首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Age-related macular degeneration (AMD) is the major cause of blindness in the elderly. Those with the neovascular end-stage of disease have irreversible loss of central vision. AMD is a complex disorder in which genetic and environmental factors play a role. Polymorphisms in the complement factor H (CFH) gene, LOC387715, and the HTRA1 promoter are strongly associated with AMD. Smoking also contributes to the etiology. We aimed to provide a model of disease risk based on these factors.

Methods and Findings

We genotyped polymorphisms in CFH and LOC387715/HTRA1 in a case–control study of 401 patients with neovascular AMD and 266 controls without signs of disease, and used the data to produce genetic risk scores for the European-descent population based on haplotypes at these loci and smoking history. CFH and LOC387715/HTRA1 haplotypes and smoking status exerted large effects on AMD susceptibility, enabling risk scores to be generated with appropriate weighting of these three factors. Five common haplotypes of CFH conferred a range of odds ratios (ORs) per copy from 1 to 4.17. Most of the effect of LOC387715/HTRA1 was mediated through one detrimental haplotype (carriage of one copy: OR 2.83; 95% confidence interval [CI] 1.91–4.20), with homozygotes being at particularly high risk (OR 32.83; 95% CI 12.53–86.07). Patients with neovascular macular degeneration had considerably higher scores than those without disease, and risk of blinding AMD rose to 15.5% in the tenth of the population with highest predicted risk.

Conclusions

An individual''s risk of developing AMD in old age can be predicted by combining haplotype data with smoking status. Until there is effective treatment for AMD, encouragement to avoid smoking in those at high genetic risk may be the best option. We estimate that total absence of smoking would have reduced the prevalence of severe AMD by 33%. Unless smoking habits change or preventative treatment becomes available, the prevalence of AMD will rise as a consequence of the increasing longevity of the population.  相似文献   

2.
Age-related macular degeneration (AMD) is a disease with multifactorial etiology characterized by irreversible loss of central visual acuity. The discovery of susceptive single-nucleotide polymorphisms (SNPs) has progressed our understanding of AMD. Complement factor H (CFH) gene Y402H polymorphism and high-temperature requirement A-1 (HTRA1) LOC387715 gene A69S polymorphisms are the most important SNPs reported in the literature. Determination of genetic risk factors and genotype-phenotype relationship in AMD may result in rapid and cost-effective therapeutic applications for young and old population. In this study, we hypothesized a potential association between CFH gene Y402H and HTRA1 LOC387715 gene A69S polymorphism in Turkish AMD patients. In blood samples from a total of 252 individuals, 147 clinically diagnosed as AMD and the others control, polymorphic sites in CFH, Y402H (Tsp509I T/C), and HTRA1, LOC387715 A69S (FnuHI G/T), were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. There was significant difference between CFH genotypes in the AMD group, TT 21.8%, TC 48.3%, and CC 29.9%, and in the control subjects, TT 45% (p=0.003), TC 41% (p=0.0001), and CC 14% (p=0.0001). Further, the A69S polymorphism of LOC387715 was investigated and found to be significantly associated with AMD. LOC387715 genotypes in the AMD group were GG 30.6%, GT 38.1%, and TT 31.3% and in the control subjects were GG 59% (p=0.027), GT 39% (p=0.0001), and TT 2% (p=0.0001), respectively. We also found that Y402H C and A69S T allele were associated with AMD. This is the first study showing that Y402H and LOC387715 are associated with AMD in Turkish population.  相似文献   

3.
Zhang Z  Yu D  Yuan J  Guo Y  Wang H  Zhang X 《Cancer epidemiology》2012,36(2):e111-e115
The complement system is an important immunosurveillance mechanism against tumors, and complement factor H (CFH) is a key regulator for activation of the complement system. Expression of complement factor H has been demonstrated in cell lines from several malignancies. In this study we examined the contribution of the single-nucleotide polymorphism (SNP) Try402His (Y402H) (rs1061170) in the CFH gene to the risk of lung cancer in a case-control study with 1000 cases and 1000 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed by logistic regression. The frequencies for CFH Y402H genotypes among the cases were statistically significantly different from those among controls (χ(2)=8.66, P=0.003), with 402His/His or 402His/Try genotypes being over-represented among patients compared with controls (13.6% versus 9.4%, P<0.004). A multivariate regression analysis showed that a significantly increased risk of lung cancer for the 402His/His or 402His/Try carriers with OR (95% CI), 1.50 (1.12-2.00). When stratified by smoking status, the elevated risk of the cancer associated with variant CFH genotypes was observed among smokers, but not among non-smokers. When analyzed with cumulative smoking dose (pack-years), a super-multiplicative interaction was observed at different smoking levels. Among carriers with the 402Tyr/His or His/His genotype, the ORs of developing lung cancer for smoking<16, 16-28, or >28 pack-years were 0.98 (0.49-1.94), 2.36 (1.14-4.90), and 6.39 (3.49-11.68), respectively. These findings suggest that CFH Y402H polymorphism may interact with cigarette smoking to effect the development of lung cancer in the Chinese population.  相似文献   

4.
Genetic association of apolipoprotein E with age-related macular degeneration.   总被引:19,自引:1,他引:19  
Age-related macular degeneration (AMD) is the most common geriatric eye disorder leading to blindness and is characterized by degeneration of the neuroepithelium in the macular area of the eye. Apolipoprotein E (apoE), the major apolipoprotein of the CNS and an important regulator of cholesterol and lipid transport, appears to be associated with neurodegeneration. The apoE gene (APOE) polymorphism is a strong risk factor for various neurodegenerative diseases, and the apoE protein has been demonstrated in disease-associated lesions of these disorders. Hypothesizing that variants of APOE act as a potential risk factor for AMD, we performed a genetic-association study among 88 AMD cases and 901 controls derived from the population-based Rotterdam Study in the Netherlands. The APOE polymorphism showed a significant association with the risk for AMD; the APOE epsilon4 allele was associated with a decreased risk (odds ratio 0.43 [95% confidence interval 0.21-0. 88]), and the epsilon2 allele was associated with a slightly increased risk of AMD (odds ratio 1.5 [95% confidence interval 0.8-2. 82]). To investigate whether apoE is directly involved in the pathogenesis of AMD, we studied apoE immunoreactivity in 15 AMD and 10 control maculae and found that apoE staining was consistently present in the disease-associated deposits in AMD-maculae-that is, drusen and basal laminar deposit. Our results suggest that APOE is a susceptibility gene for AMD.  相似文献   

5.
J Ambati  BJ Fowler 《Neuron》2012,75(1):26-39
Age-related macular degeneration (AMD), a progressive condition that is untreatable in up to 90% of patients, is a leading cause of blindness in the elderly worldwide. The two forms of AMD, wet and dry, are classified based on the presence or absence of blood vessels that have disruptively invaded the retina, respectively. A detailed understanding of the molecular mechanisms underlying wet AMD has led to several robust FDA-approved therapies. In contrast, there are no approved treatments for dry AMD. In this review, we provide insight into the critical effector pathways mediating each form of the disease. A recurring theme that spans most aspects of AMD pathogenesis is defective immune modulation in the classically immune-privileged ocular haven. Interestingly, the latest advances in AMD research also highlight common molecular disease pathways with other neurodegenerative disorders. Finally, the therapeutic potential of intervening at known mechanistic steps of AMD pathogenesis is discussed.  相似文献   

6.
Age-related macular degeneration (AMD) causes progressive impairment of central vision and is the leading cause of vision loss in older individuals. Although the etiology of AMD has not been clearly elucidated, genetic and environmental factors have been implicated. Vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF), a major regulator of vascular permeability and angiogenesis, have been suggested to play an important role in the pathogenesis of AMD. This study was performed to determine whether VEGF and PEDF variations are associated with AMD in the Korean population. Four SNPs of both the VEGF gene the PEDF gene were used to screen for genetic variation. This analysis was performed using polymerase chain reaction–restriction fragment length polymorphism, direct sequencing and an allele-specific oligonucleotide analysis. The study investigated four SNPs in VEGF and PEDF in Korean patients with AMD. The frequency of the TT genotype of rs1413711 and the recessive VEGF allele significantly differed between the patient and control groups. The TT genotype of rs1136287 (M72T) in PEDF significantly differed between the patient and control groups. Six haplotypes in the VEGF gene and two haplotypes in the PEDF gene were significantly associated with AMD. In this study, rs1413711 of VEGF, rs1136287 of PEDF and haplotypes were identified as candidate variants associated with AMD in Korean patients.  相似文献   

7.
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated with AMD are in excess of $340 billion US (American-Health-Assistance-Foundation, 2012). The majority of AMD patients in the United States are not eligible for clinical treatments (Biarnes et al., 2011; Klein et al., 2011). Preventive interventions through dietary modulation are attractive strategies because many studies suggest a benefit of micro- and macronutrients with respect to AMD, as well as other age-related debilities, and with few, if any, adverse effects (Chiu, 2011). Preservation of vision would enhance quality of life for millions of elderly people, and alleviate the personal and public health financial burden of AMD (Frick et al., 2007; Wood et al., 2011). Observational studies indicate that maintaining adequate levels of omega-3 fatty acids (i.e. with 2 servings/week of fish) or a low glycemic index diet may be particularly beneficial for early AMD and that higher levels of carotenoids may be protective, most probably, against neovascular AMD. Intervention trials are needed to better understand the full effect of these nutrients and/or combinations of nutrients on retinal health. Analyses that describe effects of a nutrient on onset and/or progress of AMD are valuable because they indicate the value of a nutrient to arrest AMD at the early stages. This comprehensive summary provides essential information about the value of nutrients with regard to diminishing risk for onset or progress of AMD and can serve as a guide until data from ongoing intervention trials are available.  相似文献   

8.
Epidemiologic studies have suggested that elderly patients who consumed diets rich in antioxidants throughout their lives are less likely to be afflicted with age-related macular degeneration (AMD). This led to the Age-Related Eye Disease Study, which showed that supplements containing antioxidant vitamins and zinc reduce the risk of progression to severe stages of AMD. Despite these data that indirectly implicate oxidative damage in the pathogenesis of AMD, there has not been any direct demonstration of increased oxidative damage in the retinas of patients with AMD. In this study, we used biomarkers of oxidative damage in postmortem eyes from patients with AMD and comparably aged patients without AMD to directly assess for oxidative damage. Sections from 4 eyes with no pathologic features of AMD showed no immunofluorescent staining for markers of oxidative damage, while sections from 8 of 12 eyes with advanced geographic atrophy showed evidence of widespread oxidative damage in both posterior and anterior retina. Only 2 of 8 eyes with choroidal neovascularization and 2 of 16 eyes with diffuse drusen and no other signs of AMD showed evidence of oxidative damage. These data suggest that widespread oxidative damage occurs in the retina of some patients with AMD and is more likely to be seen in patients with advanced geographic atrophy. This does not rule out oxidative damage as a pathogenic mechanism in patients with CNV, but suggests that a subpopulation of patients with geographic atrophy may have a major deficiency in the oxidative defense system that puts the majority of cells in the retina at risk for oxidative damage.  相似文献   

9.

Background

Age-related maculopathy (ARM) is a common cause of visual impairment in the elderly populations of industrialized countries and significantly affects the quality of life of those suffering from the disease. Variants within two genes, the complement factor H (CFH) and the poorly characterized LOC387715 (ARMS2), are widely recognized as ARM risk factors. CFH is important in regulation of the alternative complement pathway suggesting this pathway is involved in ARM pathogenesis. Two other complement pathway genes, the closely linked complement component receptor (C2) and complement factor B (CFB), were recently shown to harbor variants associated with ARM.

Methods/Principal Findings

We investigated two SNPs in C2 and two in CFB in independent case-control and family cohorts of white subjects and found rs547154, an intronic SNP in C2, to be significantly associated with ARM in both our case-control (P-value 0.00007) and family data (P-value 0.00001). Logistic regression analysis suggested that accounting for the effect at this locus significantly (P-value 0.002) improves the fit of a genetic risk model of CFH and LOC387715 effects only. Modeling with the generalized multifactor dimensionality reduction method showed that adding C2 to the two-factor model of CFH and LOC387715 increases the sensitivity (from 63% to 73%). However, the balanced accuracy increases only from 71% to 72%, and the specificity decreases from 80% to 72%.

Conclusions/Significance

C2/CFB significantly influences AMD susceptibility and although accounting for effects at this locus does not dramatically increase the overall accuracy of the genetic risk model, the improvement over the CFH-LOC387715 model is statistically significant.  相似文献   

10.
The proteasome mediates pathways associated with oxidative stress and inflammation, two pathogenic events correlated with age-related macular degeneration (AMD). In human donor eyes corresponding to four stages of AMD, we found the proteasomal chymotrypsin-like activity increased in neurosensory retina with disease progression. Increased activity correlated with a dramatic increase in the inducible subunits of the immunoproteasome, which was not due to an increase in CD45 positive immune cells in the retina. The novel observation of proteasome transformation may reflect retinal response to local inflammation or oxidative stress with AMD.  相似文献   

11.
Late-stage age-related macular degeneration (AMD) is a common sight-threatening disease of the central retina affecting approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS) for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve (AUC) of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy, younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69-2.05) than patients aged 75 and above (1.45, 95% CI: 1.36-1.54). Based on five equally sized GRS intervals, we present a risk classification with a relative AMD risk of 64.0 (95% CI: 14.11-1131.96) for individuals in the highest category (GRS 3.44-5.18, 0.5% of the general population) compared to subjects with the most common genetic background (GRS -0.05-1.70, 40.2% of general population). The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive treatment is available.  相似文献   

12.
13.
Age-related macular degeneration (AMD) is the most common cause of incurable blindness in the developed world. Little is known about the pathogenesis of this condition, but deposits in Bruch's membrane and immediately beneath the retinal pigment epithelium are frequent findings associated with this disease. Within these deposits, molecular assemblies with an approximately 100-nm axial periodicity are seen. Two types of assembly are present: one exhibiting transverse double bands of protein density that are 30nm apart and repeat axially every approximately 100nm; the other with transverse double bands of protein density, 30nm apart and repeating axially every approximately 50nm. In this second type of assembly, more prominent pairs of bands alternate with less prominent ones. By comparison with analogous aggregates found in the vitreous of a patient with a full-thickness macular hole, collagen VI was singled out as the most probable protein constituent of the AMD aggregates. Possible models for the aggregation patterns of these assemblies are discussed in terms of collagen VI dimers and tetramers. Understanding the structure and chemical composition of the assemblies within the AMD basal deposits may prove of great help in understanding the pathophysiology of AMD itself.  相似文献   

14.
Oxidative damage and inflammation are postulated to be involved in age-related macular degeneration (AMD). However, the molecular signal(s) linking oxidation to inflammation in this late-onset disease is unknown. Here we describe AMD-like lesions in mice after immunization with mouse serum albumin adducted with carboxyethylpyrrole, a unique oxidation fragment of docosahexaenoic acid that has previously been found adducting proteins in drusen from AMD donor eye tissues and in plasma samples from individuals with AMD. Immunized mice develop antibodies to this hapten, fix complement component-3 in Bruch's membrane, accumulate drusen below the retinal pigment epithelium during aging, and develop lesions in the retinal pigment epithelium mimicking geographic atrophy, the blinding end-stage condition characteristic of the dry form of AMD. We hypothesize that these mice are sensitized to the generation of carboxyethylpyrrole adducts in the outer retina, where docosahexaenoic acid is abundant and conditions for oxidative damage are permissive. This new model provides a platform for dissecting the molecular pathology of oxidative damage in the outer retina and the immune response contributing to AMD.  相似文献   

15.
The discovery of strong associations of the His402 variant of complement factor H (CFH) and the change in the promoter region of HtrA serine peptidase 1 (HTRA1) with age-related macular degeneration (AMD) have altered our conception of the pathophysiology of this disease. The complement system has been placed at the center of a flurry of research interest, and a similar growth in attention to the serine proteases is not far behind. The specific role of these variants in causing AMD is unknown, but they will undoubtedly lead to a deeper understanding of the biological mechanisms and will point to new avenues for pharmacologic management. Furthermore, these variants will enable clinicians and investigators to identify people at high risk for this condition, thereby establishing the preconditions for preventing the disease.  相似文献   

16.
17.
Dysregulation of the alternative pathway (AP) of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112) and controls (n = 67). Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH), factor B-C2 (BF-C2) and complement C3 (C3) genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001), were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.  相似文献   

18.
134 patients with Age-related Macular Degeneration (AMD) (aging 47-75 years) were treated in therapy procedure with parabulbar injections of Methylprednisolone Acetate and Prednisolone Acetate. In the first group of patients with AMD (n = 71 patients) were treated with Methylprednisolone acetate, and second group (n = 63 patients) with Prednisolone acetate. Each patient was given doses of 60 mg, through two weeks, 10 mg every second day. It's estimated in all patients ameliorate in macular threshold, so that it's in the group with Methylprednisolone treatment, ameliorate effect begins after first week, than in second group, treated with Prednisolone, initial ameliorate effect is after second week. Complete effect in both groups is after 2 months. It can be concluded that the treatment of AMD with glucocorticoids has the ameliorate effect in vision loss and it is decided that earlier effect in the group treated with Methylprednisolone, is probably of higher affinity for glucocorticoid receptors.  相似文献   

19.
20.
Iron may be implicated in the generation of oxidative stress by the catalyzing the Haber–Weiss or Fenton reaction. On the other hand, oxidative stress has been implicated in the pathogenesis of age-related macular degeneration (AMD) and heme oxygenase-1 (HO-1), encoded by the HMOX1 gene and heme oxygenase-2 (HO-2), encoded by the HMOX2 gene are important markers of iron-related oxidative stress and its consequences. Therefore, variability of the HMOX1 and HMOX2 genes might be implicated in the pathogenesis of AMD through the modulation of the cellular reaction to oxidative stress. In the present work, we investigated the association between AMD and a G → C transversion at the 19 position in the HMOX1 gene (the 19G>C-HMOX1 polymorphism, rs2071747) and a A → G transition at the −42 + 1444 position in the HMOX2 gene (the −42 + 1444A>G-HMOX2 polymorphism, rs2270363) and its modulation by some environmental factors. 279 patients with AMD and 105 controls were recruited in this study and the polymorphisms were typed by restriction fragment length polymorphism and allele-specific polymerase chain reaction (PCR). We observed an association between the occurrence of dry AMD and the G/A genotype of the −42 + 1444A>G-HMOX2 polymorphism (odds ratio (OR) 2.72), whereas the G/G genotype reduced the risk of dry AMD (OR 0.41). The G/C genotype and the C allele of the 19 G>C-HMOX1 polymorphism and the G/G genotype and the G allele of the −42 + 1444A>G-HMOX2 polymorphism were associated with progression of AMD from dry to wet form (OR 4.83, 5.20, 2.55, 1.69, respectively). On the other hand, the G/G genotype and the G allele of the 19 G>C-HMOX1 polymorphism and the A/G genotype and the A allele of the −42 + 1444A>G-HMOX2 polymorphism protected against AMD progression (OR 0.19, 0.19, 0.34, 0.59, respectively). Therefore, the 19G>C-HMOX1 and the −42 + 1444A>G-HMOX2 polymorphisms may be associated with the occurrence and progression of AMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号