首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. E. Bickel  D. W. Wyman    T. L. Orr-Weaver 《Genetics》1997,146(4):1319-1331
The ord gene is required for proper segregation of all chromosomes in both male and female Drosophila meiosis. Here we describe the isolation of a null ord allele and examine the consequences of ablating ord function. Cytologically, meiotic sister-chromatid cohesion is severely disrupted in flies lacking ORD protein. Moreover, the frequency of missegregation in genetic tests is consistent with random segregation of chromosomes through both meiotic divisions, suggesting that sister cohesion may be completely abolished. However, only a slight decrease in viability is observed for ord null flies, indicating that ORD function is not essential for cohesion during somatic mitosis. In addition, we do not observe perturbation of germ-line mitotic divisions in flies lacking ORD activity. Our analysis of weaker ord alleles suggests that ORD is required for proper centromeric cohesion after arm cohesion is released at the metaphase I/anaphase I transition. Finally, although meiotic cohesion is abolished in the ord null fly, chromosome loss is not appreciable. Therefore, ORD activity appears to promote centromeric cohesion during meiosis II but is not essential for kinetochore function during anaphase.  相似文献   

2.
Cohesion between sister chromatids is essential for their bi-orientation on mitotic spindles. It is mediated by a multisubunit complex called cohesin. In yeast, proteolytic cleavage of cohesin's alpha kleisin subunit at the onset of anaphase removes cohesin from both centromeres and chromosome arms and thus triggers sister chromatid separation. In animal cells, most cohesin is removed from chromosome arms during prophase via a separase-independent pathway involving phosphorylation of its Scc3-SA1/2 subunits. Cohesin at centromeres is refractory to this process and persists until metaphase, whereupon its alpha kleisin subunit is cleaved by separase, which is thought to trigger anaphase. What protects centromeric cohesin from the prophase pathway? Potential candidates are proteins, known as shugoshins, that are homologous to Drosophila MEI-S332 and yeast Sgo1 proteins, which prevent removal of meiotic cohesin complexes from centromeres at the first meiotic division. A vertebrate shugoshin-like protein associates with centromeres during prophase and disappears at the onset of anaphase. Its depletion by RNA interference causes HeLa cells to arrest in mitosis. Most chromosomes bi-orient on a metaphase plate, but precocious loss of centromeric cohesin from chromosomes is accompanied by loss of all sister chromatid cohesion, the departure of individual chromatids from the metaphase plate, and a permanent cell cycle arrest, presumably due to activation of the spindle checkpoint. Remarkably, expression of a version of Scc3-SA2 whose mitotic phosphorylation sites have been mutated to alanine alleviates the precocious loss of sister chromatid cohesion and the mitotic arrest of cells lacking shugoshin. These data suggest that shugoshin prevents phosphorylation of cohesin's Scc3-SA2 subunit at centromeres during mitosis. This ensures that cohesin persists at centromeres until activation of separase causes cleavage of its alpha kleisin subunit. Centromeric cohesion is one of the hallmarks of mitotic chromosomes. Our results imply that it is not an intrinsically stable property, because it can easily be destroyed by mitotic kinases, which are kept in check by shugoshin.  相似文献   

3.
Accurate chromosome partitioning during cell division requires that cohesion hold sister chromatids together until kinetochores correctly attach to spindle microtubules. In 1932, Darlington noted that sister-chromatid cohesion distal to the site of exchange also could play a vital role in maintaining the association of chiasmate homologs during meiosis. Cohesion linking a recombinant chromatid with a sister of each homologous pair would resist spindle forces that separate kinetochores of homologous chromosomes (see Figure 1). Although centromeric cohesion must be retained to ensure proper segregation during meiosis II, dissolution of arm cohesion would be required for anaphase I to occur. This hypothesis is supported by recent evidence in yeast and C. elegans that separase activity is essential for the segregation of recombinant homologs during meiosis I. We present evidence that Drosophila oocytes require sister-chromatid cohesion to maintain a physical attachment between recombinant chromosomes. Using FISH to monitor cohesion directly, we confirm that oocytes lacking ORD activity exhibit cohesion defects, consistent with previous genetic results. We also show that ord(null) oocytes that have undergone recombination are unable to arrest at metaphase I, indicating that chiasmata are unstable in the absence of cohesion. Our results support the model that arm cohesion provides a conserved mechanism that ensures physical attachment between recombinant homologs until anaphase I.  相似文献   

4.
Slk19p is necessary to prevent separation of sister chromatids in meiosis I   总被引:4,自引:0,他引:4  
BACKGROUND: A fundamental difference between meiotic and mitotic chromosome segregation is that in meiosis I, sister chromatids remain joined, moving as a unit to one pole of the spindle rather than separating as they do in mitosis. It has long been known that the sustained linkage of sister chromatids through meiotic anaphase I is accomplished by association of the chromatids at the centromere region. The localization of the cohesin Rec8p to the centromeres is essential for maintenance of sister chromatid cohesion through meiosis I, but the molecular basis for the regulation of Rec8p and sister kinetochores in meiosis remains a mystery. RESULTS: We show that the SLK19 gene product from Saccharomyces cerevisiae is essential for proper chromosome segregation during meiosis I. When slk19 mutants were induced to sporulate they completed events characteristic of meiotic prophase I, but at the first meiotic division they segregated their sister chromatids to opposite poles at high frequencies. The vast majority of these cells did not perform a second meiotic division and proceeded to form dyads (asci containing two spores). Slk19p was found to localize to centromere regions of chromosomes during meiotic prophase where it remained until anaphase I. In the absence of Slk19p, Rec8p was not maintained at the centromere region through anaphase I as it is in wild-type cells. Finally, we demonstrate that Slk19p appears to function downstream of the meiosis-specific protein Spo13p in control of sister chromatid behavior during meiosis I. CONCLUSIONS: Our results suggest that Slk19p is essential at the centromere of meiotic chromosomes to prevent the premature separation of sister chromatids at meiosis I.  相似文献   

5.
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.  相似文献   

6.
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores.  相似文献   

7.
During meiosis, sister chromatid cohesion is required for normal levels of homologous recombination, although how cohesion regulates exchange is not understood. Null mutations in orientation disruptor (ord) ablate arm and centromeric cohesion during Drosophila meiosis and severely reduce homologous crossovers in mutant oocytes. We show that ORD protein localizes along oocyte chromosomes during the stages in which recombination occurs. Although synaptonemal complex (SC) components initially associate with synapsed homologues in ord mutants, their localization is severely disrupted during pachytene progression, and normal tripartite SC is not visible by electron microscopy. In ord germaria, meiotic double strand breaks appear and disappear with frequency and timing indistinguishable from wild type. However, Ring chromosome recovery is dramatically reduced in ord oocytes compared with wild type, which is consistent with the model that defects in meiotic cohesion remove the constraints that normally limit recombination between sisters. We conclude that ORD activity suppresses sister chromatid exchange and stimulates inter-homologue crossovers, thereby promoting homologue bias during meiotic recombination in Drosophila.  相似文献   

8.
The evolutionarily conserved cohesin complex is required for the establishment and maintenance of sister chromatid cohesion, in turn essential for proper chromosome segregation. RAD21/SCC1 is a regulatory subunit of the mitotic cohesin complex, as it links together all other subunits of the complex. The destruction of RAD21/SCC1 along chromosomal arms and later at centromeres results in the dissociation of the cohesin complex, facilitating chromosome segregation. Here, we report for the first time that mammalian RAD21/SCC1 associates with the axial/lateral elements of the synaptonemal complex along chromosome arms and on centromeres of mouse spermatocytes. Importantly, RAD21/SCC1 is lost from chromosome arms in late prophase I but persists on centromeres. The loss of centromeric RAD21/SCC1 coincides with the separation of sister chromatids at anaphase II. These findings support a role for mammalian RAD21/SCC1 in maintaining sister chromatid cohesion in meiosis.  相似文献   

9.
In meiosis, a physical attachment, or cohesion, between the centromeres of the sister chromatids is retained until their separation at anaphase II. This cohesion is essential for ensuring accurate segregation of the sister chromatids in meiosis II and avoiding aneuploidy, a condition that can lead to prenatal lethality or birth defects. The Drosophila MEI-S332 protein localizes to centromeres when sister chromatids are attached in mitosis and meiosis, and it is required to maintain cohesion at the centromeres after cohesion along the sister chromatid arms is lost at the metaphase I/anaphase I transition. MEI-S332 is the founding member of a family of proteins that protect centromeric cohesion but whose members also affect kinetochore behaviour and spindle microtubule dynamics. We compare the Drosophila MEI-S332 family members, evaluate the role of MEI-S332 in mitosis and meiosis I, and discuss the regulation of localization of MEI-S332 to the centromere and its dissociation at anaphase. We analyse the relationship between MEI-S332 and cohesin, a protein complex that is also necessary for sister-chromatid cohesion in mitosis and meiosis. In mitosis, centromere localization of 相似文献   

10.
Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.  相似文献   

11.
ORD protein is required for accurate chromosome segregation during male and female meiosis in Drosophila melanogaster. Null ord mutations result in random segregation of sister chromatids during both meiotic divisions because cohesion is completely abolished prior to kinetochore capture of microtubules during meiosis I. Previous analyses of mutant ord alleles have led us to propose that the C-terminal half of the ORD protein mediates protein-protein interactions that are essential for sister-chromatid cohesion. To identify proteins that interact with ORD, we conducted a yeast two-hybrid screen using an ORD bait and isolated dRING, a core subunit of the Drosophila Polycomb repressive complex 1. We show that a missense mutation in ORD completely ablates the two-hybrid interaction with dRING and prevents nuclear retention of the mutant ORD protein in male meiotic cells. Using affinity-purified antibodies generated against full-length recombinant dRING, we demonstrate that dRING protein is expressed in the male and female gonads and colocalizes extensively with ORD on the chromatin of primary spermatocytes during G2 of meiosis. Our results suggest a novel role for the Polycomb group protein dRING and are consistent with the model that interaction of dRING and ORD is required to promote the proper segregation of meiotic chromosomes.Communicated by R. Paro  相似文献   

12.
Han F  Gao Z  Yu W  Birchler JA 《The Plant cell》2007,19(12):3853-3863
With the advent of engineered minichromosome technology in plants, an understanding of the properties of small chromosomes is desirable. Twenty-two minichromosomes of related origin but varying in size are described that provide a unique resource to study such behavior. Fourteen minichromosomes from this set could pair with each other in meiotic prophase at frequencies between 25 and 100%, but for the smaller chromosomes, the sister chromatids precociously separated in anaphase I. The other eight minichromosomes did not pair with themselves, and the sister chromatids divided equationally at meiosis I. In plants containing one minichromosome, the sister chromatids also separated at meiosis I. In anaphase II, the minichromosomes progressed to one pole or the other. The maize (Zea mays) Shugoshin protein, which has been hypothesized to protect centromere cohesion in meiosis I, is still present at anaphase I on minichromosomes that divide equationally. Also, there were no differences in the level of phosphorylation of Ser-10 of histone H3, a correlate of cohesion, in the minichromosomes in which sister chromatids separated during anaphase I compared with the normal chromosomes. These analyses suggest that meiotic centromeric cohesion is compromised in minichromosomes depending on their size and cannot be maintained by the mechanisms used by normal-sized chromosomes.  相似文献   

13.
Presence of a centromeric filament during meiosis.   总被引:1,自引:0,他引:1  
A J Solari  C J Tandler 《Génome》1991,34(6):888-894
Spermatocytes at meiotic metaphase I and anaphase I have a characteristic centromeric filament in a variety of vertebrate organisms. This centromeric filament was first demonstrated on mouse spermatocytes and its presence is now extended to spermatocytes from the human, rat, golden hamster, bull, and chicken. The visualization of this filament was possible through the use of a novel silver-staining technique, which allows a high contrast between the filament and the centromeric chromatin. In the species cited, the centromeric filament shares an intense staining, a short (0.2-0.6 micron) length, a curved and branched shape, and location inside the centromeric chromatin of seemingly every homologue of the complement. The similarity of staining reactivity and the observation of transitional structures during first meiotic prophase strongly suggest that the centromeric filament is a remnant of a lateral element of the synaptonemal complex, which stays specifically at both centromeric regions of each bivalent. This filament is not found at the second meiotic division or at the centromeres of mitotic chromosomes. It is assumed that this centromeric filament joins the two sister chromatids of each homologue at the centromere and thus ensures the proper coorientation of sister kinetochores at metaphase I. Further testable assumptions on the functions of this filament are presented.  相似文献   

14.
Sister-Chromatid Misbehavior in Drosophila Ord Mutants   总被引:1,自引:0,他引:1       下载免费PDF全文
In Drosophila males and females mutant for the ord gene, sister chromatids prematurely disjoin in meiosis. We have isolated five new alleles of ord and analyzed them both as homozygotes and in trans to deficiencies for the locus, and we show that ord function is necessary early in meiosis of both sexes. Strong ord alleles result in chromosome nondisjunction in meiosis I that appears to be the consequence of precocious separation of the sister chromatids followed by their random segregation. Cytological analysis in males confirmed that precocious disjunction of the sister chromatids occurs in prometaphase I. This is in contrast to Drosophila mei-S332 mutants, in which precocious sister-chromatid separation also occurs, but not until late in anaphase I. All three of the new female fertile ord alleles reduce recombination, suggesting they affect homolog association as well as sister-chromatid cohesion. In addition to the effect of ord mutations on meiosis, we find that in ord2 mutants chromosome segregation is aberrant in the mitotic divisions that produce the spermatocytes. The strongest ord alleles, ord2 and ord5, appear to cause defects in germline divisions in the female. These alleles are female sterile and produce egg chambers with altered nurse cell number, size, and nuclear morphology. In contrast to the effects of ord mutations on germline mitosis, all of the alleles are fully viable even when in trans to a deficiency, and thus exhibit no essential role in somatic mitosis. The ord gene product may prevent premature sister-chromatid separation by promoting cohesion of the sister chromatids in a structural or regulatory manner.  相似文献   

15.
In vertebrate mitosis, cohesion between sister chromatids is lost in two stages. In prophase and prometaphase, cohesin release from chromosome arms occurs under the control of Polo-like kinase 1 and Aurora B, while Shugoshin is thought to prevent removal of centromeric cohesin until anaphase. The regulatory enzymes that act to sustain centromeric cohesion are incompletely described, however. Haspin/Gsg2 is a histone H3 threonine-3 kinase required for normal mitosis. We report here that both H3 threonine-3 phosphorylation and cohesin are located at inner centromeres. Haspin depletion disrupts cohesin binding and sister chromatid association in mitosis, preventing normal chromosome alignment and activating the spindle assembly checkpoint, leading to arrest in a prometaphase-like state. Overexpression of Haspin hinders cohesin release and stabilizes arm cohesion. We conclude that Haspin is required to maintain centromeric cohesion during mitosis. We also suggest that Aurora B regulates cohesin removal through its effect on the localization of Shugoshin.  相似文献   

16.
A. T. Sumner 《Chromosoma》1991,100(6):410-418
Changes in the morphology of human and murine chromosomes during the different stages of mitosis have been examined by scanning electron microscopy. Two important findings have emerged from this study. The first is that prophase chromosomes do not become split into pairs of chromatids until late prophase or early metaphase. This entails two distinct processes of condensation, the earlier one starting as condensations of chromosomes into chromomeres which then fuse to form a cylindrical body. After this cylindrical body has split in two longitudinally, further condensation occurs by mechanisms that probably include coiling of the chromatids as well as other processes. The second finding is that the centromeric heterochromatin does not split in two at the same time as the rest of the chromosome, but remains undivided until anaphase. It is proposed that the function of centromeric heterochromatin is to hold the chromatids together until anaphase, when they are separated by the concerted action of topoisomerase II acting on numerous similar sites provided by the repetitive nature of the satellite DNA in the heterochromatin. A lower limit to the size of blocks of centromeric heterochromatin is placed by the need for adequate mechanical strength to hold the chromatids together, and a higher limit by the necessity for rapid splitting of the heterochromatin at anaphase. Beyond these limits malsegregation will occur, leading to aneuploidy. Because the centromere remains undivided until anaphase, it cannot undergo the later stage of condensation found in the chromosome arms after separation into chromatids, and therefore the centromere remains as a constriction.by U. Scheer  相似文献   

17.
Accurate segregation of chromosomes is critical to ensure that each daughter cell receives the full genetic complement. Maintenance of cohesion between sister chromatids, especially at centromeres, is required to segregate chromosomes precisely during mitosis and meiosis. The Drosophila protein MEI-S332, the founding member of a conserved protein family, is essential in meiosis for maintaining cohesion at centromeres until sister chromatids separate at the metaphase II/anaphase II transition. MEI-S332 localizes onto centromeres in prometaphase of mitosis or meiosis I, remaining until sister chromatids segregate. We elucidated a mechanism for controlling release of MEI-S332 from centromeres via phosphorylation by POLO kinase. We demonstrate that POLO antagonizes MEI-S332 cohesive function and that full POLO activity is needed to remove MEI-S332 from centromeres, yet this delocalization is not required for sister chromatid separation. POLO phosphorylates MEI-S332 in vitro, POLO and MEI-S332 bind each other, and mutation of POLO binding sites prevents MEI-S332 dissociation from centromeres.  相似文献   

18.
Sister chromatids are physically connected by cohesin complexes. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic and meiotic spindle. In many species, cohesion between chromosome arms is partly dissolved in prophase of mitosis, whereas cohesion is protected at centromeres until the onset of anaphase. In vertebrates, the protein Sgo1, protein phosphatase 2A, and several other proteins are required for protection of centromeric cohesin in early mitosis. In fission yeast, the recruitment of heterochromatin protein Swi6/HP1 to centromeres by the histone-methyltransferase Clr4/Suv39h is required for enrichment of cohesin at centromeres already in interphase. We have tested if the Suv39h–HP1 histone methylation pathway is also required for enrichment and mitotic protection of cohesin at centromeres in mammalian cells. We show that cohesin and HP1 proteins partially colocalize at mitotic centromeres but that cohesin localization is not detectably altered in mouse embryonic fibroblasts that lack Suv39h genes and in which HP1 proteins can, therefore, not be properly enriched in pericentric heterochromatin. Our data indicate that the Suv39h–HP1 pathway is not essential for enrichment and mitotic protection of cohesin at centromeres in mammalian cells.  相似文献   

19.
Cobb J  Miyaike M  Kikuchi A  Handel MA 《Chromosoma》1999,108(7):412-425
Mechanisms of chromosome condensation and segregation during the first meiotic division are not well understood. Resolution of recombination events to form chiasmata is important, for it is chiasmata that hold homologous chromosomes together for their oppositional orientation on the meiotic metaphase spindle, thus ensuring their accurate segregation during anaphase I. Events at the centromere are also important in bringing about proper attachment to the spindle apparatus. This study was designed to correlate the presence and activity of two proteins at the centromeric heterochromatin, topoisomerase II alpha (TOP2A) and histone H3, with the processes of chromosome condensation and individualization of chiasmate bivalents in murine spermatocytes. We tested the hypothesis that phosphorylation of histone H3 is a key event instigating localization of TOP2A to the centromeric heterochromatin and condensation of chromosomes as spermatocytes exit prophase and progress to metaphase. Activity of topoisomerase II is required for condensation of chromatin at the end of meiotic prophase. Histone H3 becomes phosphorylated at the end of prophase, beginning with its phosphorylation at the centromeric heterochromatin in the diplotene stage. However, it cannot be involved in localization of TOP2A, since TOP2A is localized to the centromeric heterochromatin throughout most of meiotic prophase. This observation suggests a meiotic function for TOP2A in addition to its role in chromatin condensation. The use of kinase inhibitors demonstrates that phosphorylation of histone H3 can be uncoupled from meiotic chromosome condensation; therefore other proteins, such as those constituting metaphase-promoting factor, must be involved. These results define the timing of important meiotic events at the centromeric heterochromatin and provide insight into mechanisms of chromosome condensation for meiotic metaphase.  相似文献   

20.
Dej KJ  Ahn C  Orr-Weaver TL 《Genetics》2004,168(2):895-906
Chromosomes are dynamic structures that are reorganized during the cell cycle to optimize them for distinct functions. SMC and non-SMC condensin proteins associate into complexes that have been implicated in the process of chromosome condensation. The roles of the individual non-SMC subunits of the complex are poorly understood, and mutations in the CAP-G subunit have not been described in metazoans. Here we elucidate a role for dCAP-G in chromosome condensation and cohesion in Drosophila. We illustrate the requirement of dCAP-G for condensation during prophase and prometaphase; however, we find that alternate mechanisms ensure that replicated chromosomes are condensed prior to metaphase. In contrast, dCAP-G is essential for chromosome condensation in metaphase of single, unreplicated sister chromatids, suggesting that there is an interplay between replicated chromatids and the condensin complex. In the dcap-g mutants, defects in sister-chromatid separation are also observed. Chromatid arms fail to resolve in prophase and are unable to separate at anaphase, whereas sister centromeres show aberrant separation in metaphase and successfully move to spindle poles at anaphase. We also identified a role for dCAP-G during interphase in regulating heterochromatic gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号