首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pretreatment of Saccharomyces cerevisiaeand Debaryomyces vanrijiwith sodium azide was found to induce thermotolerance in both yeasts, whereas sodium azide used in combination with heat shock enhanced the thermotolerance of S. cerevisiaeand substantially decreased the thermotolerance of D. vanriji.It is suggested that the different responses of the yeasts to sodium azide during heat shock are due to the different functional organizations of their mitochondrial apparatus.  相似文献   

2.
The investigation of the effect of the cytochrome oxidase inhibitors sodium cyanide and sodium azide on the thermotolerance of the yeasts Rhodotorula rubra, Debaryomyces vanriji, and Saccharomyces cerevisiae showed that these inhibitors diminish the thermotolerance of R. rubra and D. vanriji, but do not affect the thermotolerance of S. cerevisiae. Taking into account the fact that, unlike the latter yeast, R. rubra and D. vanriji are nonfermentative yeasts, the difference in the effects of the inhibitors on the yeast thermotolerance can be readily explained by the different types of glucose utilization (either oxidative or fermentative) in these yeasts. The data obtained also provide evidence that there is a correlation between the functional activity of mitochondria and the thermotolerance of yeast cells.  相似文献   

3.
The study of the growth of the yeasts Rhodotorula rubra, Saccharomyces cerevisiae, and Debaryomyces vanriji at elevated temperatures and their survival after transient lethal heat shock showed that the ability of these yeasts to grow at supraoptimal temperatures (i.e., their thermoresistance) and their ability to tolerate lethal heat shocks (i.e., their thermotolerance) are determined by different mechanisms. The thermotolerance of the yeasts is suggested to be mainly determined by the division rate of cells before their exposure to heat shock.  相似文献   

4.
The addition of sodium azide (a mitochondrial inhibitor) at a concentration of 0.15 mM to glucosegrown Saccharomyces cerevisiae or Candida albicans cells before exposing them to heat shock increased cell survival. At higher concentrations of azide, its protective effect on glucose-grown cells decreased. Furthermore, azide, even at low concentrations, diminished the thermotolerance of galactose-grown yeast cells. It is suggested that azide exerts a protective effect on the thermotolerance of yeast cells when their energy requirements are met by the fermentation of glucose. However, when cells obtain energy through respiratory metabolism, the azide inhibition of mitochondria enhances damage inflicted on the cells by heat shock.  相似文献   

5.
The action mechanism of the mitochondrial inhibitor sodium azide on thermotolerance in Saccharomyces cerevisiae was studied. At ambient growth temperature, pretreatment with sodium azide was shown to improve the thermotolerance of parent cells and the hsp104 mutant. Treating with the inhibitor during a mild heat shock suppressed the development of induced thermotolerance due to the inhibition of heat shock protein (Hsp104) synthesis. Treating with the inhibitor immediately before lethal heat shock produced a variety of effects on thermotolerance depending on whether the yeast metabolism was oxidative or fermentative. The conclusions are: (1) the protective effect of sodium azide on the thermotolerance of S. cerevisiae cells grown on glucose-containing medium is not related to Hsp104 functioning, and (2) the mechanisms of basic and induced thermotolerance differ considerably.  相似文献   

6.
The effect of sodium azide in heat shock-induced cell death was studied in Debaryomyces vanrijiae, Candida albicans, and Saccharomyces cerevisiae yeasts. The results presented demonstrate that the azide addition induced a drastic decrease in the thermotolerance of glucose-grown D. vanrijiae. In contrast, glucose-grown S. cerevisiae and C. albicans cells treated with NaN3 became more resistant to heat shock than control cells. Nevertheless, in galactose medium the decrease of thermotolerance of S. cerevisiae and C. albicans cells was observed in the presence of sodium azide. It was suggested that the decreasing effect of sodium azide on thermotolerance takes place only when the yeast cell is incapable of using fermentation for ATP synthesis and obtains energy via oxidative phosphorylation. Received: 27 December 2001 / Accepted: 27 February 2002  相似文献   

7.
Heat shock protein Hsp104 of Saccharomyces cerevisiae functions as a protector of cells against heat stress. When yeast are grown in media containing nonfermentable carbon sources, the constitutive level of this protein increases, which suggests an association between the expression of Hsp104 and yeast energy metabolism. In this work, it is shown that distortions in the function of mitochondria appearing as a result of mutation petite or after exposure of cells to the mitochondrial inhibitor sodium azide reduce the induction of Hsp104 synthesis during heat shock. Since the addition of sodium azide suppressed the formation of induced thermotolerance in the parent type and in mutant hsp104, the expression of gene HSP104 and other stress genes during heat shock is apparently regulated by mitochondria.  相似文献   

8.
Rikhvanov  E. G.  Varakina  N. N.  Rusaleva  T. M.  Rachenko  E. I.  Voinikov  V. K. 《Microbiology》2003,72(2):144-148
The investigation of the effect of the cytochrome oxidase inhibitors sodium cyanide and sodium azide on the thermotolerance of the yeasts Rhodotorula rubra, Debaryomyces vanriji, and Saccharomyces cerevisiae showed that these inhibitors diminish the thermotolerance of R. rubraand D. vanriji, but do not affect the thermotolerance of S. cerevisiae. Taking into account the fact that, unlike the latter yeast, R. rubra and D. vanriji are nonfermentative yeasts, the difference in the effects of the inhibitors on the yeast thermotolerance can be readily explained by the different types of glucose utilization (either oxidative or fermentative) in these yeasts. The data obtained also provide evidence that there is a correlation between the functional activity of mitochondria and the thermotolerance of yeast cells.  相似文献   

9.
The study of the effect of malonate (an inhibitor of the succinate dehydrogenase complex of the respiratory chain of mitochondria) on the thermotolerance of the fermentative Saccharomyces cerevisiae and nonfermentative Rhodotorula rubra yeasts showed that malonate augmented the damaging effect of heat shock on the yeasts utilizing glucose (or other sugars) by means of oxidative phosphorylation. At the same time, malonate did not influence and sometimes even improved the thermotolerance of the yeasts utilizing glucose through fermentation. The suggestion is made that cell tolerance to heat shock depends on the normal functioning of mitochondria. On the other hand, their increased activity at elevated temperatures may accelerate the formation of cytotoxic reactive oxygen species and, hence, is not beneficial to cells.  相似文献   

10.
Rikhvanov  E. G.  Varakina  N. N.  Rusaleva  T. M.  Rachenko  E. I.  Voinikov  V. K. 《Microbiology》2002,71(6):662-665
The addition of sodium azide (a mitochondrial inhibitor) at a concentration of 0.15 mM to glucose-grown Saccharomyces cerevisiae or Candida albicans cells before exposing them to heat shock increased cell survival. At higher concentrations of azide, its protective effect on glucose-grown cells decreased. Furthermore, azide, even at low concentrations, diminished the thermotolerance of galactose-grown yeast cells. It is suggested that azide exerts a protective effect on the thermotolerance of yeast cells when their energy requirements are met by the fermentation of glucose. However, when cells obtain energy through respiratory metabolism, the azide inhibition of mitochondria enhances the damage inflicted on the cells by heat shock.  相似文献   

11.
12.
Rikhvanov  E. G.  Varakina  N. N.  Rusaleva  T. M.  Rachenko  E. I.  Voinikov  V. K. 《Microbiology》2003,72(4):423-427
The study of the growth of the yeasts Rhodotorula rubra, Saccharomyces cerevisiae, and Debaryomyces vanriji at elevated temperatures and their survival after transient lethal heat shock showed that the ability of these yeasts to grow at supraoptimal temperatures (i.e., their thermoresistance) and their ability to tolerate lethal heat shocks (i.e., their thermotolerance) are determined by different mechanisms. It is suggested that the thermotolerance of the yeasts is mainly determined by the division rate of cells before their exposure to heat shock.  相似文献   

13.
酿酒酵母菌耐热性快速鉴别的方法研究   总被引:2,自引:0,他引:2  
目的:找出快速有效的鉴别酵母耐热性的方法。方法:酿酒酵母菌经过不同温度热激处理后,用美兰染色计数、稀释平板计数、发酵活力直接测定法和浊度测定法对酿酒酵母菌耐热性进行了测定,同时对酵母菌的形态也进行了观察。结果:表明浊度测定的结果和发酵活力直接测定法测定的结果关系没有相关性,不便用来测定酵母菌的活力。用美兰染色计数、稀释平板计数和发酵活力直接测定法所得的结果有同样的趋势,通过相关性分析,这些方法都可以表示酵母菌的活力,但各有其特点。其中,美兰染色计数是鉴别酵母耐热性的快速有效的方法。  相似文献   

14.
Abstract: The heat shock response is an inducible protective system of all living cells. It simultaneously induces both heat shock proteins and an increased capacity for the cell to wisthstand potentially lethal temperatures (an increased thermotolerance). This has lead to the suspicion that these two phenomena must be inexorably linked. However, analysis of heat shock protein function in Saccharomyces cerevisiae by molecular genetic techniques has revealed only a minority of the heat shock proteins of this organism having appreciable influences on thermotolerance. Instead, physiological perturbations and the accumulation of trehalose with heat stress may be more important in the development of thermotolerance during a preconditioning heat shock. Vegetative S. cerevisiae also acquires thermotolerance through osmotic dehydration, through treatment with certain chemical agents and when, due to nutrient limitation, it arrests growth in the GI phase of the cell cycle. There is evidence for the activities of the cAMP-dependent protein kinase and plasma membrane ATPase being very important in thermotolerance determination. Also, intracellular water activity and trehalose probably exert a strong influence over thermotolerance through their effects on stabilisation of membranes and intracellular assemblies. Future investigations should address the unresolved issue of whether the different routes to thermotolerance induction cause a common change to the physical state of the intracellular environment, a change that may result in an increased stabilisation of cellular structures through more stable hydrogen bonding and hydrophobic interactions.  相似文献   

15.
16.
Heat shock protein Hsp104 of Saccharomyces cerevisiae functions as a protector of cells against heat stress. When yeast are grown in media containing nonfermentable carbon sources, the constitutive level of this protein increases, which suggests an association between the expression of Hsp104 and yeast energy metabolism. In this work, it is shown that distortions in the function of mitochondria appearing as a result of mutation petite or after exposure of cells to the mitochondrial inhibitor sodium azide reduce the induction of Hsp104 synthesis during heat shock. Since the addition of sodium azide suppressed the formation of induced thermotolerance in the parent type and in mutant hsp104,the expression of gene HSP104 and other stress genes during heat shock is apparently regulated by mitochondria.  相似文献   

17.
Induction of barotolerance by heat shock treatment in yeast   总被引:3,自引:0,他引:3  
In Saccharomyces cerevisiae, heat shock treatment provides protection against subsequent hydrostatic pressure damage. Such an induced hydrostatic pressure resistance (barotolerance) closely resembles the thermotolerance similarly induced by heat shock treatment. The parallel induction of barotolerance and thermotolerance by heat shock suggests that hydrostatic pressure and high temperature effects in yeast may be tightly linked physiologically.  相似文献   

18.
Yeast thermotolerance does not require protein synthesis.   总被引:16,自引:5,他引:11       下载免费PDF全文
Heat shock at 37 degrees C induces synthesis of stress (heat shock) proteins in Saccharomyces cerevisiae and also induces thermotolerance. Amino acid analogs that are powerful inducers of stress protein synthesis failed to induce thermotolerance, suggesting that the stress proteins do not play a causal role in acquired thermotolerance at 37 degrees C. This suggestion was confirmed by the observation that protein synthesis was not required for the induction of thermotolerance at 37 degrees C.  相似文献   

19.
R Pagn  S Condn    F J Sala 《Applied microbiology》1997,63(8):3225-3232
The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage.  相似文献   

20.
Rikhvanov  E. G.  Varakina  N. N.  Rusaleva  T. M.  Rachenko  E. I.  Voinikov  V. K. 《Microbiology》2003,72(5):548-552
The study of the effect of malonate (an inhibitor of the succinate dehydrogenase complex of the respiratory chain of mitochondria) on the thermotolerance of the fermentative Saccharomyces cerevisiae and nonfermentative Rhodotorula rubra yeasts showed that malonate augmented the damaging effect of heat shock on the yeasts utilizing glucose (or other sugars) by means of oxidative phosphorylation. At the same time, malonate did not influence, and sometimes even improved, the thermotolerance of the yeasts utilizing glucose through fermentation. The suggestion is made that cell tolerance to heat shock depends on the normal functioning of mitochondria. On the other hand, their increased activity at elevated temperatures may accelerate the formation of cytotoxic reactive oxygen species and, hence, is not beneficial to cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号