首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to extracellular stimuli, mitogen-activated protein kinase (MAPK, also known as ERK), which localizes to the cytoplasm in quiescent cells, translocates to the nucleus and then relocalizes to the cytoplasm again. The relocalization of nuclear MAPK to the cytoplasm was not inhibited by cycloheximide, confirming that the relocalization is achieved by nuclear export, but not synthesis, of MAPK. The nuclear export of MAPK was inhibited by leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent transport. We have then shown that MAP kinase kinase (MAPKK, also known as MEK), which mostly localizes to the cytoplasm because of its having NES, is able to shuttle between the cytoplasm and the nucleus constantly. MAPK, when injected into the nucleus, was rapidly exported from the nucleus by coinjected wild-type MAPKK, but not by the NES-disrupted MAPKK. In addition, injection of the fragment corresponding to the MAPK-binding site of MAPKK into the nucleus, which would disrupt the binding of MAPK to MAPKK in the nucleus, significantly inhibited the nuclear export of endogenous MAPK. Taken together, these results suggest that the relocalization of nuclear MAPK to the cytoplasm involves a MAPKK-dependent, active transport mechanism.  相似文献   

2.
p21(Cip1/WAF1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. The cell-cycle inhibitory activity of p21(Cip1/WAF1) is correlated with its nuclear localization. Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937 cells undergoing monocytic differentiation by in vitro treatment with vitamin D3 or ectopic expression of p21(Cip1/WAF1), and analyze the biological consequences of this cytoplasmic expression. U937 cells which exhibit nuclear p21(Cip1/WAF1) demonstrated G1 cell-cycle arrest and subsequently differentiated into monocytes. The latter event was associated with a cytoplasmic expression of nuclear p21(Cip1/WAF1), concomitantly with a resistance to various apoptogenic stimuli. Biochemical analysis showed that cytoplasmic p21(Cip1/WAF1) forms a complex with the apoptosis signal-regulating kinase 1 (ASK1) and inhibits stress-activated MAP kinase cascade. Expression of a deletion mutant of p21(Cip1/WAF1) lacking the nuclear localization signal (DeltaNLS-p21) did not induce cell cycle arrest nor monocytic differentiation, but led to an apoptosis-resistant phenotype, mediated by binding to and inhibition of the stress-activated ASK1 activity. Thus, cytoplasmic p21(Cip1/WAF1) itself acted as an inhibitor of apoptosis. Our findings highlight the different functional roles of p21(Cip1/WAF1), which are determined by its intracellular distribution and are dependent on the stage of differentiation.  相似文献   

3.
4.
The activity of the cyclin-dependent kinase inhibitor p27 is controlled by its concentration and subcellular localization. However, the mechanisms that regulate its intracellular transport are poorly understood. Here we show that p27 is phosphorylated on Ser10 in vivo and that mutation of Ser10 to Ala inhibits p27 cytoplasmic relocalization in response to mitogenic stimulation. In contrast, a fraction of wild-type p27 and a p27(S10D)-phospho-mimetic mutant translocates to the cytoplasm in the presence of mitogens. G1 nuclear export of p27 and its Ser10 phosphorylation precede cyclin-dependent kinase 2 (Cdk2) activation and degradation of the bulk of p27. Interestingly, leptomycin B-mediated nuclear accumulation accelerates the turnover of endogenous p27; the p27(S10A) mutant, which is trapped in the nucleus, has a shorter half-life than wild-type p27 and the p27(S10D) mutant. In summary, p27 is efficiently degraded in the nucleus and phosphorylation of Ser10 is necessary for the nuclear to cytoplasmic redistribution of a fraction of p27 in response to mitogenic stimulation. This cytoplasmic localization may serve to decrease the abundance of p27 in the nucleus below a certain threshold required for activation of cyclin-Cdk2 complexes.  相似文献   

5.
Li HC  Huang EY  Su PY  Wu SY  Yang CC  Lin YS  Chang WC  Shih C 《PLoS pathogens》2010,6(10):e1001162
It remains unclear what determines the subcellular localization of hepatitis B virus (HBV) core protein (HBc) and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD) of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS), while ARD-II and ARD-IV behave like two independent nuclear export signals (NES). This conclusion is based on five independent lines of experimental evidence: i) Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii) These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT). iii) By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv) We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1), which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v) HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel TAP-dependent NES.  相似文献   

6.
The metabolic regulator AMP-activated protein kinase (AMPK) maintains cellular homeostasis through regulation of proteins involved in energy-producing and -consuming pathways. Although AMPK phosphorylation targets include cytoplasmic and nuclear proteins, the precise mechanisms that regulate AMPK localization, and thus its access to these substrates, are unclear. We identify highly conserved carboxy-terminal hydrophobic amino acids that function as a leptomycin B–sensitive, CRM1-dependent nuclear export sequence (NES) in the AMPK catalytic subunit (AMPKα). When this sequence is modified AMPKα shows increased nuclear localization via a Ran-dependent import pathway. Cytoplasmic localization can be restored by substituting well-defined snurportin-1 or protein kinase A inhibitor (PKIA) CRM1-binding NESs into AMPKα. We demonstrate a functional requirement in vivo for the AMPKα carboxy-terminal NES, as transgenic Drosophila expressing AMPKα lacking this NES fail to rescue lethality of AMPKα null mutant flies and show decreased activation loop phosphorylation under heat-shock stress. Sequestered to the nucleus, this truncated protein shows highly reduced phosphorylation at the key Thr172 activation residue, suggesting that AMPK activation predominantly occurs in the cytoplasm under unstressed conditions. Thus, modulation of CRM1-mediated export of AMPKα via its C-terminal NES provides an additional mechanism for cells to use in the regulation of AMPK activity and localization.  相似文献   

7.
The proline-rich Akt substrate of 40-kDa (PRAS40) has been linked to the regulation of the activity of the mammalian target of rapamycin complex 1 as well as insulin action. Despite these cytosolic functions, PRAS40 was originally identified as nuclear phosphoprotein in Hela cells. This study aimed to detail mechanisms and consequences of the nucleocytosolic trafficking of PRAS40. Sequence analysis identified a potential leucine-rich nuclear export signal (NES) within PRAS40. Incubation of A14 fibroblasts overexpressing human PRAS40 (hPRAS40) resulted in nuclear accumulation of the protein. Furthermore, mutation of the NES mimicked the effects of leptomycin B, a specific inhibitor of nuclear export, on the subcellular localization of hPRAS40. Finally, A14 cells expressing the NES-mutant showed impaired activation of components of the Akt-pathway as well as of the mTORC1 substrate p70 S6 kinase after insulin stimulation. This impaired insulin signaling could be ascribed to reduced protein levels of insulin receptor substrate 1 in cells expressing mutant NES. In conclusion, PRAS40 contains a functional nuclear export signal. Furthermore, enforced nuclear accumulation of PRAS40 impairs insulin action, thereby substantiating the function of this protein in the regulation of insulin sensitivity.  相似文献   

8.
Nuclear Akt1 expression and Akt activation are common in cancer invasion. However, the mechanisms for this association and its causal role in invasion are uncertain. In an effort to identify potential mechanisms for regulating Akt subcellular localization, we analyzed the Akt gene sequences and identified a highly conserved leucine-rich potential nuclear export sequence (NES). Initial experiments demonstrated that leptomycin B induced nuclear Akt1 localization. Transient expression experiments demonstrated that, in comparison to wild-type Akt1, NES-mutated (AKT/NES) Akt1 has reduced interactions with CRM-1 and persistent nuclear localization. Subsequent stable transfection experiments in Akt1-/- fibroblasts confirmed that expression of AKT/NES resulted in persistent nuclear localization and activation1. Finally, stable expression of AKT/NES in Akt1-/- fibroblasts was sufficient to enhance cell migration in vitro. Thus, Akt1 contains a functional NES and mutation of the NES results in nuclear-predominant Akt1 activation that is sufficient to induce migration.  相似文献   

9.
10.
Properties and mechanisms of PCNA (proliferating cell nuclear antigen) functions have been investigated for a long time and are studied in great detail. As follows from its name, most known PCNA functions (DNA replication, DNA repair, DNA recombination and others) are connected with cell proliferation and localization of this protein in nuclei. In addition, there is good reason to believe that PCNA also performs some functions in the cytoplasm. However, the possible role and mechanisms of PCNA action in the cytoplasm require careful study and clarification. Interestingly, such cells as neutrophils differ in that they are non-dividing on one hand and on the other hand contain a rather large amount of PCNA, which is localized only in the cytoplasm, that is, they are an ideal model for the study of cytoplasmic PCNA. Using cross-linkages with formaldehyde, we showed that this cytoplasmic PCNA is cross-linked in a similar way, that is, organized in the same way as the nuclear PCNA that is present in the proliferating cells. Previously, we showed that PCNA in such cells is organized into a dynamic complex of double trimer on the basis of the back-toback principle. Apparently, such organization of this hub-protein allows it to better coordinate the processes taking place in the cytoplasm as well.  相似文献   

11.
Resistance to anticancer drugs that target DNA topoisomerase II (topo II) isoforms alpha and/or beta is associated with decreased nuclear and increased cytoplasmic topo IIalpha. Earlier studies have confirmed that functional nuclear localization and export signal sequences (NLS and NES) are present in both isoforms. In this study, we show that topo II alpha and beta bind and are imported into the nucleus by importin alpha1, alpha3, and alpha5 in conjunction with importin beta. Topo IIalpha also binds exportin/CRM1 in vitro. However, wild-type topo IIalpha has only been observed in the cytoplasm of cells that are entering plateau phase growth. This suggests that topo IIalpha may shuttle between the nucleus and the cytoplasm with the equilibrium towards the nucleus in proliferating cells but towards the cytoplasm in plateau phase cells. The CRM1 inhibitor Leptomycin B increases the nuclear localization of GFP-tagged topo IIalpha with a mutant NLS, suggesting that its export is being inhibited. However, homokaryon shuttling experiments indicate that fluorescence-tagged wild-type topo II alpha and beta proteins do not shuttle in proliferating Cos-1 or HeLa cells. We conclude that topo II alpha and beta nuclear export is inhibited in proliferating cells so that these proteins do not shuttle.  相似文献   

12.
13.
14.
MAP kinase phosphatase (MKP)-3 is a cytoplasmic dual specificity protein phosphatase that specifically binds to and inactivates the ERK1/2 MAP kinases in mammalian cells. However, the molecular basis of the cytoplasmic localization of MKP-3 or its physiological significance is unknown. We have used MKP-3-green fluorescent protein fusions in conjunction with leptomycin B to show that the cytoplasmic localization of MKP-3 is mediated by a chromosome region maintenance-1 (CRM1)-dependent nuclear export pathway. Furthermore, the nuclear translocation of MKP-3 seen in the presence of leptomycin B is mediated by an active process, indicating that MKP-3 shuttles between the nucleus and cytoplasm. The amino-terminal noncatalytic domain of MKP-3 is both necessary and sufficient for nuclear export of the phosphatase and contains a single functional leucine-rich nuclear export signal (NES). Even though this domain of the protein also mediates the binding of MKP-3 to MAP kinase, we show that mutations of the kinase interaction motif which abrogate ERK2 binding do not affect MKP-3 localization. Conversely, mutation of the NES does not affect either the binding or phosphatase activity of MKP-3 toward ERK2, indicating that the kinase interaction motif and NES function independently. Finally, we demonstrate that the ability of MKP-3 to cause the cytoplasmic retention of ERK2 requires both a functional kinase interaction motif and NES. We conclude that in addition to its established function in the regulated dephosphorylation and inactivation of MAP kinase, MKP-3 may also play a role in determining the subcellular localization of its substrate. Our results reinforce the idea that regulatory proteins such as MKP-3 may play a key role in the spatio-temporal regulation of MAP kinase activity.  相似文献   

15.
16.
INI1/hSNF5 is an HIV-1 integrase (IN) binding protein specifically incorporated into virions. A truncated mutant of INI1 (S6, amino acids 183 to 294) harboring the minimal IN binding Rpt1 domain potently inhibits HIV-1 particle production in a transdominant manner. The inhibition requires interaction of S6 with IN within Gag-Pol. While INI1 is a nuclear protein and harbors a masked nuclear export signal (NES), the transdominant negative mutant S6 is cytoplasmic, due to the unmasking of NES. Here, we examined the effects of subcellular localization of S6 on HIV-1 inhibition and further investigated the stages of assembly that are affected. We found that targeting a nuclear localization signal-containing S6 variant [NLS-S6(Rpt1)] to the nucleoplasm (but not to the nucleolus) resulted in complete reversal of inhibition of particle production. Electron microscopy indicated that although no electron-dense particles at any stage of assembly were seen in cells expressing S6, virions were produced in cells expressing the rescue mutant NLS-S6(Rpt1) to wild-type levels. Immunofluorescence analysis revealed that p24 exhibited a diffuse pattern of localization within the cytoplasm in cells expressing S6 in contrast to accumulation along the membrane in controls. Pulse-chase analysis indicated that in S6-expressing cells, although Gag(Pr55(gag)) protein translation was unaffected, processing and release of p24 were defective. Together, these results indicate that expression of S6 in the cytoplasm interferes with trafficking of Gag-Pol/Gag to the membrane and causes a defective processing leading to inhibition of assembly at an early stage prior to particle formation and budding.  相似文献   

17.
18.
Dok1 is believed to be a mainly cytoplasmic adaptor protein which down-regulates mitogen-activated protein kinase activation, inhibits cell proliferation and transformation, and promotes cell spreading and cell migration. Here we show that Dok1 shuttles between the nucleus and cytoplasm. Treatment of cells with leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent receptor CRM1, causes nuclear accumulation of Dok1. We have identified a functional NES (348LLKAKLTDPKED359) that plays a major role in the cytoplasmic localization of Dok1. Src-induced tyrosine phosphorylation prevented the LMB-mediated nuclear accumulation of Dok1. Dok1 cytoplasmic localization is also dependent on IKKbeta. Serum starvation or maintaining cells in suspension favor Dok1 nuclear localization, while serum stimulation, exposure to growth factor, or cell adhesion to a substrate induce cytoplasmic localization. Functionally, nuclear NES-mutant Dok1 had impaired ability to inhibit cell proliferation and to promote cell spreading and cell motility. Taken together, our results provide the first evidence that Dok1 transits through the nucleus and is actively exported into the cytoplasm by the CRM1 nuclear export system. Nuclear export modulated by external stimuli and phosphorylation may be a mechanism by which Dok1 is maintained in the cytoplasm and membrane, thus regulating its signaling functions.  相似文献   

19.
The DNA replication machinery stalls at damaged sites on templates, but normally restarts by switching to a specialized DNA polymerase(s) that carries out translesion DNA synthesis (TLS). In human cells, DNA polymerase eta (poleta) accumulates at stalling sites as nuclear foci, and is involved in ultraviolet (UV)-induced TLS. Here we show that poleta does not form nuclear foci in RAD18(-/-) cells after UV irradiation. Both Rad18 and Rad6 are required for poleta focus formation. In wild-type cells, UV irradiation induces relocalization of Rad18 in the nucleus, thereby stimulating colocalization with proliferating cell nuclear antigen (PCNA), and Rad18/Rad6-dependent PCNA monoubiquitination. Purified Rad18 and Rad6B monoubiquitinate PCNA in vitro. Rad18 associates with poleta constitutively through domains on their C-terminal regions, and this complex accumulates at the foci after UV irradiation. Furthermore, poleta interacts preferentially with monoubiquitinated PCNA, but poldelta does not. These results suggest that Rad18 is crucial for recruitment of poleta to the damaged site through protein-protein interaction and PCNA monoubiquitination.  相似文献   

20.
SUMOylation is a form of post-translational modification shown to control nuclear transport. Krüppel-like factor 5 (KLF5) is an important mediator of cell proliferation and is primarily localized to the nucleus. Here we show that mouse KLF5 is SUMOylated at lysine residues 151 and 202. Mutation of these two lysines or two conserved nearby glutamates results in the loss of SUMOylation and increased cytoplasmic distribution of KLF5, suggesting that SUMOylation enhances nuclear localization of KLF5. Lysine 151 is adjacent to a nuclear export signal (NES) that resembles a consensus NES. The NES in KLF5 directs a fused green fluorescence protein to the cytoplasm, binds the nuclear export receptor CRM1, and is inhibited by leptomycin and site-directed mutagenesis. SUMOylation facilitates nuclear localization of KLF5 by inhibiting this NES activity, and enhances the ability of KLF5 to stimulate anchorage-independent growth of HCT116 colon cancer cells. A survey of proteins whose nuclear localization is regulated by SUMOylation reveals that SUMOylation sites are frequently located in close proximity to NESs. A relatively common mechanism for SUMOylation to regulate nucleocytoplasmic transport may lie in the interplay between neighboring NES and SUMOylation motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号