo-A-I in nerves that are capable of regenerating may be similar to that of apo-E in sciatic nerves of mammals (a regenerative system); in contrast, although its synthesis is increased, apo-A-I does not accumulate in avian optic nerves nor does apo-E in rat optic nerves (two nonregenerative systems).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号