首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Ceramide transfer protein (CERT) is responsible for the nonvesicular trafficking of ceramide from the endoplasmic reticulum (ER) to the trans Golgi network where it is converted to sphingomyelin (SM). The N-terminal pleckstrin homology (PH) domain is required for Golgi targeting of CERT by recognizing the phosphatidylinositol 4-phosphate (PtdIns(4)P) enriched in the Golgi membrane. We report a crystal structure of the CERT PH domain. This structure contains a sulfate that is hydrogen bonded with residues in the canonical ligand-binding pocket of PH domains. Our nuclear magnetic resonance (NMR) chemical shift perturbation (CSP) analyses show sulfate association with CERT PH protein resembles that of PtdIns(4)P, suggesting that the sulfate bound structure likely mimics the holo form of CERT PH protein. Comparison of the sulfate bound structure with the apo form solution structure shows structural rearrangements likely occur upon ligand binding, suggesting conformational flexibility in the ligand-binding pocket. This structural flexibility likely explains CERT PH domain’s low affinity for PtdIns(4)P, a property that is distinct from many other PH domains that bind to their phosphoinositide ligands tightly. This unique structural feature of CERT PH domain is probably tailored towards the transfer activity of CERT protein where it needs to shuttle between ER and Golgi and therefore requires short resident time on ER and Golgi membranes.  相似文献   

2.
De novo biosynthesis of sphingolipids begins in the endoplasmic reticulum (ER) and continues in the Golgi apparatus and plasma membrane. A crucial step in sphingolipid biosynthesis is the transport of ceramide by vesicular and non-vesicular mechanisms from its site of synthesis in the ER to the Golgi apparatus. The recent discovery of the ceramide transport protein CERT has revealed a novel pathway for the delivery of ceramide to the Golgi apparatus for sphingomyelin (SM) synthesis. In addition to a ceramide-binding START domain, CERT has FFAT (referring to two phenylalanines [FF] in an acidic tract) and pleckstrin homology (PH) domains that recognize the ER integral membrane protein VAMP-associated protein (VAP) and Golgi-associated PtdIns 4-phosphate, respectively. Mechanisms for vectorial transport involving dual-organellar targeting and sites of deposition of ceramide in the Golgi apparatus are proposed. Similar Golgi-ER targeting motifs are also present in the oxysterol-binding protein (OSBP), which regulates ceramide transport and SM synthesis in an oxysterol-dependent manner. Consequently, this emerges as a potential mechanism for integration of sphingolipid and cholesterol metabolism. The identification of organellar targeting motifs in other related lipid-binding/transport proteins indicate that concepts learned from the study of ceramide transport can be applied to other lipid transport processes.  相似文献   

3.
The synthesis and transport of lipids are essential events for membrane biogenesis. However, little is known about how intracellular trafficking of lipids is regulated. Ceramide is synthesized at the endoplasmic reticulum (ER) and transported by the ceramide transfer protein CERT to the Golgi apparatus, where it is converted to sphingomyelin. CERT has a phosphoinositide-binding pleckstrin homology (PH) domain for Golgi-targeting and a lipid transfer START domain for intermembrane transfer of ceramide. We here show that CERT receives multiple phosphorylations at a serine-repeat motif, a possibe site for casein kinase I, and that the phosphorylation down-regulates the ER-to-Golgi transport of ceramide. In vitro assays show that the phosphorylation induces an autoinhibitory interaction between the PH and START domains and consequently inactivates both the phosphoinositide binding and ceramide transfer activities of CERT. Loss of sphingomyelin and cholesterol from cells causes dephosphorylation of CERT to activate it. The cooperative control of functionally distinct domains of CERT is a novel molecular event to regulate the intracellular trafficking of ceramide.  相似文献   

4.
Ceramide is synthesized at the endoplasmic reticulum (ER) and transported to the Golgi apparatus by CERT for its conversion to sphingomyelin in mammalian cells. CERT has a pleck-strin homology (PH) domain for Golgi targeting and a START domain catalyzing the intermembrane transfer of ceramide. The region between the two domains contains a short peptide motif designated FFAT, which is supposed to interact with the ER-resident proteins VAP-A and VAP-B. Both VAPs were actually co-immunoprecipitated with CERT, and the CERT/VAP interaction was abolished by mutations in the FFAT motif. These mutations did not affect the Golgi targeting activity of CERT. Whereas mutations of neither the FFAT motif nor the PH domain inhibited the ceramide transfer activity of CERT in a cell-free system, they impaired the ER-to-Golgi transport of ceramide in intact and in semi-intact cells at near endogenous expression levels. By contrast, when overexpressed, both the FFAT motif and the PH domain mutants of CERT substantially supported the transport of ceramide from the ER to the site where sphingomyelin is produced. These results suggest that the Golgi-targeting PH domain and ER-interacting FFAT motif of CERT spatially restrict the random ceramide transfer activity of the START domain in cells.  相似文献   

5.
Recent discoveries of two sphingolipid transfer proteins, CERT and FAPP2, have brought the field of sphingolipid metabolism to a more dynamic stage. CERT transfers ceramide from the endoplasmic reticulum (ER) to the Golgi apparatus, a step crucial for sphingomyelin (SM) synthesis. The pleckstrin homology (PH) domain and the FFAT motif of CERT restrict the direction of transfer and destination of ceramide through binding to phosphatidylinositol 4-monophosphate (PI4P) at the Golgi and the ER resident proteins, VAPs, respectively. CERT is regulated by the phosphorylation and dephosphorylation of serine/threonine, in which protein kinase D, possibly casein kinase I, and PP2Cepsilon are involved. On the other hand, FAPP2 transfers glucosylceramide (GlcCer) to appropriate sites for the synthesis of complex glycosphingolipids. Like CERT, FAPP2 contains a PH domain, the binding of which to PI4P is required for its localization to the Golgi. These observations indicate that lipid transfer proteins, CERT and FAPP2, spatially regulate lipid metabolism on the cytosolic side.  相似文献   

6.
Cholesterol and sphingomyelin (SM) associate in raft domains and are metabolically coregulated. One aspect of coordinate regulation occurs in the Golgi apparatus where oxysterol binding protein (OSBP) mediates sterol-dependent activation of ceramide transport protein (CERT) activity and SM synthesis. Because CERT transfer activity is dependent on its phosphatidylinositol 4 phosphate [PtdIns(4)P]-specific pleckstrin homology domain, we investigated whether OSBP activation of CERT involved a Golgi-associated PtdIns 4-kinase (PI4K). Cell fractionation experiments revealed that Golgi/endosome-enriched membranes from 25-hydroxycholesterol-treated Chinese hamster ovary cells had increased activity of a sterol-sensitive PI4K that was blocked by small interfering RNA silencing of OSBP. Consistent with this sterol-requirement, OSBP silencing also reduced the cholesterol content of endosome/trans-Golgi network (TGN) fractions containing PI4KIIα. PI4KIIα, but not PI4KIIIβ, was required for oxysterol-activation of SM synthesis and recruitment of CERT to the Golgi apparatus. However, neither PI4KIIα nor PI4KIIIβ expression was required for 25-hydroxycholesterol-dependent translocation of OSBP to the Golgi apparatus. The presence of OSBP, CERT, and PI4KIIα in the TGN of oxysterol-stimulated cells suggests that OSBP couples sterol binding or transfer activity with regulation of PI4KIIα activity, leading to CERT recruitment to the TGN and increased SM synthesis.  相似文献   

7.
神经酰胺转运蛋白(ceramide transfer protein,CERT)是介导神经酰胺(ceramide)非囊泡转运的载体.它包括3个功能区域: PH、FFAT和START.PH和FFAT分别发挥高尔基体和内质网的靶向作用,羧基端的START主要用于与神经酰胺结合.CERT的转运受多种因素的调节,依赖于PKD和PP2Cε诱导的丝氨酸重复区域(SR)的磷酸化和去磷酸化,氧化应激刺激的CERT三聚体形成,以及PI4KⅢβ催化的高尔基体接头PI4P的生成等.CERT功能障碍会导致细胞易受氧化应激的损害.本文拟从CERT的结构、作用及其调节机制3方面进行综述,揭示CERT的研究进展.  相似文献   

8.
The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT has been identified as a key factor for the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains including (i) a START domain capable of catalyzing inter-membrane transfer of ceramide, (ii) a pleckstrin homology domain, which serves to target the Golgi apparatus by recognizing phosphatidylinositol 4-monophosphate, and (iii) a short peptide motif named FFAT motif which interacts with the ER-resident membrane protein VAP. CERT is preferentially distributed to the Golgi region in cells, and Golgi-targeted CERT appears to retain the activity to interact with VAP. On the basis of these results, it has been proposed that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that a particularly efficient cycle of CERT movement for trafficking of ceramide may proceed at membrane contact sites between the ER and the Golgi apparatus.  相似文献   

9.
The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT mediates the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains and motifs including i) a START domain capable of catalyzing inter-membrane transfer of ceramide, ii) a pleckstrin homology domain, which serves to target the Golgi apparatus, iii) a FFAT motif which interacts with the ER-resident membrane protein VAP, and iv) a serine-repeat motif, of which hyperphosphorylation down-regulates CERT activity. It has been suggested that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that efficient CERT-mediated trafficking of ceramide occurs at membrane contact sites between the ER and the Golgi apparatus.  相似文献   

10.
The recently identified ceramide transfer protein, CERT, is responsible for the bulk of ceramide transport from the endoplasmic reticulum (ER) to the Golgi. CERT has a C-terminal START domain for ceramide binding and an N-terminal pleck-strin homology domain that binds phosphatidylinositol 4-phosphate suggesting that phosphatidylinositol (PI) 4-kinases are involved in the regulation of CERT-mediated ceramide transport. In the present study fluorescent analogues were used to follow the ER to Golgi transport of ceramide to determine which of the four mammalian PI 4-kinases are involved in this process. Overexpression of pleckstrin homology domains that bind phosphatidylinositol 4-phosphate strongly inhibited the transport of C5-BODIPY-ceramide to the Golgi. A newly identified PI 3-kinase inhibitor, PIK93 that selectively inhibits the type III PI 4-kinase beta enzyme, and small interfering RNA-mediated down-regulation of the individual PI 4-kinase enzymes, revealed that PI 4-kinase beta has a dominant role in ceramide transport between the ER and Golgi. Accordingly, inhibition of PI 4-kinase III beta either by wortmannin or PIK93 inhibited the conversion of [3H]serine-labeled endogenous ceramide to sphingomyelin. Therefore, PI 4-kinase beta is a key enzyme in the control of spingomyelin synthesis by controlling the flow of ceramide from the ER to the Golgi compartment.  相似文献   

11.
BACKGROUND: Phosphoinositides are required for the recruitment of many proteins to both the plasma membrane and the endosome; however, their role in protein targeting to other organelles is less clear. The pleckstrin homology (PH) domains of oxysterol binding protein (OSBP) and its relatives have been shown to bind to the Golgi apparatus in yeast and mammalian cells. Previous in vitro binding studies identified phosphatidylinositol (PtdIns) (4)P and PtdIns(4,5)P(2) as candidate ligands, but it is not known which is recognized in vivo and whether phosphoinositide specificity can account for Golgi-specific targeting. RESULTS: We have examined the distribution of GFP fusions to the PH domain of OSBP and to related PH domains in yeast strains carrying mutations in individual phosphoinositide kinases. We find that Golgi targeting requires the activity of the PtdIns 4-kinase Pik1p but not phosphorylation of PtdIns at the 3 or 5 positions and that a PH domain specific for PtdIns(4,5)P(2) is targeted exclusively to the plasma membrane. However, a mutant version of the OSBP PH domain that does not bind phosphoinositides in vitro still shows some targeting in vivo. This targeting is independent of Pik1p but dependent on the Golgi GTPase Arf1p. CONCLUSIONS: Phosphorylation of PtdIns at the 4 position but not conversion to PtdIns(4,5)P(2) contributes to recruitment of PH domains to the Golgi apparatus. However, potential phosphoinositide ligands for these PH domains are not restricted to the Golgi, and the OSBP PH domain also recognizes a second determinant that is ARF dependent, indicating that organelle specificity reflects a combinatorial interaction.  相似文献   

12.
Protein kinase D (PKD) has been identified as a crucial regulator of secretory transport at the trans-Golgi network (TGN). Recruitment and activation of PKD at the TGN is mediated by the lipid diacylglycerol, a pool of which is generated by sphingomyelin synthase from ceramide and phosphatidylcholine. The nonvesicular transfer of ceramide from the endoplasmic reticulum to the Golgi complex is mediated by the lipid transfer protein CERT (ceramide transport). In this study, we identify CERT as a novel in vivo PKD substrate. Phosphorylation on serine 132 by PKD decreases the affinity of CERT toward its lipid target phosphatidylinositol 4-phosphate at Golgi membranes and reduces ceramide transfer activity, identifying PKD as a regulator of lipid homeostasis. We also show that CERT, in turn, is critical for PKD activation and PKD-dependent protein cargo transport to the plasma membrane. Thus, the interdependence of PKD and CERT is key to the maintenance of Golgi membrane integrity and secretory transport.  相似文献   

13.
Sphingomyelin (SM) and cholesterol are coregulated metabolically and associate physically in membrane microdomains involved in cargo sorting and signaling. One mechanism for regulation of this metabolic interface involves oxysterol binding protein (OSBP) via high-affinity binding to oxysterol regulators of cholesterol homeostasis and activation of SM synthesis at the Golgi apparatus. Here, we show that OSBP regulation of SM synthesis involves the endoplasmic reticulum (ER)-to-Golgi ceramide transport protein (CERT). RNA interference (RNAi) experiments in Chinese hamster ovary (CHO)-K1 cells revealed that OSBP and vesicle-associated membrane protein-associated protein (VAP) were required for stimulation of CERT-dependent ceramide transport and SM synthesis by 25-hydroxycholesterol and cholesterol depletion in response to cyclodextrin. Additional RNAi experiments in human embryonic kidney 293 cells supported OSBP involvement in oxysterol-activated SM synthesis and also revealed a role for OSBP in basal SM synthesis. Activation of ER-to-Golgi ceramide transport in CHO-K1 cells required interaction of OSBP with the ER and Golgi apparatus, OSBP-dependent Golgi translocation of CERT, and enhanced CERT-VAP interaction. Regulation of CERT by OSBP, sterols, and VAP reveals a novel mechanism for integrating sterol regulatory signals with ceramide transport and SM synthesis in the Golgi apparatus.  相似文献   

14.
The mammalian Golgi apparatus is composed of multiple stacks of cisternal membranes organized laterally into a ribbon-like structure, with close apposition of trans Golgi regions with specialized endoplasmic reticulum (ER) membranes. These contacts may be the site of ceramide transfer from its site of synthesis (ER) to sphingomyelin (SM) synthase through ceramide transfer protein (CERT). CERT extracts ceramide from the ER and transfers it to Golgi membranes but the role of overall Golgi structure in this process is unknown. We show here that localization of CERT in puncta around the Golgi complex requires both ER- and Golgi-binding domains of CERT. To examine how Golgi structure contributes to SM synthesis, we treated cells with Golgi-perturbing drugs and measured newly synthesized SM. Interestingly, disruption of Golgi morphology with nocodazole, but not ilimaquinone inhibited SM synthesis. Decreased localization of CERT with a Golgi marker correlated with decreased SM synthesis. We propose that some Golgi structural perturbations interfere with efficient ceramide trafficking through CERT, and thus SM synthesis. The organization of the mammalian Golgi ribbon together with CERT may promote specific ER-Golgi interactions for efficient delivery of ceramide for SM synthesis.  相似文献   

15.
Protein phosphatase 2Cepsilon (PP2Cepsilon), a mammalian PP2C family member, is expressed in various tissues and is implicated in the negative regulation of stress-activated protein kinase pathways. We show that PP2Cepsilon is an endoplasmic reticulum (ER) transmembrane protein with a transmembrane domain at the amino terminus and the catalytic domain facing the cytoplasm. Yeast two-hybrid screening of a human brain library using PP2Cepsilon as bait resulted in the isolation of a cDNA that encoded vesicle-associated membrane protein-associated protein A (VAPA). VAPA is an ER resident integral membrane protein involved in recruiting lipid-binding proteins such as the ceramide transport protein CERT to the ER membrane. Expression of PP2Cepsilon resulted in dephosphorylation of CERT in a VAPA expression-dependent manner, which was accompanied by redistribution of CERT from the cytoplasm to the Golgi apparatus. The expression of PP2Cepsilon also enhanced the association between CERT and VAPA. In addition, knockdown of PP2Cepsilon expression by short interference RNA attenuated the interaction between CERT and VAPA and the sphingomyelin synthesis. These results suggest that CERT is a physiological substrate of PP2Cepsilon and that dephosphorylation of CERT by PP2Cepsilon may play an important role in the regulation of ceramide trafficking from the ER to the Golgi apparatus.  相似文献   

16.
Non-vesicular transport of ceramide from endoplasmic reticulum to Golgi membranes is essential for cellular lipid homeostasis. Protein kinase D (PKD) is a serine-threonine kinase that controls vesicle fission at Golgi membranes. Here we highlight the intimate connections between non-vesicular and vesicular transport at the level of the Golgi complex, and suggest that PKD and its substrate CERT, the ceramide transfer protein, play central roles in coordinating these processes by fine-tuning the local membrane lipid composition to maintain Golgi secretory function. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

17.
Non-vesicular transport of ceramide from endoplasmic reticulum to Golgi membranes is essential for cellular lipid homeostasis. Protein kinase D (PKD) is a serine–threonine kinase that controls vesicle fission at Golgi membranes. Here we highlight the intimate connections between non-vesicular and vesicular transport at the level of the Golgi complex, and suggest that PKD and its substrate CERT, the ceramide transfer protein, play central roles in coordinating these processes by fine-tuning the local membrane lipid composition to maintain Golgi secretory function. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

18.
Pleckstrin is the major target of protein kinase C (PKC) in blood platelets. Its phosphorylation triggers responses that ultimately lead to platelet activation and blood clot formation. Pleckstrin consists of three domains: a pleckstrin homology (PH) domain at both termini and a central DEP (Dishevelled, Egl-1, Pleckstrin) domain. Here, we report the solution nuclear magnetic resonance (NMR) structure of the C-terminal PH domain (C-PH) of human pleckstrin-1. We show that this PH domain binds phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) with high specificity in protein lipid overlay assays. Using NMR titration experiments and mutational analysis, residues involved in binding to PtdIns(3,4)P2 are identified. The binding site is formed by a patch of basic residues from the beta1 and beta2 strands and the beta1-beta2 loop. Since PtdIns(3,4)P2 is an important signaling molecule in platelets, our data suggest a C-PH dependent regulation of pleckstrin function in response to PtdIns(3,4)P2.  相似文献   

19.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER–Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P–dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN.  相似文献   

20.
The cytosolic protein CERT transfers ceramide from the endoplasmic reticulum to the Golgi apparatus where ceramide is converted to SM. The C-terminal START (steroidogenic acute regulatory protein-related lipid transfer) domain of CERT binds one ceramide molecule in its central amphiphilic cavity. (1R,3R)-N-(3-Hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamide (HPA), a synthesized analogue of ceramide, inhibits ceramide transfer by CERT. Here we report crystal structures of the CERT START domain in complex with HPAs of varying acyl chain lengths. In these structures, one HPA molecule is buried in the amphiphilic cavity where the amide and hydroxyl groups of HPA form a hydrogen-bond network with specific amino acid residues. The Ω1 loop, which has been suggested to function as a gate of the cavity, adopts a different conformation when bound to HPA than when bound to ceramide. In the Ω1 loop region, Trp473 shows the largest difference between these two structures. This residue exists inside of the cavity in HPA-bound structures, while it is exposed to the outside of the protein in the apo-form and ceramide-bound complex structures. Surface plasmon resonance experiments confirmed that Trp473 is important for interaction with membranes. These results provide insights into not only the molecular mechanism of inhibition by HPAs but also possible mechanisms by which CERT interacts with ceramide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号