首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
For the first time, photoautotrophic cell suspension cultures of Mesembryanthemum crystallinum have been established. The cells are growing in a sugar-free culture medium in the presence of 2 % (v/v) CO2 as the sole carbon source. A 16 h light photoperiod is applied. Increase in fresh and dry weight during a 21 days growth cycle was more than 3-fold. Treatment of the cells with 200 mM NaCl from day 10 to day 21 of subculture stimulated cell culture growth, enhanced CO2 fixation and elicited an increase in the extractable activities of enzymes related to CO2 fixation (RubisCO; PEP carboxylase) and malic acid metabolism (NAD / NADP dependent malic enzyme and malic acid dehydrogenase). The cells performed osmotic adjustment to high salinity by uptake of K+, Na+, Cl? and formation of proline as well as by a reduction in cell size. Although sugar and starch content of the cells changed during light/dark transition, a CAM-related diurnal fluctuation of malic acid was not observed.  相似文献   

3.
4.
5.
Thomas JC  Bohnert HJ 《Plant physiology》1993,103(4):1299-1304
We selected indicators of four different metabolic processes (Crassulacean acid metabolism [CAM], amino acid and nitrogen mobilization metabolism, osmoprotection, and plant defense mechanisms) to study the relationship between salt-stress-mediated and plant growth regulator (PGR)-induced responses in Mesembryanthemum crystallinum (ice plant). Nacl and PGRs (cytokinin and abscisic acid [ABA]) are efficient elicitors of the well-studied Nacl stress responses: induction of the CAM form of phosphoenolpyruvate carboxylase, proline pinitol accumulation, and the increase of an osmotin-like protein. NaCl and cytokinin are more effective than ABA in stimulating accumulation of proline and an osmotin-like protein before the plants are committed to flowering. The results are consistent with a plant defense-induction model, in which environmental stress and PGRs are distinct signals whose subsequent effects lead to overlapping responses, the magnitude of which depends on plant developmental status.  相似文献   

6.
Mesembryanthemum crystallinum responds to salt stress by switching from C3 photosynthesis to Crassulacean acid metabolism (CAM). During this transition the activity of phosphoenolpyruvate carboxylase (PEPCase) increases in soluble protein extracts from leaf tissue. We monitored CAM induction in plants irrigated with 0.5 molar NaCl for 5 days during the fourth, fifth, and sixth week after germination. Our results indicate that the age of the plant influenced the response to salt stress. There was no increase in PEPCase protein or PEPCase enzyme activity when plants were irrigated with 0.5 molar NaCl during the fourth and fifth week after germination. However, PEPCase activity increased within 2 to 3 days when plants were salt stressed during the sixth week after germination. Immunoblot analysis with anti-PEPCase antibodies showed that PEPCase synthesis was induced in both expanded leaves and in newly developing axillary shoot tissue. The increase in PEPCase protein was paralleled by an increase in PEPCase mRNA as assayed by immunoprecipitation of PEPCase from the in vitro translation products of RNA from salt-stressed plants. These results demonstrate that salinity increased the level of PEPCase in leaf and shoot tissue via a stress-induced increase in the steady-state level of translatable mRNA for this enzyme.  相似文献   

7.
Mode of photosynthesis in Mesembryanthemum crystallinum changesfrom C3 to Crassulacean acid metabolism (CAM) when the plantswere stressed with high salinity. [14C]Pyruvate uptake for 30s into intact chloroplasts isolated from leaves of the CAM modeof M. crystallinum was enhanced more than 5-fold in the lightcompared with that in the dark. The stromal concentration ofpyruvate in the light reached to more than 2.5 times of themedium. In contrast, little or no pyruvate uptake occurred inchloroplasts from C3 leaves in either light or dark condition.The initial uptake rate (10 s incubation at 4°C) into theCAM chloroplasts in the light was about 3-fold higher than therate in the dark. Km and Vmax of the initial uptake in the lightwere 0.54 mM and 8.5 µmol (mg Chl)–1 h–1 respectively.These suggest that pyruvate was actively incorporated into theCAM chloroplasts against its concentration gradient across theenvelope in the light. When hydroponically grown M. crystallinumwere stressed by 350 mM NaCl, the capacity of chloroplasts forpyruvate uptake was induced in 6 d corresponding to the inductionof the activities of PEP-carboxylase and NAD(P)+-malic enzymesin response to salt stress. (Received October 12, 1995; Accepted January 19, 1996)  相似文献   

8.
9.
10.
The common ice plants (Mesembryanthemum crystallinum) at the stage of five leaf pairs were exposed to cadmium chloride solutions (1, 0.1, and 0.01 mM) under the conditions of water culture. After five days, the partition of cadmium and iron in the plant organs and in the cell structures of the apical root region were investigated. Plant adaptation to excess cadmium in the environment was assessed by an increase in the leaf and root weight, a change in peroxidase activity, and an accumulation of proline. The common ice plant accumulated cadmium mainly in the root system. At a high concentration of cadmium in the nutrient solution (1 mM), its content in the root exceeded 2 g/kg fr wt, while at a concentration of 0.01 mM, it was as low as 10 mg/kg. Dithizone staining of transverse sections of the root apical region showed that, after a 48-h-long exposure of plants to 0.1 mM cadmium chloride, cadmium was localized in the cell walls of endodermis and metaxylem. The level of cadmium in leaves varied from 0.5 to 18 mg/kg fr wt. However, there was only a weak correlation between cadmium accumulation and the extent of a biomass decrease in the leaves of various stories, when cadmium concentration in the medium (1 mM cadmium chloride) was toxic. This fact could be related to a marked efflux of endogenous iron from old leaves into the young ones and to a change in the cadmium/iron ratio in the tissues. Proline accumulation in the third leaf pair and in the roots occurred at a relatively low cadmium content (10–12 mg/kg fr wt) in these organs. Maxima of activity of all three forms of peroxidase, viz., soluble, ionically-bound, and covalently-bound peroxidases, in roots were found at a high accumulation of cadmium in these organs (45 mg/kg fr wt). These maxima exceeded 3–4-fold the activity in aging leaves containing 5 mg cadmium/kg fr wt. A decrease in peroxidase activity in leaves was accompanied by a 3.3-fold decrease in iron content; thus, it could be caused by a deficiency of available iron necessary for the enzyme functioning. It was concluded that the resistance of Mesembryanthemum crystallinum, a halophyte, to excess cadmium content in the medium was achieved by its predominant accumulation in roots, where excess cadmium is compartmentalized in the apoplast and seems to be subjected to detoxification through pectate formation. Moreover, the leaves and, particularly, the roots are characterized by a high activity of the antioxidant systems, such as guaiacol-dependent peroxidases, and an occurrence of proline at modest cadmium concentrations.  相似文献   

11.
Bloom AJ 《Plant physiology》1979,63(4):749-753
In experiments with the facultative Crassulacean acid metabolism (CAM) species, Mesembryanthemum crystallinum, only plants which received high levels of inorganic salts fixed substantial amounts of CO2 by the CAM pathway. Equivalent osmolarities of polyethylene glycol 6000 did not yield any CAM fixation. Plant water potential and turgor pressure had no detectable influence on the amount of CAM fixation. These observations rule out the possibility that the inorganic ions were acting as osmotic agents.  相似文献   

12.
13.
Mesembryanthemum crystallinum plants have been regenerated via organogenesis from hypocotyl, cotyledonary node, and leaf expiants with varying frequencies. The highest regeneration frequencies were obtained from either hypocotyls (23–34%) or cotyledonary nodes (21–41%). Leaf expiants yielded very poor regeneration frequencies (0–11%). Expiants were placed on Murashige and Skoog (MS) media supplemented with 3% sucrose, 0.8% bacto-agar and either, 10.8×10–6M NAA and 8.8×10–6M BA (MSmsh), 1×10–5M BA and 1×10–6M IAA, (MS4) or 1×10–6M BA and 1×10–6M IAA (MS5). Shoot formation frequencies were greater on MS4 and MS5 and lower on MSmsh, however, overall differences of regeneration frequency among media tested were not statistically significant. Regenerated plantlets were rooted on MS medium without growth regulators. Mature, regenerated plants were fertile and exhibited DNA content and ploidy profiles that were identical to wild type plants.Abbreviations MS Murashige and Skoog media - CAM Crassulacean acid metabolism - kbp kilobase pairs - NAA 1-naphthaleneacetic acid - BA 6-benzyladenine - IAA indole-3-acetic acid  相似文献   

14.
15.
16.
17.
18.
19.
20.
Mesembryanthemum crystallinum plants were irrigated with 400 mol m?3 NaCl to induce CAM and levels of leaf starch, and activities of starch-degrading enzymes were measured. During Crassulacean acid metabolism (CAM) induction, daily starch turnover gradually became more pronounced and was three- to four-fold greater than in leaves of C3 plants after 3 weeks. Activities of α- and β-amylase, D-enzyme and starch phosphorylase all increased 10- to 20-fold within 3 weeks of the start of salt treatment. Activities of α- and β-amylase increased more than fourfold within the first 24 h of salt treatment, which is the fastest increase in enzyme activities so far measured during the induction of CAM with salt solution in intact plants of this species. Most enzyme activities were partially chloroplastic; however, the principal starch-degrading activity was constituted by an extra-chloroplastic β-amylase. CAM starch-phosphorylase activity, which was mainly chloroplastic, exhibited a two- to three-fold diurnal change in parallel with starch content. CAM induction in M. crystallinum is clearly associated with greater starch turnover and enhanced starch-degrading enzyme activities, which as catalysts of the initial reaction to release carbon for synthesis of phosphoenolpyruvate (PEP) appear highly significant for the functioning of the CAM pathway. The diurnal rhythm of phosphorylase activity may be of particular significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号