首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the calculation of significant changes in induced band power (IBP) is presented. In contrast to traditional measures of event-related band power (ERBP) which are composed of evoked and not evoked EEG components, the proposed measure for IBP is deprived from phase locked (or evoked) EEG activity. It is assumed that changes in IBP reflect the modulation of brain oscillations that are largely independent from ERPs. The results of a visual oddball task show that significant changes in IBP can be observed in response to the presentation of a warning signal (preceding a target or nontarget) and the imperative stimulus (i.e. a target or nontarget) in the α, θ and δ band. Only a few significant changes in IBP were obtained for the warning signal in the θ band although highly significant changes in ERBP were found. Our findings document that changes in IBP may be considered a phenomenon that is largely independent from the occurrence of ERPs. They underline the significance of oscillatory processes and suggest that induced rhythms are modulated by stimuli and/or events in a not phase locked way.  相似文献   

2.
Spatiotemporal dynamics of event-related potentials (ERP) evoked by non-target stimuli in a visual oddball experiment and the presence of coherent oscillations in beta 2 frequency band of decomposed EEG records from peristimulus period were investigated by means of intracranial electrodes in humans. Twenty-one patients with medically intractable epilepsy participated in the study. The EEG signal was recorded using platinum electrodes implanted in several cortical and subcortical sites. Averaged 2 s EEG records were analyzed. Task-specific EEG changes were found in each patient, ERPs were derived from 92 electrodes used (96 % of possible cases). In the majority of analysed cases, ERPs were composed of several distinct components, and their duration was mostly longer than 1 s. The mean onset of the first ERP component was 158+/-132 ms after the stimulus (median 112 ms, minimum value 42 ms, maximum value 755 ms), and large variability of these onset times was found in all the investigated structures. Possible coherence between neural activities of remote brain sites was investigated by calculating running correlations between pairs of decomposed EEG records (alpha, beta 1, beta 2 frequency bands were used, total number of correlated pairs was 662 in each frequency band). The record pairs exhibiting highly correlated time segments represented 23 % of all the investigated pairs in alpha band, 7 % in beta 1 band, and 59 % in beta 2 band. In investigated 2 s record windows, such segments were distributed evenly, i.e. they were also found before the stimulus onset. In conclusion, the results have implicated the idea that a lot of recorded ERPs was more or less by-products of chance in spreading a signal within the neuronal network, and that their functional relevance was somewhat linked with the phenomenon of activity synchronization.  相似文献   

3.
Scalp-recorded electroencephalographic (EEG) signals produced by partial synchronization of cortical field activity mix locally synchronous electrical activities of many cortical areas. Analysis of event-related EEG signals typically assumes that poststimulus potentials emerge out of a flat baseline. Signals associated with a particular type of cognitive event are then assessed by averaging data from each scalp channel across trials, producing averaged event-related potentials (ERPs). ERP averaging, however, filters out much of the information about cortical dynamics available in the unaveraged data trials. Here, we studied the dynamics of cortical electrical activity while subjects detected and manually responded to visual targets, viewing signals retained in ERP averages not as responses of an otherwise silent system but as resulting from event-related alterations in ongoing EEG processes. We applied infomax independent component analysis to parse the dynamics of the unaveraged 31-channel EEG signals into maximally independent processes, then clustered the resulting processes across subjects by similarities in their scalp maps and activity power spectra, identifying nine classes of EEG processes with distinct spatial distributions and event-related dynamics. Coupled two-cycle postmotor theta bursts followed button presses in frontal midline and somatomotor clusters, while the broad postmotor "P300" positivity summed distinct contributions from several classes of frontal, parietal, and occipital processes. The observed event-related changes in local field activities, within and between cortical areas, may serve to modulate the strength of spike-based communication between cortical areas to update attention, expectancy, memory, and motor preparation during and after target recognition and speeded responding.  相似文献   

4.
Gamma-aminobutyric acid (GABA)A-receptors play a crucial role in the generation of electroencephalogram (EEG) oscillations and evoked potentials (ERPs). The present association study was designed to test whether EEG and ERPs are modulated by genetic variations of the human GABAA beta2 (GABRB2) and gamma2 (GABRG2) genes on chromosome 5q33. The genotypes of two nucleotide substitution polymorphisms of the GABRB2 and GABRG2 genes were assessed in 95 psychiatrically healthy subjects of German descent. Neurophysiological phenotyping was performed with four factorized EEG/ERP parameters: EEG activation, anterior and posterior EEG synchronization, and event-related activity (N100/ P200-complex). No genotypic association was found for the GABRB2 nucleotide exchange polymorphism with any electrophysiological parameter. A significant association was found between the genotype of the intronic GABRG2 G-->A nucleotide exchange and the event-related N100/P200 (ANOVA: F=3.81; df=2; P=0.026). A comparison of homozygous subjects carrying either the G/G or A/A genotype of the GABRG2 polymorphism consistently revealed an even stronger difference in the effect-size (ANOVA: F=11.13; df=1; P=0.002). Post hoc analysis of this association with current density analysis in three-dimensional neuroanatomic Talairach space-time showed a reduction in the event-related signal power after 120 ms in the right dorsolateral prefrontal cortex. Taking into account the risk of false-positive association findings attributable to multiple testing, our results encourage further replication studies to examine the phenotype-genotype relationship of GABRG2 gene variants and event-related prefrontal activity.  相似文献   

5.
The first attempts to introduce computerized power spectrum analysis of the electroencephalogram (EEG) as an intraoperative anaesthesia monitoring device started approximately 30 years ago. Since that time, the effects of various anaesthetic agents, sedative and analgesic drugs on the EEG pattern have been addressed in numerous studies in human patients and different animal species. These studies revealed dose-dependent changes in the EEG power spectrum for many intravenous and volatile anaesthetics. Moreover, EEG responses evoked by surgical stimuli during relative light levels of surgical anaesthesia have been classified as 'arousal' and 'paradoxical arousal' reaction, previously referred to as 'desynchronization' and 'synchronization', respectively. Contrasting reports on the correlation between quantitative EEG (QEEG) variables derived from power spectrum analysis (i.e. spectral edge frequency, median frequency) and simultaneously recorded clinical signs such as movement and haemodynamic responses, however, limited the routine use of intraoperative EEG monitoring. In addition, the appearance of EEG burst suppression pattern and isoelectricity at clinically relevant concentrations/doses of newer general anaesthetics (i.e. isoflurane, sevoflurane, propofol) may have weakened the dose-related EEG changes previously reported. Despite these findings, the EEG power spectrum analysis may still provide valuable information during intraoperative monitoring in the individual subject. The information obtained from EEG power spectrum analysis may be further supplemented by newer EEG indices such as bispectral index and approximate entropy or other neurophysiological monitors including auditory evoked potentials or somatosensory evoked potentials.  相似文献   

6.
In a single-case study, the effects of very long-lasting physical exercise, namely a 24-h-long ultramarathon, on the human electroencephalogram (EEG) were evaluated. While only effects of relatively short exercise have been reported earlier, we focused on the changes induced by these long-lasting physical requires. EEG was recorded repeatedly using an auditory oddball paradigm, and event-related potentials (ERPs), as well as changes in the current oscillatory brain activity (in particular, event-related desynchronization, ERD), were repeatedly monitored. While an increase in several attention-related ERP parameters was reported for shorter exercises, the results of our study show that cognitive performance-related EEG phenomena slowly decreased throughout the race. The P300 amplitude decreased, and the P300 latency increased with ongoing exercise duration. In addition, the difference between standard and target tones at N200b, as well as the difference in the lower alpha ERD, decreased with time, indicating a reduced automatic stimulus evaluation. Neirofiziologiya/Neurophysiology, Vol. 39, No. 1, pp. 81–87, January–February, 2007.  相似文献   

7.
Cognitive impairment (CI), often examined with neuropsychological tests such as the Paced Auditory Serial Addition Test (PASAT), affects approximately 65% of multiple sclerosis (MS) patients. The P3b event-related potential (ERP), evoked when an infrequent target stimulus is presented, indexes cognitive function and is typically compared across subjects'' scalp electroencephalography (EEG) data. However, the clustering of independent components (ICs) is superior to scalp-based EEG methods because it can accommodate the spatiotemporal overlap inherent in scalp EEG data. Event-related spectral perturbations (ERSPs; event-related mean power spectral changes) and inter-trial coherence (ITCs; event-related consistency of spectral phase) reveal a more comprehensive overview of EEG activity. Ninety-five subjects (56 MS patients, 39 controls) completed visual and auditory two-stimulus P3b event-related potential tasks and the PASAT. MS patients were also divided into CI and non-CI groups (n = 18 in each) based on PASAT scores. Data were recorded from 128-scalp EEG channels and 4 IC clusters in the visual, and 5 IC clusters in the auditory, modality were identified. In general, MS patients had significantly reduced ERSP theta power versus controls, and a similar pattern was observed for CI vs. non-CI MS patients. The ITC measures were also significantly different in the theta band for some clusters. The finding that MS patients had reduced P3b task-related theta power in both modalities is a reflection of compromised connectivity, likely due to demyelination, that may have disrupted early processes essential to P3b generation, such as orientating and signal detection. However, for posterior sources, MS patients had a greater decrease in alpha power, normally associated with enhanced cognitive function, which may reflect a compensatory mechanism in response to the compromised early cognitive processing.  相似文献   

8.
 A new method is presented for quantitative evaluation of single-sweep phase and amplitude electroencephalogram (EEG) characteristics that is a more informative approach in comparison with conventional signal averaging. In the averaged potential, phase-locking and amplitude effects of the EEG response cannot be separated. To overcome this problem, single-trial EEG sweeps are decomposed into separate presentations of their phase relationships and amplitude characteristics. The stability of the phase-coupling to stimulus is then evaluated independently by analyzing the single-sweep phase presentations. The method has the following advantages: information about stability of the phase-locking can be used to assess event-related oscillatory activity; the method permits evaluation of the timing of event-related phase-locking; and a global assessment and comparison of the phase-locking of ensembles of single sweeps elicited in different processing conditions is possible. The method was employed to study auditory alpha and theta responses in young and middle-aged adults. The results showed that whereas amplitudes of frequency responses tended to decrease, the phase-locking increased significantly with age. The synchronization with stimulus (phase-locking) was the only parameter reliably to differentiate the brain responses of the two age groups, as well as to reveal specific age-related changes in frontal evoked alpha activity. Thus, the present approach can be used to evaluate dynamic brain processes more precisely. Received: 12 February 1996 / Accepted in revised form: 11 October 1996  相似文献   

9.
Rapid auditory processing and acoustic change detection abilities play a critical role in allowing human infants to efficiently process the fine spectral and temporal changes that are characteristic of human language. These abilities lay the foundation for effective language acquisition; allowing infants to hone in on the sounds of their native language. Invasive procedures in animals and scalp-recorded potentials from human adults suggest that simultaneous, rhythmic activity (oscillations) between and within brain regions are fundamental to sensory development; determining the resolution with which incoming stimuli are parsed. At this time, little is known about oscillatory dynamics in human infant development. However, animal neurophysiology and adult EEG data provide the basis for a strong hypothesis that rapid auditory processing in infants is mediated by oscillatory synchrony in discrete frequency bands. In order to investigate this, 128-channel, high-density EEG responses of 4-month old infants to frequency change in tone pairs, presented in two rate conditions (Rapid: 70 msec ISI and Control: 300 msec ISI) were examined. To determine the frequency band and magnitude of activity, auditory evoked response averages were first co-registered with age-appropriate brain templates. Next, the principal components of the response were identified and localized using a two-dipole model of brain activity. Single-trial analysis of oscillatory power showed a robust index of frequency change processing in bursts of Theta band (3 - 8 Hz) activity in both right and left auditory cortices, with left activation more prominent in the Rapid condition. These methods have produced data that are not only some of the first reported evoked oscillations analyses in infants, but are also, importantly, the product of a well-established method of recording and analyzing clean, meticulously collected, infant EEG and ERPs. In this article, we describe our method for infant EEG net application, recording, dynamic brain response analysis, and representative results.  相似文献   

10.
Transient event-related potentials (ERPs) and steady-state responses (SSRs) have been popularly employed to investigate the function of the human brain, but their relationship still remains a matter of debate. Some researchers believed that SSRs could be explained by the linear summation of successive transient ERPs (superposition hypothesis), while others believed that SSRs were the result of the entrainment of a neural rhythm driven by the periodic repetition of a sensory stimulus (oscillatory entrainment hypothesis). In the present study, taking auditory modality as an example, we aimed to clarify the distinct features of SSRs, evoked by the 40-Hz and 60-Hz periodic auditory stimulation, as compared to transient ERPs, evoked by a single click. We observed that (1) SSRs were mainly generated by phase synchronization, while late latency responses (LLRs) in transient ERPs were mainly generated by power enhancement; (2) scalp topographies of LLRs in transient ERPs were markedly different from those of SSRs; (3) the powers of both 40-Hz and 60-Hz SSRs were significantly correlated, while they were not significantly correlated with the N1 power in transient ERPs; (4) whereas SSRs were dominantly modulated by stimulus intensity, middle latency responses (MLRs) were not significantly modulated by both stimulus intensity and subjective loudness judgment, and LLRs were significantly modulated by subjective loudness judgment even within the same stimulus intensity. All these findings indicated that high-frequency SSRs were different from both MLRs and LLRs in transient ERPs, thus supporting the possibility of oscillatory entrainment hypothesis to the generation of SSRs. Therefore, SSRs could be used to explore distinct neural responses as compared to transient ERPs, and help us reveal novel and reliable neural mechanisms of the human brain.  相似文献   

11.
Absence seizures are caused by brief periods of abnormal synchronized oscillations in the thalamocortical loops, resulting in widespread spike-and-wave discharges (SWDs) in the electroencephalogram (EEG). SWDs are concomitant with a complete or partial impairment of consciousness, notably expressed by an interruption of ongoing behaviour together with a lack of conscious perception of external stimuli. It is largely considered that the paroxysmal synchronizations during the epileptic episode transiently render the thalamocortical system incapable of transmitting primary sensory information to the cortex. Here, we examined in young patients and in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established genetic model of absence epilepsy, how sensory inputs are processed in the related cortical areas during SWDs. In epileptic patients, visual event-related potentials (ERPs) were still present in the occipital EEG when the stimuli were delivered during seizures, with a significant increase in amplitude compared to interictal periods and a decrease in latency compared to that measured from non-epileptic subjects. Using simultaneous in vivo EEG and intracellular recordings from the primary somatosensory cortex of GAERS and non-epileptic rats, we found that ERPs and firing responses of related pyramidal neurons to whisker deflection were not significantly modified during SWDs. However, the intracellular subthreshold synaptic responses in somatosensory cortical neurons during seizures had larger amplitude compared to quiescent situations. These convergent findings from human patients and a rodent genetic model show the persistence of cortical responses to sensory stimulations during SWDs, indicating that the brain can still process external stimuli during absence seizures. They also demonstrate that the disruption of conscious perception during absences is not due to an obliteration of information transfer in the thalamocortical system. The possible mechanisms rendering the cortical operation ineffective for conscious perception are discussed, but their definite elucidation will require further investigations.  相似文献   

12.
In 18-to 19-year-old students, the content of a number of microelements, as well as of calcium, in biologically stable tissues (hair samples) was measured using X-ray fluorescent analysis. In the tested persons, we observed a certain deficit of main elements (calcium, copper, and zinc), while in some persons the levels of toxic lead and strontium were exceeded. Correlation analysis of the parameters of EEG potentials (current EEG and evoked and event-related potentials, EPs and ERPs, respectively) showed the existence of a few significant (or close to those) correlations of the spectral powers of some rhythms and derivatives of a few indices of the background EEG and more numerous cases of correlations of the parameters of EPs and ERPs (latencies and amplitudes) with the contents of the studied elements. The physiological importance of metals, according to the number of characteristics of EEG potentials that correlate with their contents, can be arranged in descending order as follows: As, Zn > Ca > Cd > Pb > Sr. None of the studied parameters of EEG phenomena correlated with the level of copper. The strength of correlations varied from weak to mild (0.29 < R < 0.50). The densest correlations were observed for the concentrations of toxic lead and cadmium. With respect to the characteristics of ERPs, some of the elements under study demonstrated synergism (e.g., lead and arsenic), while others were in an antagonistic relation (cadmium and calcium). Neirofiziologiya/Neurophysiology, Vol. 38, No. 2, pp. 167–174, March–April, 2006.  相似文献   

13.
In this study, we examined event-related potentials (ERPs) in rats performing a timing task. The ERPs were recorded during a timing task and a control task from five regions (frontal cortex, striatum, hippocampus, thalamus, and cerebellum) that are related to time perception. In the timing task, the rats were required to judge the interval between two tones. This interval could be either 500 or 2000 ms. In the control task, only the 500 ms interval between tones was presented and only one lever was available for responses. Any difference in ERPs between the two tasks was considered to reflect the processes that are related to temporal discrimination. The frontal cortex, striatum, and thalamus yielded concurrent differences in ERPs between the two tasks. The results suggest that these regions might play an important role in temporal discrimination.  相似文献   

14.
 A recently developed fragmentary decomposition method is employed to analyse single-trial event-related potentials (ERPs), thereby extending the traditional method of averaging. Using a conventional auditory oddball paradigm with 40 target stimuli, single-trial ERPs in 40 normal subjects were analysed for midline scalp (Fz, Cz and Pz) recording sites. The normalization effect, reported in our previous study of eye blink EMGs and proposed to be a characteristic property of a wide class of non-stationary physiological processes, was found to apply to these single-trial ERPs. Fragmentary decomposition of single-trial ERPs may be regarded as re-statement of the normalization effect. This allows both pre-stimulus EEGs and post-stimulus ERPs to be regarded as overlapping generic mass potentials (GMPs), with a characteristic Gaussian amplitude spectrum. On theoretical and empirical grounds we uniquely deduce a model GMP using an introduced “bud” function, and physically support it by the resting and transient conditions. The model takes into account the shape of the component, which suggests a simple relationship between the peak latency and the time of the component onset. Given that GMPs may be manipulated and sorted out, we present principles of the fragmentary synthesis, i.e. probabilistic ERP reconstructions on the basis of individual and ensemble properties of its identified components. Summarizing the component quantification in the form of the dynamic model provides for the first time the opportunity to quantify all significant components in single-trial ERPs. This method of single-trial analysis opens up new possibilities of exploring the dynamical ERP changes within a recording trial, particularly in late component “cognitive” paradigms. Received: 29 August 2000 / Accepted in revised form: 5 February 2001  相似文献   

15.
Different methods for blink artifact correction in multichannel electoencephalogram (EEG) have been compared with respect to their efficiency and the relative systemic error of the estimation of the parameters of EEG spectra and event-related potentials (ERPs). Three methods of blink artifact correction have been used: distraction of the electrooculogram (EOG) signals from EEG signals, zeroing independent EEG components associated with vertical eye movement, and zeroing the principal EEG components related to blinking. The results have shown that these correction methods can substantially improve the accuracy of the estimation of quantitative EEG parameters while only slightly distorting signals from most EEG sites. It is concluded that wide use of these methods for EEG processing in fundamental and applied studies would be advisable.  相似文献   

16.
Pavlovian to Instrumental Transfer (PIT) refers to the behavioral phenomenon of increased instrumental responding for a reinforcer when in the presence of Pavlovian conditioned stimuli that were separately paired with that reinforcer. PIT effects may play an important role in substance use disorders, but little is known about the brain mechanisms that underlie these effects in alcohol consumers. We report behavioral and electroencephalographic (EEG) data from a group of social drinkers (n = 31) who performed a PIT task in which they chose between two instrumental responses in pursuit of beer and chocolate reinforcers while their EEG reactivity to beer, chocolate and neutral pictorial cues was recorded. We examined two markers of the motivational salience of the pictures: the P300 and slow wave event-related potentials (ERPs). Results demonstrated a behavioral PIT effect: responding for beer was increased when a beer picture was presented. Analyses of ERP amplitudes demonstrated significantly larger slow potentials evoked by beer cues at various electrode clusters. Contrary to hypotheses, there were no significant correlations between behavioral PIT effects, electrophysiological reactivity to the cues, and individual differences in drinking behaviour. Our findings are the first to demonstrate a PIT effect for beer, accompanied by increased slow potentials in response to beer cues, in social drinkers. The lack of relationship between behavioral and EEG measures, and between these measures and individual differences in drinking behaviour may be attributed to methodological features of the PIT task and to characteristics of our sample.  相似文献   

17.
We studied the peculiarities of the amplitude/time parameters of evoked EEG potentials (EPs) and event-related potentials (ERPs) in 10- to 11-year-old children characterized by low and high anxiety levels. The latter levels were estimated using the scale of the manifest anxiety test of Prikhozhan and projective techniques (“House–Tree–Person,” HTP, and the Lüscher color test). For children with a high anxiety level, the amplitudes of the following EP components and ERPs were lower than those in low-anxiety children of the same age: P1 (predominantly in the occipital region of the left hemisphere), P2 (in the right occipital region), and Р300 wave (in different loci of both hemispheres). In high-anxiety children, we also more frequently observed increased amplitudes of the N2 component in the left parietal and right occipital regions. High-anxiety individuals were characterized by longer latencies of component P1 (mostly in the right frontal and left central regions) and, at the same time, shorter latencies of component N1 (in the parietal and occipital regions of the left hemisphere and also in the right temporal region). Thus, we found that the amplitude/time characteristics of a few EP components and ERPs in children with high anxiety levels differ statistically significantly from the parameters of corresponding EPs/ERPs in individuals of the same age but with low anxiety levels.  相似文献   

18.
Steady-state evoked potentials (SSEP) are the electrical activity recorded from the scalp in response to high-rate sensory stimulation. SSEP consist of a constituent frequency component matching the stimulation rate, whose amplitude and phase remain constant with time and are sensitive to functional changes in the stimulated sensory system. Monitoring SSEP during neurosurgical procedures allows identification of an emerging impairment early enough before the damage becomes permanent. In routine practice, SSEP are extracted by averaging of the EEG recordings, allowing detection of neurological changes within approximately a minute. As an alternative to the relatively slow-responding empirical averaging, we present an algorithm that detects changes in the SSEP within seconds. Our system alerts when changes in the SSEP are detected by applying a two-step Generalized Likelihood Ratio Test (GLRT) on the unaveraged EEG recordings. This approach outperforms conventional detection and provides the monitor with a statistical measure of the likelihood that a change occurred, thus enhancing its sensitivity and reliability. The system’s performance is analyzed using Monte Carlo simulations and tested on real EEG data recorded under coma.  相似文献   

19.
Delayed striate cortical activation during spatial attention   总被引:12,自引:0,他引:12  
Recordings of event-related potentials (ERPs) and event-related magnetic fields (ERMFs) were combined with functional magnetic resonance imaging (fMRI) to study visual cortical activity in humans during spatial attention. While subjects attended selectively to stimulus arrays in one visual field, fMRI revealed stimulus-related activations in the contralateral primary visual cortex and in multiple extrastriate areas. ERP and ERMF recordings showed that attention did not affect the initial evoked response at 60-90 ms poststimulus that was localized to primary cortex, but a similarly localized late response at 140-250 ms was enhanced to attended stimuli. These findings provide evidence that the primary visual cortex participates in the selective processing of attended stimuli by means of delayed feedback from higher visual-cortical areas.  相似文献   

20.
The complex demodulation (CD) approach was applied to human EEG recorded during a cognitive task performance, including voluntary goal-directed movements. The standard CD algorithm was extended by a simple procedure using frequency histograms and power spectra to select the characteristic frequencies of EEG segments around the task performance. In the majority of records, amplitude modulation was found, which decreased or disappeared in the period prior to and at the very beginning of the task performance. It was found that the decrease of modulation in fast beta and gamma components begins approximately one second before that of the alpha components. Frequency modulation appeared in some records at the end of the task in beta and gamma components. The results showed that a cognitive task performance is accompanied by non-linear processes in the frequency components of EEG. These dynamic changes could extend the findings of event-related desynchronization obtained by linear methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号