首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A puzzling observation in patients with oxidative phosphorylation (OXPHOS) deficiencies is the presence of combined enzyme complex defects associated with a genetic alteration in only one protein-coding gene. In particular, mutations in the mtDNA encoded cytochrome b gene are associated either with combined complex I+III deficiency or with only complex III deficiency. We have reproduced the combined complex I+III defect in mouse and human cultured cell models harboring cytochrome b mutations. In both, complex III assembly is impeded and causes a severe reduction in the amount of complex I, not observed when complex III activity was pharmacologically inhibited. Metabolic labeling in mouse cells revealed that complex I was assembled, although its stability was severely hampered. Conversely, complex III stability was not influenced by the absence of complex I. This structural dependence among complexes I and III was confirmed in a muscle biopsy of a patient harboring a nonsense cytochrome b mutation.  相似文献   

2.
3.
Bioenergetics of mitochondrial diseases associated with mtDNA mutations   总被引:3,自引:0,他引:3  
This mini-review summarizes our present view of the biochemical alterations associated with mitochondrial DNA (mtDNA) point mutations. Mitochondrial cytopathies caused by mutations of mtDNA are well-known genetic and clinical entities, but the biochemical pathogenic mechanisms are often obscure. Leber's hereditary optic neuropathy (LHON) is due to three main mutations in genes for complex I subunits. Even if the catalytic activity of complex I is maintained except in cells carrying the 3460/ND1 mutation, in all cases there is a change in sensitivity to complex I inhibitors and an impairment of mitochondrial respiration, eliciting the possibility of generation of reactive oxygen species (ROS) by the complex. Neurogenic muscle weakness, Ataxia and Retinitis Pigmentosa (NARP), is due to a mutation in the ATPase-6 gene. In NARP patients ATP synthesis is strongly depressed to an extent proportional to the mutation load; nevertheless, ATP hydrolysis and ATP-driven proton translocation are not affected. It is suggested that the NARP mutation affects the ability of the enzyme to couple proton transport to ATP synthesis. A point mutation in subunit III of cytochrome c oxidase is accompanied by a syndrome resembling MELAS: however, no major biochemical defect is found, if we except an enhanced production of ROS. The mechanism of such enhancement is at present unknown. In this review, we draw attention to a few examples in which the overproduction of ROS might represent a common step in the induction of clinical phenotypes and/or in the progression of several human pathologies associated with mtDNA point mutations.  相似文献   

4.
In skeletal muscle from a patient with a mitochondrial myopathy and muscular carnitine deficiency, histochemical analysis demonstrated that mitochondrial ATPase showed activation with loss of latency even before addition of the uncoupler dinitrophenol (DNP). According to combined histochemical and biochemical studies by Meijer and Vloedman (1980), this finding indicates loosely coupled oxidative phosphorylation. After the addition of DNP the reaction intensity was markedly increased, but there were scattered enzyme-deficient fibres in which some residual activity was shown by ultracytochemistry. No defect in mitochondrial enzymes was found in biochemical studies. The enzyme histochemical changes and carnitine deficiency are probably both secondary to an unknown mitochondrial defect. Both the carnitine deficiency and the mitochondrial myopathy remained unchanged following long-term carnitine substitution therapy despite clinical improvement.  相似文献   

5.
In the mammalian mitochondrial electron transfer system, the majority of electrons enter at complex I, go through complexes III and IV, and are finally delivered to oxygen. Previously we generated several mouse cell lines with suppressed expression of the nuclearly encoded subunit 4 of complex IV. This led to a loss of assembly of complex IV and its defective function. Interestingly, we found that the level of assembled complex I and its activity were also significantly reduced, whereas levels and activity of complex III were normal or up-regulated. The structural and functional dependence of complex I on complex IV was verified using a human cell line carrying a nonsense mutation in the mitochondrially encoded complex IV subunit 1 gene. Our work documents that, although there is no direct electron transfer between them, an assembled complex IV helps to maintain complex I in mammalian cells.  相似文献   

6.
7.
Missense mutations affecting Asp-161 and Ser-163 in the delta subunit of F1F0 ATP synthase have been generated. Although most substitutions allowed substantial enzyme function, the delta Asp-161-->Pro substitution resulted in a loss of enzyme activity. The loss of activity was attributable to a structural failure altering assembly of the enzyme complex.  相似文献   

8.
We have identified a novel stop-codon mutation in the mtDNA of a young woman with a multisystem mitochondrial disorder. Histochemical analysis of a muscle-biopsy sample showed virtually absent cytochrome c oxidase (COX) stain, and biochemical studies confirmed an isolated reduction of COX activity. Sequence analysis of the mitochondrial-encoded COX-subunit genes identified a heteroplasmic G-->A transition at nucleotide position 6930 in the gene for subunit I (COX I). The mutation changes a glycine codon to a stop codon, resulting in a predicted loss of the last 170 amino acids (33%) of the polypeptide. The mutation was present in the patient's muscle, myoblasts, and blood and was not detected in normal or disease controls. It was not detected in mtDNA from leukocytes of the patient's mother, sister, and four maternal aunts. We studied the genetic, biochemical, and morphological characteristics of transmitochondrial cybrid cell lines, obtained by fusing of platelets from the patient with human cells lacking endogenous mtDNA (rho0 cells). There was a direct relationship between the proportion of mutant mtDNA and the biochemical defect. We also observed that the threshold for the phenotypic expression of this mutation was lower than that reported in mutations involving tRNA genes. We suggest that the G6930A mutation causes a disruption in the assembly of the respiratory-chain complex IV.  相似文献   

9.
Combined OXPHOS-system enzyme deficiencies are observed in approximately 25% of all OXPHOS-system disturbances. Of these, combined complex I and III deficiency is relatively scarce. So far, only mtDNA and thymidine phosphorylase (TP) mutations have been associated with combined OXPHOS-system disturbances. In this report we show, for the first time, that a nuclear gene mutation in a structural, nuclear encoded complex I gene is associated with combined complex I and III deficiency. After our initial report we describe mutations in the NDUFS4 gene of complex I in two additional patients. The first mutation is a deletion of G at position 289 or 290. Amino acid 96 changes from a tryptophan to a stop codon. The mutation was found homozygous in the patient; both parents are heterozygous for the mutation. The second mutation is a transition from C to T at cDNA position 316. Codon is changed from CGA (arginine) to TGA (stop). The patient is homozygous for the mutation; both parents are heterozygous. Both mutations in the NDUFS4 gene led to a premature stop in Leigh-like patients with an early lethal phenotype. We hypothesise that the structural integrity of the OXPHOS system, in mammal supermolecular structures, may be responsible for the observed biochemical features.  相似文献   

10.
Abstract: Autosomal dominant familial amyotrophic lateral sclerosis (FALS) is associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Previous studies have implicated the involvement of metabolic dysfunction in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined SOD activity and mitochondrial oxidative phosphorylation enzyme activities in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Cytosolic SOD activity, predominantly Cu/Zn SOD, was decreased ∼50% in all regions in FALS patients with SOD mutations but was not significantly altered in other patient groups. Marked increases in complex I and II–III activities were seen in FALS patients with SOD mutations but not in SALS patients. We also measured electron transport chain enzyme activities in a transgenic mouse model of FALS. Complex I activity was significantly increased in the forebrain of 60-day-old G93A transgenic mice overexpressing human mutant SOD1, relative to levels in transgenic wild-type animals, supporting the hypothesis that the motor neuron disorder associated with SOD1 mutations involves a defect in mitochondrial energy metabolism.  相似文献   

11.
In the inner mitochondrial membrane, the respiratory chain complexes generate an electrochemical proton gradient, which is utilized to synthesize most of the cellular ATP. According to an increasing number of biochemical studies, these complexes are assembled into supercomplexes. However, little is known about the architecture of the proposed multicomplex assemblies. Here, we report the electron microscopic characterization of the two respiratory chain supercomplexes I1III2 and I1III2IV1 in bovine heart mitochondria, which are also two major supercomplexes in human mitochondria. After purification and demonstration of enzymatic activity, their structures in projection were determined by single particle image analysis. A difference map between the supercomplexes I1III2 and I1III2IV1 closely fits the x-ray structure of monocomplex IV and shows its location in the assembly. By comparing different views of supercomplex I1III2IV1, the location and mutual arrangement of complex I and the complex III dimer are discussed. Detailed knowledge of the architecture of the active supercomplexes is a prerequisite for a deeper understanding of energy conversion by mitochondria in mammals.  相似文献   

12.
Mitochondrial supercomplexes containing complexes I, III, and IV of the electron transport chain are now regarded as an established entity. Supercomplex I·III·IV has been theorized to improve respiratory chain function by allowing quinone channeling between complexes I and III. Here, we show that the role of the supercomplexes extends beyond channeling. Mutant analysis in Caenorhabditis elegans reveals that complex III affects supercomplex I·III·IV formation by acting as an assembly or stabilizing factor. Also, a complex III mtDNA mutation, ctb-1, inhibits complex I function by weakening the interaction of complex IV in supercomplex I·III·IV. Other complex III mutations inhibit complex I function either by decreasing the amount of complex I (isp-1), or decreasing the amount of complex I in its most active form, the I·III·IV supercomplex (isp-1;ctb-1). ctb-1 suppresses a nuclear encoded complex III defect, isp-1, without improving complex III function. Allosteric interactions involve all three complexes within the supercomplex and are necessary for maximal enzymatic activities.  相似文献   

13.
Defects in complex I (NADH:ubiquinone oxidoreductase (EC 1.6.5.3)) are the most frequent cause of human respiratory disorders. The pathogenicity of a given human mitochondrial mutation can be difficult to demonstrate because the mitochondrial genome harbors large numbers of polymorphic base changes that have no pathogenic significance. In addition, mitochondrial mutations are usually found in the heteroplasmic state, which may hide the biochemical effect of the mutation. We propose that the unicellular green alga Chlamydomonas could be used to study such mutations because (i) respiratory complex-deficient mutants are viable and mitochondrial mutations are found in the homoplasmic state, (ii) transformation of the mitochondrial genome is feasible, and (iii) Chlamydomonas complex I is similar to that of humans. To illustrate this proposal, we introduced a Leu157Pro substitution into the Chlamydomonas ND4 subunit of complex I in two recipient strains by biolistic transformation, demonstrating that site-directed mutagenesis of the Chlamydomonas mitochondrial genome is possible. This substitution did not lead to any respiratory enzyme defects when present in the heteroplasmic state in a patient with chronic progressive external ophthalmoplegia. When present in the homoplasmic state in the alga, the mutation does not prevent assembly of whole complex I (950 kDa) and the NADH dehydrogenase activity of the peripheral arm of the complex is mildly affected. However, the NADH:duroquinone oxidoreductase activity is strongly reduced, suggesting that the substitution could affect binding of ubiquinone to the membrane domain. The in vitro defects correlate with a decrease in dark respiration and growth rate in vivo.  相似文献   

14.
Leber's hereditary optic neuropathy (LHON) is a form of blindness caused by mitochondrial DNA (mtDNA) mutations in complex I genes. We report an extensive biochemical analysis of the mitochondrial defects in lymphoblasts and transmitochondrial cybrids harboring the three most common LHON mutations: 3460A, 11778A, and 14484C. Respiration studies revealed that the 3460A mutation reduced the maximal respiration rate 20-28%, the 11778A mutation 30-36%, and the 14484C mutation 10-15%. The respiration defects of the 3460A and 11778A mutations transferred in cybrid experiments linking these defects to the mtDNA. Complex I enzymatic assays revealed that the 3460A mutation resulted in a 79% reduction in specific activity and the 11778A mutation resulted in a 20% reduction, while the 14484C mutation did not affect the complex I activity. The enzyme defect of the 3460A mutation transferred with the mtDNA in cybrids. Overall, these data support the conclusion that the 3460A and 11778A mutants result in complex I defects and that the 14484C mutation causes a much milder biochemical defect. These studies represent the first direct comparison of oxidative phosphorylation defects among all of the primary LHON mtDNA mutations, thus permitting insight into the underlying pathophysiological mechanism of the disease.  相似文献   

15.
16.
There is a renewed interest in the structure and functioning of the mitochondrial respiratory chain with the realization that a number of genetic disorders result from defects in mitochondrial electron transfer. These so-called mitochondrial myopathies include diseases of muscle, heart, and brain. The respiratory chain can be fractionated into four large multipeptide complexes, an NADH ubiquinone reductase (complex I), succinate ubiquinone reductase (complex II), ubiquinol oxidoreductase (complex III), and cytochromec oxidase (complex IV). Mitochondrial myopathies involving each of these complexes have been described. This review summarizes compositional and structural data on the respiratory chain proteins and describes the arrangement of these complexes in the mitochondrial inner membrane. This biochemical information is provided as a framework for the diagnosis and molecular characterization of mitochondrial diseases.  相似文献   

17.

Background

Aging results in a progressive loss of skeletal muscle, a condition known as sarcopenia. Mitochondrial DNA (mtDNA) mutations accumulate with aging in skeletal muscle and correlate with muscle loss, although no causal relationship has been established.

Methodology/Principal Findings

We investigated the relationship between mtDNA mutations and sarcopenia at the gene expression and biochemical levels using a mouse model that expresses a proofreading-deficient version (D257A) of the mitochondrial DNA Polymerase γ, resulting in increased spontaneous mtDNA mutation rates. Gene expression profiling of D257A mice followed by Parametric Analysis of Gene Set Enrichment (PAGE) indicates that the D257A mutation is associated with a profound downregulation of gene sets associated with mitochondrial function. At the biochemical level, sarcopenia in D257A mice is associated with a marked reduction (35–50%) in the content of electron transport chain (ETC) complexes I, III and IV, all of which are partly encoded by mtDNA. D257A mice display impaired mitochondrial bioenergetics associated with compromised state-3 respiration, lower ATP content and a resulting decrease in mitochondrial membrane potential (Δψm). Surprisingly, mitochondrial dysfunction was not accompanied by an increase in mitochondrial reactive oxygen species (ROS) production or oxidative damage.

Conclusions/Significance

These findings demonstrate that mutations in mtDNA can be causal in sarcopenia by affecting the assembly of functional ETC complexes, the lack of which provokes a decrease in oxidative phosphorylation, without an increase in oxidative stress, and ultimately, skeletal muscle apoptosis and sarcopenia.  相似文献   

18.
19.
The biogenesis and function of the mitochondrial respiratory chain (RC) involve the organization of RC enzyme complexes in supercomplexes or respirasomes through an unknown biosynthetic process. This leads to structural interdependences between RC complexes, which are highly relevant from biological and biomedical perspectives, because RC defects often lead to severe neuromuscular disorders. We show that in human cells, respirasome biogenesis involves a complex I assembly intermediate acting as a scaffold for the combined incorporation of complexes III and IV subunits, rather than originating from the association of preassembled individual holoenzymes. The process ends with the incorporation of complex I NADH dehydrogenase catalytic module, which leads to the respirasome activation. While complexes III and IV assemble either as free holoenzymes or by incorporation of free subunits into supercomplexes, the respirasomes constitute the structural units where complex I is assembled and activated, thus explaining the significance of the respirasomes for RC function.  相似文献   

20.
Age-associated mitochondrial dysfunction is a major source of reactive oxygen species (ROS) and oxidative modification to proteins. Mitochondrial electron transport chain (ETC) complexes I and III are the sites of ROS production and we hypothesize that proteins of the ETC complexes are primary targets of ROS-mediated modification which impairs their structure and function. The pectoralis, primarily an aerobic red muscle, and quadriceps, primarily an anaerobic white muscle, have different rates of respiration and oxygen-carrying capacity, and hence, different rates of ROS production. This raises the question of whether these muscles exhibit different levels of oxidative protein modification. Our studies reveal that the pectoralis shows a dramatic age-related decline in almost all complex activities that correlates with increased oxidative modification. Similar complex proteins were modified in the quadriceps, at a significantly lower level with less change in enzyme and ETC coupling function. We postulate that mitochondrial ROS causes damage to specific ETC subunits which increases with age and leads to further mitochondrial dysfunction. We conclude that physiological characteristics of the pectoralis vs quadriceps may play a role in age-associated rate of mitochondrial dysfunction and in the decline in tissue function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号