首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 707 毫秒
1.
《Free radical research》2013,47(4-6):231-239
The mechanisms of cytotoxicity of the antitumour diaziridinylbenzoquinones, AZQ and BZQ. have been investigated. HPLC analysis has been used to study the products as well as the rate of decomposition of acid-assisted ring-opening in aqueous medium as a function of pH. Microconcentrators with a molecular weight cutoff of 30 kDa were utilised to study the covalent binding of both compounds to calf thymus DNA. Radical production of both compounds in K562 cell incubations was followed using ESR and their uptake into K562 cells was monitored using radiolabelled compounds. The results show that these two diaziridinylbenzoquinones. although very similar in structure, have diverse mechanisms of cytotoxicity. The implications of these findings are discussed in the light of antitumour action  相似文献   

2.
Multidrug resistance in tumor cells poses a major obstacle to efficient chemotherapy. Several types of agents have been recognized as multidrug resistance inhibitors, among which the tetrahydroisoquinolines is the most studied. In current study 16 furoxan-based nitric oxide-releasing derivatives of tetrahydroisoquinoline were synthesized. Their cytotoxic activities and effects in reversing multidrug resistance have been evaluated. The results revealed that these compounds had moderate cytotoxic effects. Compounds 7a-f, 7h, and 7l showed higher cytotoxicities than the rest, but lower than adriamycin on K562 cell line. Compounds 7d, 7f, and 7l exhibited potent MDR reversal activities on K562/A02 cell line. The accumulation assay indicated that compounds 7d, 7f, and 7l significantly increased the intracellular accumulation of rhodamine123 in K562/A02 cells. Furthermore, these three compounds produced high concentrations of NO in K562/A02 cells. Potentially, the high concentrations of NO produced by NO donor moieties will lead to an increased cytotoxicity to K562/A02 cells. Our results suggested that compounds 7d, 7f, and 7l had anticancer effects, as well as multidrug resistance reversal effects.  相似文献   

3.
Synthesis, DNA binding properties and biological activity of a series of bis-benzoheterocycle derivatives 5-11, structurally related to the natural dipyrrole antitumor agent netropsin, and tethered to a benzoyl nitrogen mustard (BAM) as alkylating moiety is reported and structure-activity relationships determined. These compounds 5-11 have been evaluated for sequence selective alkylating properties and cytotoxicity against murine L1210 and human K562 leukaemia cells. Using as target sequence a portion of the long terminal repeat of the type-1 human immunodeficiency virus, we found that these compounds induce similar patterns of DNA fragmentation. In addition, the results obtained indicate that all synthesized compounds retain a good antiproliferative activity in the submicromolar range, and generally are more active against L1210 than K562 cells. With respect to both these cell lines, compounds 6, 7, 10 and 11 showed the greatest potency, ranging from 0.3 to 1 microM, while compounds 8 and 9 exhibit the lowest activity (IC(50)=2-12 microM). Among compounds 5-11, the derivative 11 was found to be the most potent member of this class and it is 5 and 10-fold less active than the bis-pyrrole counterpart 2 against K562 and L1210 cell lines, respectively. For compound 11, the substitution of the C-terminus benzofurane with N-methylindole and indole (to give the compounds 5 and 6, respectively) led to a decrease in cytotoxicity, which is more evident against the K562 cell line. Finally, differences were found among compounds 5-11 in induction of K562 differentiation. Some of them (compounds 7, 8 and 9) are potent inducers of erythroid differentiation of K562 cells, and could be proposed for differentiation anti-cancer therapy.  相似文献   

4.
Apocynin (APO), curcumin (CUR) and vanillin (VAN) are o-methyl catechols widely studied due their antioxidant and antitumour properties. The effect of treatment with these o-methyl catechols on tamoxifen (TAM)-induced cytotoxicity in normal and tumour cells was studied. The cytotoxicity of TAM on red blood cells (RBC) was performed by haemoglobin or K+release and on polymorphonuclear leukocytes (PMNs) by trypan blue dye exclusion method. Cytotoxic activity was assessed in human chronic myeloid leukemia (K562) cell line by (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide). According the release of haemoglobin and K+, the CUR showed a decrease in TAM cytotoxicity on RBC; however, in PMN, APO, CUR and VAN showed increased of these cells viability. VAN presented the highest cytotoxicity on K562 cells, followed by APO and CUR. These results point the potential therapeutic value of these o-methyl catechols with TAM, particularly of CUR, which potentiates the cytotoxic effects of TAM on K562 cells and also decreases TAM-associated cytotoxicity on RBC and PMN.  相似文献   

5.
Ray D  Sarma KD  Antony A 《IUBMB life》2000,49(6):519-525
Tributyltin compounds have been shown to induce apoptosis by causing extracellular Ca2+ influx and generating reactive oxygen species (ROS). Several organotin compounds were reported to have differential cytotoxicity on various human cell lines depending on the length of the alkyl chain. In this report, the cytotoxic effects of three tri-n-butylstannyl (halo)benzoate compounds-tri-n-butylstannyl benzoate (TBSB), tri-n-butylstannyl-2,6-difluorobenzoate (TBSDFB) and tri-n-butylstannyl-2-iodobenzoate (TBSIB)-were studied on lymphocytic cells of human leukemic K562 lineage and epithelial cells of human breast cancer MCF-7 cells lineage. K562 cells were found to be more sensitive to these compounds than MCF-7 cells. Although the induction of apoptosis by the above compounds in K562 cells resulted from the extracellular Ca2+ influx and the generation of ROS, the initial amount of extracellular Ca2+ influx was greater in TBSB-treated K562 cells than the cells treated with either TBSDFB or TBSIB. Similarly, DNA fragmentation by endonucleases was observed as an early event in TBSB-treated K562 cells, which might be correlated with the initially greater extracellular Ca2+ influx. In contrast, MCF-7 cells were found to undergo apoptosis mainly because of the generation of ROS. The present results suggest that the differential effects of tributyltin compounds on induction of apoptosis in K562 and MCF-7 cells are largely attributable to the extent of extracellular Ca2+ influx.  相似文献   

6.
The monoclonal antibody 13.3 specifically blocks the trigger process of the NK-K562 cytolytic sequence at a post-binding effector cell level. This antibody was used to define differences in the lytic trigger processes of NK and other mechanisms of K562 lysis. Monoclonal antibody 13.3 inhibited lysis of K562 target cells by freshly isolated peripheral blood lymphocytes (PBL) and purified large granular lymphocytes (LGL), but had no inhibitory effect on antibody-dependent cell-mediated cytotoxicity to K562 by these effectors. Lectin-dependent cellular cytotoxicity (LDCC) to this target cell was also unresponsive to 13.3. The 13.3-induced inhibition of NK-K562 lytic activity persisted when PBL were activated in culture with interleukin 2 (IL 2) for periods up to 48 hr. After 48 hr of culture, the degree of inhibition diminished progressively in medium containing fetal calf serum but not in medium containing autologous serum. This 13.3-unresponsive lytic activity in cultured PBL could be attributed to more than one cell type and was present in both the LGL and Fc gamma receptor-depleted T cell fraction. Thus, K562 lysis by freshly isolated human lymphocytes via NK, K, and LDCC mechanisms is characterized by heterogeneity of the post-binding effector cell trigger mechanism. K562 lysis by lymphocytes cultured with IL 2 is similarly heterogeneous.  相似文献   

7.
8.
Cisplatin is an effective chemotherapeutic agent that elicits its antineoplastic activity by binding to DNA and disrupting template functions. IL-6 is a cytokine which has been shown to play a central role in host immunological defense mechanisms. Although K562 leukemic cells have been shown to secrete IL-6, little is known of whether there exists a correlation between the expression of IL-6 and the resistance of these cells to anticancer chemotherapeutic agents. To determine the contribution of IL-6 to the regulation of cisplatin-induced apoptosis in K562 cells, we examined whether treatment of K562 cells and cisplatin-resistant K562 subclones with anti-IL-6 mAb enhances their sensitivity to cisplatin. The results show that cis-diamminedichloroplatinum (CDDP) resistance was overcome by treatment with nontoxic doses of CDDP in combination with anti-IL-6 mAb. When we tested if the synergistic effect of anti-IL-6 and cisplatin could restore the ability of K562 mutant cells to undergo apoptosis, we found the typical DNA laddering in these cells, even in the presence of a nontoxic dose of the drug. Treatment of cells with anti-IL-6 reduced the levels of glutathione. The current studies show that anti-IL-6 mAb sensitized CDDP-resistant K562 cells to CDDP by induction of apoptotic death and the reduction of glutathione levels might be implicated in the enhanced cytotoxicity observed.  相似文献   

9.
Hu X  Gao C  Tan C  Zhang C  Zhang H  Li S  Liu H  Jiang Y 《Protein and peptide letters》2011,18(12):1258-1264
A series of novel compounds with N-phosphoryl peptide modification at the C-4 position on podophyllotoxin were synthesized and evaluated for their cytotoxicity in vitro against K562 cell lines. Among these compounds 5c, 5f and 5k exhibited better cytotoxicity (IC(50) = 5.5 μM, 2.1 μM, and 3.1 μM, respectively) than podophyllotoxin and etoposide. Further study on compound 5f using flow cytometry analysis indicated that the anti-tumor effect might be due to the induction of apoptosis.  相似文献   

10.
The cationic complexes (1,2-diaminoethane)(maltolato)platinum(II) ([Pt(en)(ma)]+) and (1R,2R-1,2-diaminocyclohexane)(maltolato)platinum(II) ([Pt(R,R-DACH)(ma)]+) have been prepared and the structure of [Pt(R,R-DACH)(ma)]NO3 has been determined by single crystal X-ray diffraction. The geometry of the metal in [Pt(R,R-DACH)(ma)]NO3 is essentially square planar and the maltolate ligand has a geometry similar to other chelate complexes involving this ligand. The cytotoxicities of the compounds have been assessed in the human cell lines HeLa and K562 and the IC50 values are approximately 32 microM in HeLa cells and 26 microM in K562 cells. In these cell lines the cytotoxicity of cisplatin is higher than the maltolate complexes by a factor of 2 to 3 whereas the cytotoxicity of carboplatin is lower than the maltolate complexes.  相似文献   

11.
12.
CD95L belongs to the tumor necrosis factor-alpha (TNF-alpha) family, the members of which induce apoptosis by activation of their specific receptors. However, there are a few publications suggesting that two of these factors, TNF-alpha and TNF-beta, are able to reveal cytotoxic effect in pH-dependent manner. Therefore we investigated, whether CD95L may also reveal pH-dependent cytotoxicity. We analyzed influence of CD95L on U937 and K562 human cell lines at pH 5.1 and pH 7.4 using radioactive chromium release and tetrazolium salt (MTT) reduction assays. Expression of CD95 in both cell lines was estimated using RNase Protection Assay and FACS analysis. It has been found that short incubation of cells at pH 5.1 did not visibly affect their viability, as measured after 16 or 20 h. Incubation of U937 with CD95L at pH 7.4 resulted in a dose-dependent cell cytotoxicity. The effect was significantly augmented by incubation of cells with CD95L at pH 5.1. K562 cell line was resistant to CD95L at pH 7.4. This result correlated with the lack of CD95 expression in K562 cells. However, incubation at pH 5.1 resulted in a sensitization of K562 cells to CD95L. Our results suggest that CD95L, similarly to TNF-alpha, is able to reveal its cytotoxic activity in a receptor-independent manner and this activity strongly depends on pH of the environment.  相似文献   

13.
Ten sesquiterpenes, together with 12 known compounds were isolated from leaves of Laurus nobilis L. Based on spectroscopic analyses, the 10 compounds were determined to be eudesmane lactones and their corresponding methyl esters. Most of these compounds exhibited moderate-to-significant cytotoxicity towards K562 leukemia cells. One compound had a higher cytotoxicity than doxorubicin, while other compounds had moderate to no activity.  相似文献   

14.
A set of 16 previously synthesized aryl-aminopyridine and aryl-aminoquinoline derivatives have been evaluated for cytotoxic activity against three cancer cell lines (human cervical cancer-HeLa; human chronic myeloid leukemia-K562; human melanoma-Fem-x) and two types of normal peripheral blood mononuclear cells, with and without phytohemaglutinin (PBMC-PHA; PBMC+PHA). Twelve of the studied compounds showed moderate cytotoxicity, with selectivity against K562 but not the remaining two cancer cell lines. Four compounds were not active in cytotoxicity assays, presumably due to high predicted lipophilicity and low solubility. To rationalize the observed cytotoxic effects, structure-based virtual screening was carried out against a pool of potential targets constructed using the inverse docking program Tarfisdock and bibliographical references. The putative targets were identified on the basis of the best correlation between docking scores and in vitro cytotoxicity. It is proposed that the mechanism of action of the studied aminopyridines involves the disruption of signaling pathways and cancer cell cycle through the inhibition of cyclin-dependent kinases and several tyrosine kinases, namely Bcr-Abl kinase and KIT receptor kinase. The obtained results can guide further structural modifications of the studied compounds aimed at developing selective agents targeting proteins involved in cancer cell survival and proliferation.  相似文献   

15.
Chalcones are being considered as anticancer agents as they are natural compounds that are particularly cytotoxic towards K562 leukemia or melanoma cells. In this study, we have investigated phloretin, isoliquiritigenin, and 10 other hydroxylated chalcones for their cytotoxic mechanisms towards isolated rat hepatocytes. All hydroxychalcones partly depleted hepatocyte GSH and oxidized GSH to GSSG. These chalcones also caused a collapse of mitochondrial membrane potential and increased oxygen uptake. Furthermore, glycolytic or citric acid cycle substrates prevented cytotoxicity and mitochondrial membrane potential collapse. The highest pKa chalcones were the most effective at collapsing the mitochondrial membrane potential which suggests that the cytotoxic activity of hydroxychalcones are likely because of their ability to uncouple mitochondria.  相似文献   

16.
Cellular slime molds are fascinating to the field of developmental biology, and have long been used as excellent model organisms for the study of various aspects of multicellular development. We have recently isolated alpha-pyronoids, named dictyopyrones A-D (1-4), from various species of Dictyostelium cellular slime molds, and it was shown that compound 3 may regulate Dictyostelium development. In this study, we synthesized dictyopyrones A-D (1-4) and their analogues, investigated the physiological role of the molecules in cell growth and morphogenesis in D. discoideum, and further verified their effects on human leukemia K562 cells. Nitrogen-containing compounds 22 and 37 strongly inhibited cell growth in K562 leukemia cells, indicating that these compounds may be utilized as novel lead compounds for anti-leukemic agents.  相似文献   

17.
VEGFR-2 and Src kinases both play important roles in cancers. In certain cancers, Src works synergistically with VEGFR-2 to promote its activation. Development of multi-target drugs against VEGFR-2 and Src is of therapeutic advantage against these cancers. By using molecular docking and SVM virtual screening methods and based on subsequent synthesis and bioassay studies, we identified 9-aminoacridine derivatives with an acridine scaffold as potentially interesting novel dual VEGFR-2 and Src inhibitors. The acridine scaffold has been historically used for deriving topoisomerase inhibitors, but has not been found in existing VEGFR-2 inhibitors and Src inhibitors. A series of 21 acridine derivatives were synthesized and evaluated for their antiproliferative activities against K562, HepG-2, and MCF-7 cells. Some of these compounds showed better activities against K562 cells in vitro than imatinib. The structure-activity relationships (SAR) of these compounds were analyzed. One of the compounds (7r) showed low μM activity against K562 and HepG-2 cancer cell-lines, and inhibited VEGFR-2 and Src at inhibition rates of 44% and 8% at 50μM, respectively, without inhibition of topoisomerase. Moreover, 10μM compound 7r could reduce the levels of activated ERK1/2 in a time dependant manner, a downstream effector of both VEGFR-2 and Src. Our study suggested that acridine scaffold is a potentially interesting scaffold for developing novel multi-target kinase inhibitors such as VEGFR-2 and Src dual inhibitors.  相似文献   

18.
19.
A series of tetracyclic diterpenoids bearing the α-methylenelactone group have been synthesized and screened for their in vitro anti-tumor activities against six human cancer cell lines. The results showed that compounds 1c, 2a and 2b exhibited significant cytotoxicity superior to the positive control doxorubicin hydrochloride against MDA-MB-231, K562 and HepG2 cell lines. In particular, compound 2b was identified as the most promising anticancer agent against HepG2 cells with IC(50) value of 0.09μM.  相似文献   

20.
s-Triazine is considered a privileged structure, as it is found in several FDA-approved drugs. In the framework of our ongoing medicinal chemistry project based on the use of s-triazine as a scaffold, we synthesized a series of mono- and di-pyrazolyl-s-triazine derivatives and tested them against four human cancer cell lines, namely Human breast carcinoma (MCF 7 and MDA-MB-231), hepatocellular carcinoma (HepG2), colorectal carcinoma (LoVo), and leukemia (K562). The cell viability assay revealed that most of the s-triazine compounds induced cytotoxicity in all four types of human cancer cell lines, however, compounds 4a, and 6g, both of them have a piperidine moiety in their structure were most effective. These two compounds affected the cell viability of cancer cells, with IC50 values within the range between 5 to 9 µM. The cell cycle analysis showed that 4a and 6g induced S and G2/M phase cell cycle arrest in K562 cells. This could be the mechanism by which these molecules induced cytotoxicity in tested cancer cells. The prepared compounds were tested in zebrafish embryos to evaluate in vivo and developmental toxicity of the pyrazolyl-s-triazine derivatives in animals. None of the derivatives were lethal in the concentration range tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号