首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The allocation of cells to the trophectoderm and inner cell mass (ICM) in the mouse blastocyst has been examined by labelling early morulae (16-cell stage) with the short-term cell lineage marker yellow-green fluorescent latex (FL) microparticles. FL is endocytosed exclusively into the outside polar cell population and remains autonomous to the progeny of these blastomeres. Rhodamine-concanavalin A was used as a contemporary marker for outside cells in FL-labelled control (16-cell stage) and cultured (approximately 32- to 64-cell stage) embryos, immediately prior to the disaggregation and analysis of cell labelling patterns. By this technique, the ratio of outside to inside cell numbers in 16-cell embryos was shown to vary considerably between embryos (mean 10.8:5.2; range 9:7 to 14:2). In cultured embryos, the trophectoderm was derived almost exclusively (over 99% cells) from outside polar 16-cell blastomeres. The origin of the ICM varied between embryos; on average, most cells (75%) were descended from inside nonpolar blastomeres with the remainder derived from the outside polar lineage, presumably by differentiative cleavage. In blastocysts examined by serial sectioning, polar-derived ICM cells were localised mainly in association with trophectoderm and were absent from the ICM core. In nascent blastocysts with exactly 32 cells an inverse relationship was found between the proportion of the ICM descended from the polar lineage and the deduced size of the inside 16-cell population. From these results, it is concluded that interembryonic variation in the outside to inside cell number ratio in 16-cell morulae is compensated by the extent of polar 16-cell allocation to the ICM at the next division, thereby regulating the trophectoderm to ICM cell number ratio in early blastocysts.  相似文献   

2.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

3.
The individual blastomeres of the preimplantation mouse embryo become polarized during the 8-cell stage. Microvilli become restricted to the free surface of the embryo and this region of the membrane shows increased labeling with FITC-Con A and trinitrobenzenesulfonate (TNBS). Previous studies have shown that this polarity develops in response to asymmetric cell-cell contact with stage specific induction competent blastomeres. In the present study, the ability of later stage embryos to induce 8-cell polarization has been investigated. Newly-formed, nonpolar 8-cell stage blastomeres (1/8 cells) were isolated, then aggregated with morulae, inner cell clusters (from morulae), blastocysts, or inner cell masses (ICM) and cultured for 8 hr. Aggregates were then assayed for polarity. The results show a hierarchy of inducing ability, with the ICM and IC cluster possessing greater activity than the morula and polar trophectoderm of the early blastocyst, while the mural trophectoderm shows very little inducing activity. Furthermore, the inducing ability of the polar trophectoderm decreases with complete expansion and hatching of the blastocyst. These results indicate that the ability to induce 8-cell blastomere polarization is retained by the embryo beyond the 8-cell stage and that this ability is lost with further differentiation.  相似文献   

4.
Horseradish peroxidase (HRP), together with Fast Green or rhodamine-conjugated dextran (RDX), was used as an intracellular lineage tracer to determine cell fate in the polar trophectoderm of 3.5-day-old mouse embryos. In HRP-injected midstage (approximately 39-cell) and expanded (approximately 65-cell) blastocysts incubated for 24 hr, the central polar trophectoderm cell was displaced from the embryonic pole an average of 20 micron (5% of blastocyst circumference) and 29 micron (6% of blastocyst circumference), respectively. Expanded blastocysts injected with HRP + Fast Green and incubated for 24 hr or with HRP + RDX and incubated for 48 hr showed a displacement of 24 micron (4% of blastocyst circumference) and 88 micron (14% of blastocyst circumference), respectively. Up to 10 HRP-positive trophectoderm cells were observed among embryos incubated for 48 hr, indicating that in those cases, the labeled progenitor cells had divided at least three times. Our observations show that the central polar trophectoderm cell divides in the plane of the trophectoderm in expanded blastocysts and, along with its descendants, is displaced toward the mural trophectoderm. The systematic tandem displacement of labeled cells and their descendants toward the abembryonic pole suggests the presence of a proliferative area at the embryonic pole of the blastocyst. Large shifts in inner cell mass (ICM) position in relation to the trophectoderm do not occur during blastocyst expansion. Furthermore, random movements within the polar trophectoderm population do not account for the replacement of labeled cells by unlabeled polar trophectoderm cells. Rather, we propose the hypothesis that the ICM contributes these replacement cells to the polar trophectoderm during blastocyst expansion.  相似文献   

5.
Recent in vitro experiments on immunosurgically isolated mouse inner cell masses (ICMs) have suggested that some ICM cells may retain the potential to form trophectoderm after initial blastocyst formation. These experiments relied almost solely on in vitro morphology for identification of trophectoderm derivatives and provided no proof that the putative trophectoderm cells were capable of functioning in utero. We present clear in vivo evidence that at least some cells in ICMs isolated from early blastocysts do retain the potential to form postimplantation trophectoderm derivatives. Early ICMs occasionally contributed to trophoblast fractions in ICM/morula aggregation chimeras. More strikingly, when aggregated with each other, these ICMs were capable of implanting in the uterus, a property of trophectoderm cells alone. Indeed, some aggregates reconstituted complete egg cylinders. However, ICMs isolated from later blastocysts rarely produced in vivo trophoblast, and it appears that the ability to form trophectoderm is lost around the 16–19 cell ICM stage. These results are discussed in relation to changing patterns of gene activity in early development.  相似文献   

6.
The ability of ICM to differentiate into TE is still a controversial issue. Many of authors have showed the reconstruction of TE from isolated ICMs. We showed that immunosurgical method is not 100% efficient and that the original TE cells very often remain on the surface of isolated ICMs. We also found that isolated ICM cells cultured in vitro do not express Cdx2, and that the TE is reconstituted from TE cells which have survived immunosurgery. This indicates that very soon after the formation of TE in the blastocyst, the cells of ICM lose the potency to differentiate into trophectoderm.  相似文献   

7.
8.
Newly formed polar and apolar 1/16 blastomeres were isolated and cultured singly, or in various combinations, through division to form 32-cell blastomeres. The morphology of the resulting cell cluster appeared to depend upon the nature and composition of the cell combination used. In most polar + apolar couplets, the polar cell enveloped the apolar cell, and following division, a 4/32 cluster was thereby generated containing two trophectoderm-like external cells derived from the polar cell and two ICM-like internal cells derived from the apolar cells. A polar cell cultured in isolation divided to give either two trophectoderm-like external cells or a trophectoderm-like cell and an ICM-like cell. Two polar cells cultured together generated clusters in which the ratio of trophectoderm-like:ICM-like cells was 4:0 or 3:1. Most apolar cells cultured together in couplets polarized, and generated 4/32 clusters containing either purely trophectoderm-like or a mixture of trophectoderm- and ICM-like cells. The results are consistent with the notion that continuing interactions between polar and apolar cells are necessary to maintain their respective fates as trophectoderm and ICM, and that in the absence of these interactions polar cells can generate ICM cells by a differentiative division and apolar cells can generate trophectoderm cells by polarizing in response to asymmetric cell contacts.  相似文献   

9.
The origin of the extraembryonic ectoderm of the chorion in the mouse embryo has long been the source of some controversy. Various manipulative studies suggested that it arose from the trophectoderm and not the inner cell mass (ICM) of the blastocyst. However, recent studies on the development of isolated ICMs in vitro have reported the formation of tissues morphologically resembling extraembryonic ectoderm. One explanation not excluded by previous studies is that the chorionic ectoderm is of dual origin, from both ICM and trophectoderm. The present study provides a more detailed analysis than previously possible of the in vivo fate of ICMs in chimeras, using a sensitive assay for glucose phosphate isomerase (GPI) isozymes which permits study of the chorionic ectoderm alone. In a large series of blastocyst injection chimeras, no donor ICM contribution to the mature chorionic ectoderm could be detected, donor activity appearing only in the embryonic fraction. Thus, the in vitro results cannot be readily explained by dual origin of the chorionic ectoderm and remain in conflict with existing in vivo data. Analysis of most ICM/morula chimeras revealed the same pattern, but a few showed ICM contributions to the trophoblast fractions, suggesting that some ICM cells retain the potential to form trophectoderm derivatives in vivo.  相似文献   

10.
Summary Immunosurgical isolation of inner cell masses (ICMs) from sheep embryos was most efficient at the expanded, zona-intact blastocyst stage (day 7 to 8 post oestrus) before migration of endoderm cells beyond the boundary of the ICM across the blastocoelic surface of the trophectoderm. When cultured under conditions which allow the isolation of embryonal stem (ES) cell lines from mouse ICMs, sheep ICMs attached, spread and developed areas of both ES cell-like and endoderm-like cells. After prolonged culture only endoderm-like cells were evident. The implications for the isolation of ES cell lines from sheep embryos and possible species-specific requirements are discussed.  相似文献   

11.
Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis.  相似文献   

12.
13.
In mouse early development, cell contact patterns regulate the spatial organization and segregation of inner cell mass (ICM) and trophectoderm epithelium (TE) during blastocyst morphogenesis. Progressive membrane assembly of tight junctional (TJ) proteins in the differentiating TE during cleavage is upregulated by cell contact asymmetry (outside position) and suppressed within the ICM by cell contact symmetry (inside position). This is reversible, and immunosurgical isolation of the ICM induces upregulation of TJ assembly in a sequence that broadly mimics that occurring during blastocyst formation. The mechanism relating cell contact pattern and TJ assembly was investigated in the ICM model with respect to PKC-mediated signaling and gap junctional communication. Our results indicate that complete cell contact asymmetry is required for TJ biogenesis and acts upstream of PKC-mediated signaling. Specific inhibition of two PKC isoforms, PKCdelta and zeta, revealed that both PKC activities are required for membrane assembly of ZO-2 TJ protein, while only PKCzeta activity is involved in regulating ZO-1alpha+ membrane assembly, suggesting different mechanisms for individual TJ proteins. Gap junctional communication had no apparent influence on either TJ formation or PKC signaling but was itself affected by changes of cell contact patterns. Our data suggest that the dynamics of cell contact patterns coordinate the spatial organization of TJ formation via specific PKC signaling pathways during blastocyst biogenesis.  相似文献   

14.
15.
Cell polarity and development of the first epithelium   总被引:6,自引:0,他引:6  
In the 4 1/2 to 5 days between fertilization and implantation, the mouse conceptus must gain the abilities to implant and produce an embryo. Each of these is the sole developmental responsibility of one of two cell types forming the blastocyst, trophectoderm and inner cell mass (ICM), respectively. Trophectoderm is a polarized transporting epithelium while the ICM is an aggregate of non-epithelial pluripotent stem cells. These two cell types originate from the division of polar blastomeres when their cleavage furrows parallel their apical surfaces. Blastomeres polarize in response to asymmetric cell--cell contact, and understanding the mechanism of this induction is regarded as the key to understanding the origin of trophectoderm and ICM. Here we propose a model based on transcellular ion current loops for the induction of cell polarity during the development of the first epithelium, trophectoderm.  相似文献   

16.
We microinjected horseradish peroxidase and rhodamine-conjugated dextran into single inner cell mass (ICM) cells of preimplantation mouse embryos to study their fate in culture. Simultaneous iontophoresis of both lineage markers allowed immediate localization of the injected cell by epifluorescence, followed by microdrop culture of individual embryos. After 24 hr in culture, labeled descendants were found in the polar trophectoderm, ICM, and parietal endoderm, providing direct evidence that the ICM contributes descendants to the trophectoderm and the endoderm in the intact mouse embryo. Our results substantiate the totipotency of the ICM during the expanding blastocyst stage and further demonstrate that the ICM is a stem cell population from which cells are recruited into these tissue lineages during growth of the blastocyst.  相似文献   

17.
The tissue specificity of the lethal yellow mutant was investigated by separation of blastocyst tissues. Embryos from experimental (Ay/ae X Ay/ae) and control (ae/ae X Ay/ae) crosses of the AG/CamPa inbred strain were recovered at 3.5 days post coitum, cultured for 24 hours, and then mechanically dissected into the component tissues of the blastocyst, the inner cell mass (ICM), and trophectoderm. These fragments were then cultured separately, with or without a feeder layer of inactivated fibroblasts, for an additional 3-5 days. Comparisons between experimental and control crosses indicated that the lethal Ay/Ay embryos were among the blastocysts successfully dissected but that both the ICM and trophectoderm from lethal embryos failed to develop further in vitro, either with or without feeders. With retrospective identification of the lethal embryos, it was found that at 4.5 days, after 1 day of culture, they had formed morphologically normal blastocysts but were frequently more fragile upon dissection and had smaller ICMs. Although none had hatched from the zona pellucida, some had ruptured it and were halfway out. With culture, lethal ICMs showed no development, and lethal trophectoderm usually attached but showed very limited outgrowth. Thus, no rescue of lethal tissue was shown with dissection and in vitro culture, and results are consistent with the gene affecting both tissues of the late blastocyst.  相似文献   

18.
19.
Summary The number of trophectoderm (TE) and inner cell mass (ICM) cells was determined by complementmediated lysis and differential staining in rat embryos collected at different times during in vivo preimplantation development. At 90 h after fertilization, two groups of morulae were discriminated according to the presence or absence of detectable ICM cells, and the analysis of their total cell number indicated that acquisition of a permeability seal between TE cells begins at the 14-cell stage. On the other hand, our data confirmed that blastocoele formation occurs after the fourth cleavage division in the rat. The total cell number increased exponentially with time in blastocysts recovered between 90 h and 127 h but the cell kinetics of TE and ICM cells were different. The proportion of ICM cells consequently varied throughout blastocyst development, with a peak value for expanded blastocysts at 103 h. Finally, a linear-quadratic relationship was found between the numbers of TE and ICM cells when all the embryos with a detectable ICM were analysed together.  相似文献   

20.
Two-way interactions between the blastocyst trophectoderm and the uterine luminal epithelium are essential for implantation. The key events of this process are cell-cell contact of trophectoderm cells with uterine luminal epithelial cells, controlled invasion of trophoblast cells through the luminal epithelium and the basement membrane, transformation of uterine stromal cells surrounding the blastocyst into decidual cells, and protection of the "semiallogenic" embryo from the mother's immunological responses. Because cell-cell contact between the trophectoderm epithelium and the luminal epithelium is essential for implantation, we investigated the expression of zonula occludens-1 (ZO-1) and E-cadherin, two molecules associated with epithelial cell junctions, in the mouse uterus during the periimplantation period. Preimplantation uterine epithelial cells express both ZO-1 and E-cadherin. With the initiation and progression of implantation, ZO-1 and E-cadherin are expressed in stromal cells of the primary decidual zone (PDZ). As trophoblast invasion progresses, these two molecules are expressed in stroma in advance of the invading trophoblast cells. These results suggest that expression of these adherence and tight junctions molecules in the PDZ serves to function as a permeability barrier to regulate access of immunologically competent maternal cells and/or molecules to the embryo and provide homotypic guidance of trophoblast cells in the endometrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号