首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The endosymbiotic origin of chloroplasts from cyanobacteria has long been suspected and has been confirmed in recent years by many lines of evidence. Debate now is centered on whether plastids are derived from a single endosymbiotic event or from multiple events involving several photosynthetic prokaryotes and/or eukaryotes. Phylogenetic analysis was undertaken using the inferred amino acid sequences from the genes psbA, rbcL, rbcS, tufA and atpB and a published analysis (Douglas and Turner, 1991) of nucleotide sequences of small subunit (SSU) rRNA to examine the relationships among purple bacteria, cyanobacteria and the plastids of non-green algae (including rhodophytes, chromophytes, a cryptophyte and a glaucophyte), green algae, euglenoids and land plants. Relationships within and among groups are generally consistent among all the trees; for example, prochlorophytes cluster with cyanobacteria (and not with green plastids) in each of the trees and rhodophytes are ancestral to or the sister group of the chromophyte algae. One notable exception is that Euglenophytes are associated with the green plastid lineage in psbA, rbcL, rbcS and tufA trees and with the non-green plastid lineage in SSU rRNA trees. Analysis of psbA, tufA, atpB and SSU rRNA sequences suggests that only a single bacterial endosympbiotic event occurred leading to plastids in the various algal and plant lineages. In contrast, analysis of rbcL and rbcS sequences strongly suggests that plastids are polyphyletic in origin, with plastids being derived independently from both purple bacteria and cyanobacteria. A hypothesis consistent with these discordant trees is that a single bacterial endosymbiotic event occurred leading to all plastids, followed by the lateral transfer of the rbcLS operon from a purple bacterium to a rhodophyte.  相似文献   

2.
Using the large subunit of RuBisCo (rbcL) sequences from cyanobacteria, proteobacteria, and diverse groups of algae and green plants, we evaluated the plastid relationship between haptophytes and heterokont algae. The rbcL sequences were determined from three taxa of heterokont algae (Bumilleriopsis filiformis, Pelagomonas calceolata, and Pseudopedinella elastica) and added to 25 published sequences to obtain a data set comprising 1,434 unambiguously aligned sites (approximately 98% of the total rbcL gene). Higher levels of mutational saturation in third codon positions were observed by plotting the pairwise substitutions with and without corrections for multiple substitutions at the same site for first and second codon positions only and for third positions only. In accordance with this finding phylogeny reconstructions were completed by omitting third codon positions, thus using 956 bp in weighted-parsimony and maximum-likelihood analyses. The midpoint-rooted phylogenies showed two major clusters, one containing cyanobacteria, glaucocystophytes, a phototrophic euglenoid, chlorophytes, and embryophytes (the green lineage), the other containing proteobacteria, haptophytes, red algae, a cryptophyte, and heterokont algae (the non-green lineage). In the nongreen lineage, the haptophytes formed a sister group to the clade containing heterokont algae, red algae, and the cryptophyte Guillardia theta. This branching pattern was well supported in terms of bootstrap values in weighted- parsimony and maximum-likelihood analyses (100% and 92%, respectively). However, the phylogenetic relationship among red algae, heterokonts, and a cryptophyte taxon was not especially well resolved. A four- cluster analysis was performed to further explore the statistical significance of the relationship between proteobacteria, red algae (including and excluding Guillardia theta), haptophytes, and heterokont algae. This test strongly favored the hypothesis that the heterokonts and red algae are more closely related to each other than either is to proteobacteria or haptophytes. Hence, this molecular study based on a plastid-encoded gene provides additional evidence for a distant relationship between haptophytes and the heterokont algae. It suggests an evolutionary scenario in which the ancestor of the haptophyte lineage engulfed a phototrophic eukaryote and, more recently, the heterokont lineage became phototrophic by engulfing a red alga.   相似文献   

3.
The most common form of the CO2-fixing enzyme rubisco is a form I enzyme, heretofore found universally in oxygenic phototrophs (cyanobacteria and plastids) and widely in proteobacteria. Two groups(1–4), however, now report that in dinoflagellate plastids the usual form I rubisco has been replaced by the distantly related form II enzyme, known previously only from anaerobic proteobacteria. This raises the important question of how such an oxygensensitive rubisco could function in an aerobic organism. Moreover, the dinoflagellate rubisco has unusual molecular properties: it is encoded as a polyprotein, by nuclear (rather than plastid) genes, and these genes contain noncanonical spliceosomal introns. The nuclear location and alphaproteobacterial affinity of dinoflagellate rubisco genes hint at a possible mitochondrial origin and highlight the extraordinary richness of lateral gene transfers, both between and within organisms, that have occurred during rubisco evolution.  相似文献   

4.
The evolutionary history of nitrogen fixation has been vigorously debated for almost two decades. Previous phylogenetic analyses of nitrogen fixation genes (nif) have shown support for either evolution by vertical descent or lateral transfer, depending on the specific nif gene examined and the method of analyses used. The debate centers on the placement and monophyly of the cyanobacteria, proteobacteria, and Gram-positive bacteria (actinobacteria and firmicutes). Some analyses place the cyanobacteria and actinobacteria within the proteobacteria, which suggests that the nif genes have been laterally transferred since this topology is incongruent with ribosomal phylogenies, the standard marker for comparison. Other nif analyses resolve and support the monophyly of the cyanobacteria, proteobacteria, and actinobacteria, supporting vertical descent. We have revisited these conflicting scenarios by analyzing nifD from an increased number of cyanobacteria, proteobacteria, and Gram-positive bacteria. Parsimony analyses of amino acid sequences and maximum likelihood analysis of nucleic acid sequences support the monophyly of the cyanobacteria and actinobacteria but not the proteobacteria, lending support for vertical descent. However, distance analysis of nucleic acid sequences placed the actinobacteria within the proteobacteria, supporting lateral transfer. We discuss evidence for both vertical descent and lateral transfer of nitrogen fixation.  相似文献   

5.
Estimations of phylogenies from morphological and molecular data often show contrasting results. We compared morphological and molecular phylogenies in an ancient family of woody dicots, the Betulaceae (birch family). The phylogeny of the family was estimated from parsimony analysis of morphological characters in the genera Alnus, Betula, Carpinus, Corylus, Ostrya, and Ostryopsis and from parsimony and distance-matrix analyses of DNA sequences of the chloroplast gene encoding the large subunit of ribulose-1,5-biphosphate carboxylase (rbcL) in the genera Alnus, Betula, Carpinus, Corylus, and Ostrya and in two outgroups, Quercus and Liquidambar. The topologies obtained by the different methods were completely congruent, and bootstrapping strongly supported the division of the family Betulaceae into two major clades, Betuleae (Alnus and Betula) and Coryleae (other members). Only slightly more homoplasy was present in the rbcL sequence data set than in the morphological set. Relative-rate tests indicated that the Coryleae clade had a faster rate of rbcL evolution than did the Betuleae clade. Heterogeneity of rates of morphological evolution also paralleled those for rbcL.  相似文献   

6.
The structural genes for nitrogenase, nifK, nifD, and nifH, are crucial for nitrogen fixation. Previous phylogenetic analysis of the amino acid sequence of nifH suggested that this gene had been horizontally transferred from a proteobacterium to the gram-positive/cyanobacterial clade, although the confounding effects of paralogous comparisons made interpretation of the data difficult. An additional test of nif gene horizontal transfer using nifD was made, but the NifD phylogeny lacked resolution. Here nif gene phylogeny is addressed with a phylogenetic analysis of a third and longer nif gene, nifK. As part of the study, the nifK gene of the key taxon Frankia was sequenced. Parsimony and some distance analyses of the nifK amino acid sequences provide support for vertical descent of nifK, but other distance trees provide support for the lateral transfer of the gene. Bootstrap support was found for both hypotheses in all trees; the nifK data do not definitively favor one or the other hypothesis. A parsimony analysis of NifH provides support for horizontal transfer in accord with previous reports, although bootstrap analysis also shows some support for vertical descent of the orthologous nifH genes. A wider sampling of taxa and more sophisticated methods of phylogenetic inference are needed to understand the evolution of nif genes. The nif genes may also be powerful phylogenetic tools. If nifK evolved by vertical descent, it provides strong evidence that the cyanobacteria and proteobacteria are sister groups to the exclusion of the firmicutes, whereas 16S rRNA sequences are unable to resolve the relationships of these three major eubacterial lineages.   相似文献   

7.
Type III protein secretion systems play a key role in the virulence of many pathogenic proteobacteria, but they also occur in nonpathogenic, plant-associated bacteria. Certain type III protein secretion genes (e.g., hrcC) have been found in Pseudomonas sp. strain SBW25 (and other biocontrol pseudomonads), but other type III protein secretion genes, such as the ATPase-encoding gene hrcN, have not been found. Using both colony hybridization and a PCR approach, we show here that hrcN is nevertheless present in many biocontrol fluorescent pseudomonads. The phylogeny of biocontrol Pseudomonas strains based on partial hrcN sequences was largely congruent with the phylogenies derived from analyses of rrs (encoding 16S rRNA) and, to a lesser extent, biocontrol genes, such as phlD (for 2,4-diacetylphloroglucinol production) and hcnBC (for HCN production). Most biocontrol pseudomonads clustered separately from phytopathogenic proteobacteria, including pathogenic pseudomonads, in the hrcN tree. The exception was strain KD, which clustered with phytopathogenic pseudomonads, such as Pseudomonas syringae, suggesting that hrcN was acquired from the latter species. Indeed, strain KD (unlike strain SBW25) displayed the same organization of the hrpJ operon, which contains hrcN, as P. syringae. These results indicate that the occurrence of hrcN in most biocontrol pseudomonads is not the result of recent horizontal gene transfer from phytopathogenic bacteria, although such transfer might have occurred for a minority of biocontrol strains.  相似文献   

8.
The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.  相似文献   

9.
The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the γ-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the γ-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.  相似文献   

10.
It is generally accepted that peridinin-containing dinoflagellate plastids are derived from red alga, but whether they are secondary plastids equivalent to plastids of stramenopiles, haptophytes, or cryptophytes, or are tertiary plastids derived from one of the other secondary plastids, has not yet been completely resolved. As secondary plastids, plastid gene phylogeny should mirror that of nuclear genes, while incongruence in the two phylogenies should be anticipated if their origin was as tertiary plastids. We have analyzed the phylogeny of plastid-encoded genes from Lingulodinium as well as that of nuclear-encoded dinoflagellate homologues of plastid-encoded genes conserved in all other plastid genome sequences. Our analyses place the dinoflagellate, stramenopile, haptophyte, and cryptophyte plastids firmly in the red algal lineage, and in particular, the close relationship between stramenopile plastid genes and their dinoflagellate nuclear-encoded homologues is consistent with the hypothesis that red algal-type plastids have arisen only once in evolution.  相似文献   

11.
The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the γ-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the γ-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.  相似文献   

12.
The mosaic nature of the eukaryotic nucleus   总被引:6,自引:1,他引:5  
The phylogenies for each of the protein-coding genes from the Methanococcus jannaschii genome were surveyed to determine the history of the major groups of life. For each gene, homologous sequences from other archaea, eucarya, and Gram-positive and Gram-negative bacteria were collected and aligned, and a phylogeny was reconstructed with a maximum-likelihood algorithm. The majority of significant phylogenies favor the eucarya and the archaca as sister groups. A smaller, but still substantial, portion of these significant phylogenies favor an eucarya/Gram-negative clade. These results indicate that support for the early history of life is not unequivocal. A chimeric origin of eukaryotes or an ancient, massive horizontal transfer of genes from Gram-negative bacteria to eucarya can explain many of the observed phylogenies.   相似文献   

13.
It is generally accepted that the plastids arose from a cyanobacterial ancestor, but the exact phylogenetic relationships between cyanobacteria and plastids are still controversial. Most studies based on partial 16S rRNA sequences suggested a relatively late origin of plastids within the cyanobacterial divergence. In order to clarify the exact relationship and divergence order of cyanobacteria and plastids, we studied their phylogeny on the basis of nearly complete 16S rRNA gene sequences. The data set comprised 15 strains of cyanobacteria from different morphological groups, 1 prochlorophyte, and plastids belonging to 8 species of plants and 12 species of diverse algae. This set included three cyanobacterial sequences determined in this study. This is the most comprehensive set of complete cyanobacterial and plastidial 16S rRNA sequences used so far. Phylogenetic trees were constructed using neighbor joining and maximum parsimony, and the reliability of the tree topologies was tested by different methods. Our results suggest an early origin of plastids within the cyanobacterial divergence, preceded only by the divergence of two cyanobacterial genera, Gloeobacter and Pseudanabaena.   相似文献   

14.
mutS mutators accelerate the bacterial mutation rate 100- to 1,000-fold and relax the barriers that normally restrict homeologous recombination. These mutators thus afford the opportunity for horizontal exchange of DNA between disparate strains. While much is known regarding the mutS phenotype, the evolutionary structure of the mutS(+) gene in Escherichia coli remains unclear. The physical proximity of mutS to an adjacent polymorphic region of the chromosome suggests that this gene itself may be subject to horizontal transfer and recombination events. To test this notion, a phylogenetic approach was employed that compared gene phylogeny to strain phylogeny, making it possible to identify E. coli strains in which mutS alleles have recombined. Comparison of mutS phylogeny against predicted E. coli "whole-chromosome" phylogenies (derived from multilocus enzyme electrophoresis and mdh sequences) revealed striking levels of phylogenetic discordance among mutS alleles and their respective strains. We interpret these incongruences as signatures of horizontal exchange among mutS alleles. Examination of additional sites surrounding mutS also revealed incongruous distributions compared to E. coli strain phylogeny. This suggests that other regional sequences are equally subject to horizontal transfer, supporting the hypothesis that the 61.5-min mutS-rpoS region is a recombinational hot spot within the E. coli chromosome. Furthermore, these data are consistent with a mechanism for stabilizing adaptive changes promoted by mutS mutators through rescue of defective mutS alleles with wild-type sequences.  相似文献   

15.
Summary Prochlorophytes similar toProchloron sp. andProchlorothrix hollandica have been suggested as possible progenitors of the plastids of green algae and land plants because they are prokaryotic organisms that possess chlorophyllb (chlb). We have sequenced theProchlorothrix genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco),rbcL andrbcS, for comparison with those of other taxa to assess the phylogenetic relationship of this species. Length differences in the large subunit polypeptide among all sequences compared occur primarily at the amino terminus, where numerous short gaps are present, and at the carboxy terminus, where sequences ofAlcaligenes eutrophus and non-chlorophyllb algae are several amino acids longer. Some domains in the small subunit polypeptide are conserved among all sequences analyzed, yet in other domains the sequences of different phylogenetic groups exhibit specific structural characteristics. Phylogenetic analyses ofrbcL andrbcS using Wagner parsimony analysis of deduced amino acid sequences indicate thatProchlorothrix is more closely related to cyanobacteria than to the green plastid lineage. The molecular phylogenies suggest that plastids originated by at least three separate primary endosymbiotic events, i.e., once each leading to green algae and land plants, to red algae, and toCyanophora paradoxa. TheProchlorothrix rubisco genes show a strong GC bias, with 68% of the third codon positions being G or C. Factors that may affect the GC content of different genomes are discussed.  相似文献   

16.
The gene glnA encoding glutamine synthetase I (GSI) from the archaeum Pyrococcus woesei was cloned and sequenced with the Sulfolobus solfataricus glnA gene as the probe. An operon reading frame of 448 amino acids was identified within a DNA segment of 1,528 bp. The encoded protein was 49% identical with the GSI of Methanococcus voltae and exhibited conserved regions characteristic of the GSI family. The P. woesei GSI was aligned with available homologs from other archaea (S. solfataricus, M. voltae) and with representative sequences from cyanobacteria, proteobacteria, and gram-positive bacteria. Phylogenetic trees were constructed from both the amino acid and the nucleotide sequence alignments. In accordance with the sequence similarities, archaeal and bacterial sequences did not segregate on a phylogeny. On the basis of sequence signatures, the GSI trees could be subdivided into two ensembles. One encompassed the GSI of cyanobacteria and proteobacteria, but also that of the high-G + C gram-positive bacterium Streptomyces coelicolor (all of which are regulated by the reversible adenylylation of the enzyme subunits); the other embraced the GSI of the three archaea as well as that of the low-G + C gram-positive bacteria (Clostridium acetobutilycum, Bacillus subtilis) and Thermotoga maritima (none of which are regulated by subunit adenylylation). The GSIs of the Thermotoga and the Bacillus-Clostridium lineages shared a direct common ancestor with that of P. woesei and the methanogens and were unrelated to their homologs from cyanobacteria, proteobacteria, and S. coelicolor. The possibility is presented that the GSI gene arose among the archaea and was then laterally transferred from some early methanogen to a Thermotoga-like organism. However, the relationship of the cyanobacterial-proteobacterial GSIs to the Thermotoga GSI and the GSI of low-G+C gram-positive bacteria remains unexplained.  相似文献   

17.
tRNAs are among the most ancient, highly conserved sequences on earth, but are often thought to be poor phylogenetic markers because they are short, often subject to horizontal gene transfer, and easily change specificity. Here we use an algorithm now commonly used in microbial ecology, UniFrac, to cluster 175 genomes spanning all three domains of life based on the phylogenetic relationships among their complete tRNA pools. We find that the overall pattern of similarities and differences in the tRNA pools recaptures universal phylogeny to a remarkable extent, and that the resulting tree is similar to the distribution of bootstrapped rRNA trees from the same genomes. In contrast, the trees derived from tRNAs of identical specificity or of individual isoacceptors generally produced trees of lower quality. However, some tRNA isoacceptors were very good predictors of the overall pattern of organismal evolution. These results show that UniFrac can extract meaningful biological patterns from even phylogenies with high level of statistical inaccuracy and horizontal gene transfer, and that, overall, the pattern of tRNA evolution tracks universal phylogeny and provides a background against which we can test hypotheses about the evolution of individual isoacceptors.  相似文献   

18.
Previous analysis of the gene encoding phosphoglucose isomerase (Pgi) suggests that this gene may have been transferred between a eukaryote and a bacterium. However, excluding the alternative hypothesis of ancient gene duplication has proven difficult because of both insufficient sampling of taxa and an earlier misidentification of a bacterialPgi sequence. This paper presents a phylogenetic analysis of published completePgi sequences together with analysis of new partialPgi sequences from six species of bacteria. The data identify a group of bacterialPgi sequences, including sequences fromEscherichia coli andHaemophilus influenzae, which are more closely related to eukaryoticPgi sequences than to other bacterial sequences. The topology of gene trees constructed using several different methods are all consistent with the hypothesis of lateral gene transfer andnot ancient gene duplication. Furthermore, an estimate of a molecular clock forPgi dates the divergence of theE. coli andH. influenzae sequences from the animal sequences to between 470 and 650 million years ago, well after other estimates of the divergence between eukaryotes and bacteria. This study provides the most convincing evidence to date of the transkingdom transfer of a nuclear gene.  相似文献   

19.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   

20.
Gene sequence analysis of nirS and nirK, both encoding nitrite reductases, was performed on cultivated denitrifiers to assess their incidence in different bacterial taxa and their taxonomical value. Almost half of the 227 investigated denitrifying strains did not render an nir amplicon with any of five previously described primers. NirK and nirS were found to be prevalent in Alphaproteobacteria and Betaproteobacteria, respectively, nirK was detected in the Firmicutes and Bacteroidetes and nirS and nirK with equal frequency in the Gammaproteobacteria. These observations deviated from the hitherto reported incidence of nir genes in bacterial taxa. NirS gene phylogeny was congruent with the 16S rRNA gene phylogeny on family or genus level, although some strains did group within clusters of other bacterial classes. Phylogenetic nirK gene sequence analysis was incongruent with the 16S rRNA gene phylogeny. NirK sequences were also found to be significantly more similar to nirK sequences from the same habitat than to nirK sequences retrieved from highly related taxa. This study supports the hypothesis that horizontal gene transfer events of denitrification genes have occurred and underlines that denitrification genes should not be linked with organism diversity of denitrifiers in cultivation-independent studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号