共查询到20条相似文献,搜索用时 9 毫秒
1.
A new experimental method is used to determine simultaneously the quantity and composition of the sap exuded by a detopped root system at the same time that a pressure deficit of desired magnitude can be applied to the stem stump. The technique was used in a study of the transport of radioactive sulfate through the roots of young sunflower plants placed on complete nutrient solutions labelled with 35S. The complications by the time factor on the composition and rate of the sap stream in experiments of this type were observed and discussed. The time of detopping the roots was very critical as the conditions of sulfate transport were greatly changed some time after the excision. A rectilinear connection existed between the rate of sulfate transport in the sap and the water flow at sap flow velocities comparable with transpiration rates. When the transport of water was very slow, the rate of sulfate transport became constant and independent of the water stream. It was suggested that diffusion or water flow could act as motive force for the ion transport in some non-metabolic phase of transfer in the roots. The addition of 2,4-DNP to the test solution severely interfered with the water and sulfate transport conditions in the roots. 相似文献
2.
Neurochemical gender-specific effects have been observed following chronic stress. The aim of this study was to verify the effects of chronic variable stress on free radical production (evaluated by DCF test), lipoperoxidation (evaluated by TBARS levels), and total antioxidant reactivity (TAR) in three distinct structures of brain: hippocampus, cerebral cortex and hypothalamus of female rats, and to evaluate whether the replacement with estradiol in female rats exerts neuroprotection against oxidative stress. Results demonstrate that chronic stress had a structure-specific effect upon lipid peroxidation, since TBARS increased in hypothalamus homogenates of stressed animals, without alterations in the other structures analyzed. Estradiol replacement was able to counteract this effect. In hippocampus, estradiol induced a significant increase in TAR. No differences in DCF levels were observed. In conclusion, the hypothalamus is more susceptible to oxidative stress in female rats submitted to chronic variable stress, and this effect is prevented by estradiol treatment. 相似文献
3.
Wu X Xiao W Huang H Hao H Liu X Xiaoqing L Chen L Liang C Liu C Chao L Su M Mingyu S Hong F Fashui H 《Biological trace element research》2008,126(1-3):257-268
Seedlings of spinach were grown in Hoagland's medium containing 0, 20, 40, 60, 80, 100 microM PbCl2, respectively, for 4 weeks. Chloroplasts were assayed for overproduction of reactive oxygen species (ROS) such as superoxide radicals (O2(*-)) and hydrogen peoxide (H2O2) and of lipid peroxide (malonyldialdehyde) and for activities of the antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase and glutathione content, oxygen-evolving rate, and chlorophyll content. Increase in both ROS and lipid peroxide content and reduction in photosynthesis and activities of the antioxidant defense system indicated that spinach chloroplast underwent a stress condition due to an oxidative attack. Seedling growth cultivated in containing Pb2+ media was significantly inhibited. The results imply that spinach chloroplast was not able to tolerate the oxidative stress induced by Pb2+ due to having no effective antioxidant defense mechanism. 相似文献
4.
5.
Karin A. Riske Tatiane P. Sudbrack Adjaci F. Uchoa Carlos M. Marques Rosangela Itri 《Biophysical journal》2009,97(5):1362-1370
We have synthesized the amphiphile photosensitizer PE-porph consisting of a porphyrin bound to a lipid headgroup. We studied by optical microscopy the response to light irradiation of giant unilamellar vesicles of mixtures of unsaturated phosphatidylcholine lipids and PE-porph. In this configuration, singlet oxygen is produced at the bilayer surface by the anchored porphyrin. Under irradiation, the PE-porph decorated giant unilamellar vesicles exhibit a rapid increase in surface area with concomitant morphological changes. We quantify the surface area increase of the bilayers as a function of time and photosensitizer molar fraction. We attribute this expansion to hydroperoxide formation by the reaction of the singlet oxygen with the unsaturated bonds. Considering data from numeric simulations of relative area increase per phospholipid oxidized (15%), we measure the efficiency of the oxidative reactions. We conclude that for every 270 singlet oxygen molecules produced by the layer of anchored porphyrins, one eventually reacts to generate a hydroperoxide species. Remarkably, the integrity of the membrane is preserved in the full experimental range explored here, up to a hydroperoxide content of 60%, inducing an 8% relative area expansion. 相似文献
6.
高粱幼苗水分胁迫诱导表达差异cDNA的研究 总被引:3,自引:1,他引:3
以高粱为试验材料,用-0.7MPa的PEG-6000高渗溶液对其幼苗进行水分胁迫处理,利用mRNA差异显示技术分离得到53条高粱水分胁迫诱导表达的cDNA片段,其中包括5个完全诱导表达片段,43个上调片段和5个下调表达片段。经过Reverse Northern验证,筛选出13个差异表达的cDNA片段,并进行克隆测序。经GenBank查询,10个片段序列与已知序列有较高的同源性,3个片段同源性非常低,可能为新基因。 相似文献
7.
Chilling Induced Oxidative Stress in Germinating Wheat Grains as Affected by Water Stress and Calcium 总被引:1,自引:0,他引:1
Wheat (Triticum aestivum L.) plants were subjected to mild water stress during grain filling at milk (early, medium, and late) and dough (early, soft, hard) stages. The grains harvested from stressed plants were subjected to low temperature stress of 10 °C for 24 h in presence or absence of 1 mM CaCl2, and embryos were examined for oxidative injury. The embryos of grains water stressed at milk and soft dough stages showed lowest contents of H2O2 and malondialdehyde and highest membrane stability index, ascorbic acid content, and activities of catalase, ascorbate peroxidase, and superoxide dismutase as compared to control embryos or water-stressed at other stages. Presence of Ca2+ in the medium reduced H2O2 and malondialdehyde content and increased ascorbic acid content, and catalase, ascorbate peroxidase and superoxide dismutase activities. 相似文献
8.
Ruzhi Deng Xia Hua Jin Li Wei Chi Zongduan Zhang Fan Lu Lili Zhang Stephen C. Pflugfelder De-Quan Li 《PloS one》2015,10(5)
Oxidative stress has been known to be involved in pathogenesis of dry eye disease. However, few studies have comprehensively investigated the relationship between hyperosmolarity and oxidative damage in human ocular surface. This study was to explore whether and how hyperosmolarity induces oxidative stress markers in primary human corneal epithelial cells (HCECs). Primary HCECs were established from donor limbal explants. The hyperosmolarity model was made in HCECs cultured in isosmolar (312 mOsM) or hyperosmotic (350, 400, 450 mOsM) media. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and anti-oxidative enzymes were analyzed by DCFDA kit, RT-qPCR, immunofluorescent and immunohistochemical staining and Western blotting. Compared to isosmolar medium, ROS production significantly increased at time- and osmolarity-dependent manner in HCECs exposed to media with increasing osmolarities (350–450 mOsM). Hyperosmolarity significantly induced oxidative damage markers in cell membrane with increased toxic products of lipid peroxidation, 4–hydroxynonenal (4-HNE) and malondialdehyde (MDA), and in nuclear and mitochondria DNA with increased aconitase-2 and 8-OHdG. Hyperosmotic stress also increased the mRNA expression and protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but reduced the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), and glutathione peroxidase-1 (GPX1). In conclusion, our comprehensive findings demonstrate that hyperosmolarity induces oxidative stress in HCECs by stimulating ROS production and disrupting the balance of oxygenases and antioxidant enzymes, which in turn cause cell damage with increased oxidative markers in membrane lipid peroxidation and mitochondrial DNA damage. 相似文献
9.
Zi-wei Zhang Qiao-hong Wang Jiu-li Zhang Shu Li Xiao-Long Wang Shi-wen Xu 《Biological trace element research》2012,149(3):352-361
Selenium (Se) is an important nutritional trace element possessing immune-stimulatory properties. The aim of this 75-day study was to investigate effect of oxidative stress on immunosuppression induced by selenium deficiency by determining antioxidative function, morphological changes, DNA damage, and immune function in immune organ of chickens. One hundred sixty 1-day-old chickens (egg-type birds) were randomly assigned to two groups of 80 each and were fed on a low-Se diet (0.032?mg/kg Se) or a control diet (0.282?mg/kg Se, sodium selenite), respectively. Se contents in blood and immune organ (thymus, spleen, bursa of Fabricius) were determined on days 30, 45, 60, and 75, respectively. Antioxidative function was examined by total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and xanthine oxidase (XOD), and oxidative damage was examined by malondialdehyde (MDA) detection. DNA damage was measured by comet assay, and immune function was examined by determining serum interleukin-1?? (IL-1??), interleukin-2 (IL-2), and tumor necrosis factor (TNF) contents. The results showed that Se concentrations in the low-Se group were significantly lower (P?<?0.05) than in the control group. Low-Se diet caused a decrease in the activities of T-AOC, SOD, GSH-Px, and an increase in XOD activity and MDA content. Pathological lesions and DNA damage of immune tissues were observed in low-Se group, while the serum IL-1?? and IL-2 contents decreased, and TNF content increased. The present study demonstrated that chickens fed deficient in Se diets exhibited lesions in immune organs, decreased serum IL-1??, IL-2 content, and serum TNF content, indicating that oxidative stress inhibited the development of immune organs and finally impaired the immune function of chickens. 相似文献
10.
Repeated low-dose exposure to carbofuran exerts its neurotoxic effects by non-cholinergic mechanisms. Emerging evidence indicates
that oxidative stress plays an important role in carbofuran neurotoxicity after sub-chronic exposure. The purpose of the present
study is to evaluate the role of mitochondrial oxidative stress and dysfunction as a primary event responsible for neurotoxic
effects observed after sub-chronic carbofuran exposure. Carbofuran was administered to rats at a dose of 1 mg/kg orally for
a period of 28 days. There was a significant inhibition in the activity of acetylcholinesterase (66.6%) in brain samples after
28 days of carbofuran exposure. Mitochondrial respiratory chain functions were assessed in terms of MTT (3-(4, 5-dimethylthiazolyl-2)-2,
5-diphenyltetrazolium bromide) reduction and activity of succinate dehydrogenase in isolated mitochondria. It was observed
that carbofuran exposure significantly inhibited MTT reduction (31%) and succinate dehydrogenase activity (57%). This was
accompanied by decrease in low-molecular weight thiols (66.6%) and total thiols (37.4%) and an increase in lipid peroxidation
(43.7%) in the mitochondria isolated from carbofuran-exposed rat brain. The changes in mitochondrial oxidative stress and
functions were associated with impaired cognitive and motor functions in the animals exposed to carbofuran as compared to
the control animals. Based on these results, it is clear that carbofuran exerts its neurotoxicity by impairing mitochondrial
functions leading to oxidative stress and neurobehavioral deficits. 相似文献
11.
M. P. Gomes M. Carvalho G. S. Carvalho T. C. L. L. S. M. Marques Q. S. Garcia L. R. G. Guilherme 《International journal of phytoremediation》2013,15(7):633-646
Due to similarities in their chemical behaviors, studies examining interactions between arsenic (As)—in special arsenate—and phosphorus (P) are important for better understanding arsenate uptake, toxicity, and accumulation in plants. We evaluated the effects of phosphate addition on plant biomass and on arsenate and phosphate uptake by Anadenanthera peregrina, an important Brazilian savanna legume. Plants were grown for 35 days in substrates that received combinations of 0, 10, 50, and 100 mg kg?1 arsenate and 0, 200, and 400 mg kg?1 phosphate. The addition of P increased the arsenic-phytoremediation capacity of A. peregrina by increasing As accumulation, while also alleviating As-induced oxidative stress. Arsenate phytotoxicity in A. peregrina is due to lipid peroxidation, but not hydrogen peroxide accumulation. Added P also increased the activity of important reactive oxygen species-scavenging enzymes (catalase and ascorbate peroxidase) that help prevent lipid peroxidation in leaves. Our findings suggest that applying P represents a feasible strategy for more efficient As phytoremediation using A. peregrina. 相似文献
12.
水杨酸(Salicylic acid,SA)在调节生物和非生物胁迫,诱导植物氧化胁迫中起着重要的作用,但对铝诱导的氧化胁迫的调节作用尚不清楚.本文研究了SA对决明(Cassiatora L.)根系铝诱导的H2O2和O2-含量变化,包括抗氧化酶活性以及细胞质膜过氧化胁迫变化的影响.介质中20 μmol/L铝处理增加质膜透性,导致MDA含量上升及根尖细胞Evans blue染色加重(测定细胞死亡),而外源供给5 μmol/L SA能缓解铝诱导的氧化胁迫.SA处理能明显降低根尖H2O2和O2-的含量,但两者含量与CAT、APX和GR的活性变化没有相关性,而与POD活性增加有关.水杨酸诱导H2O2含量的下降与抑制O2积累和SOD活性有关.结果表明,SA可能激活一条由H2O2介导的、依赖于POD的抗氧化机制来缓解脂质的过氧化作用. 相似文献
13.
水杨酸调节决明根系铝诱导的氧化胁迫 总被引:2,自引:0,他引:2
水杨酸(Salicylicacid,SA)在调节生物和非生物胁迫,诱导植物氧化胁迫中起着重要的作用,但对铝诱导的氧化胁迫的调节作用尚不清楚。本文研究了SA对决明(CassiatoraL.)根系铝诱导的H2O2和O2-含量变化,包括抗氧化酶活性以及细胞质膜过氧化胁迫变化的影响。介质中20mmol/L铝处理增加质膜透性,导致MDA含量上升及根尖细胞Evansblue染色加重(测定细胞死亡),而外源供给5mmol/LSA能缓解铝诱导的氧化胁迫。SA处理能明显降低根尖H2O2和O2-的含量,但两者含量与CAT、APX和GR的活性变化没有相关性,而与POD活性增加有关。水杨酸诱导H2O2含量的下降与抑制O2-积累和SOD活性有关。结果表明,SA可能激活一条由H2O2介导的、依赖于POD的抗氧化机制来缓解脂质的过氧化作用。 相似文献
14.
Dietrich-Muszalska A Malinowska J Olas B Głowacki R Bald E Wachowicz B Rabe-Jabłońska J 《Neurochemical research》2012,37(5):1057-1062
The mechanisms of oxidative stress in schizophrenic patients are not fully understood. In the present study, we investigated
the effect of elevated level of homocysteine (Hcys) on some parameters of oxidative stress, namely thiobarbituric acid reactive
substances (TBARS), an index of lipid peroxidation in plasma, the level of carbonyl groups in plasma proteins, as well as
the amount of 3-nitrotyrosine in plasma proteins isolated from schizophrenic patients. Patients hospitalised in I and II Psychiatric
Department of Medical University in Lodz, Poland were interviewed with special questionnaire (treatment, course of diseases,
dyskinesis and other EPS). According to DSM-IV criteria all patients had diagnosis of paranoid type. They were treated with
antipsychotic drugs (clozapine, risperidone, olanzapine). Mean time of schizophrenia duration was about 5 years. High-performance
liquid chromatography was used to analyse the total level of homocysteine in plasma. Levels of carbonyl groups and 3-nitrotyrosine
residues in plasma proteins were measured by ELISA and a competition ELISA, respectively. The lipid peroxidation in plasma
was measured by the level of TBARS. Our results showed that in schizophrenic patients the amount of homocysteine in plasma
was higher in comparison with the control group. We also observed a statistically increased level of biomarkers of oxidative/nitrative
stress such as carbonyl groups or 3-nitrotyrosine in plasma proteins from schizophrenic patients. Moreover, our experiments
indicate that the correlation between the increased amount of homocysteine and the oxidative stress exists. Considering the
data presented in this study, we suggest that the elevated Hcys in schizophrenic patients may stimulate the oxidative stress. 相似文献
15.
Zhiyong Zhang Xin Zhang Zebing Hu Sufang Wang Jinbao Zhang Xiaojing Wang Qinglian Wang Baohong Zhang 《PloS one》2015,10(5)
Coronatine [COR] is a novel type of plant growth regulator with similarities in structure and property to jasmonate. The objective of this study was to examine the relationship between increased root vitality induced by 10nM COR and reactive oxygen species scavenging under potassium (K)-replete (2.5mM) and K-deficient (0.05mM) conditions in hydroponic cultured cotton seedlings. K-replete and K-deficient conditions increased root vitality by 2.7- and 3.5-fold, respectively. COR treatment significantly decreased lipid peroxidation in cotton seedlings determined by reduction in MDA levels. These results suggest that COR improves the functioning of both enzymatic and non-enzymatic antioxidant systems. Under K-replete and K-deficient conditions, COR significantly increased the activities of antioxidant enzymes SOD (only for K-repletion), CAT, GPX, and APX comparing; COR also significantly increased DPPH-radical scavenging activity. However, COR led to 1.6- and 1.7-fold increases in superoxide anion (O2•-) concentrations, and 5.7- and 2.1-fold increases in hydrogen peroxide (H2O2) levels, respectively. Additionally, COR intensified the DAB staining of H2O2 and the NBT staining of O2•-. Therefore, our results reveal that COR-induced ROS accumulation stimulates the activities of most antioxidant enzymes but does not induce oxidative stress in cotton roots. 相似文献
16.
Keisuke Motone Toshiyuki Takagi Shunsuke Aburaya Wataru Aoki Natsuko Miura Hiroyoshi Minakuchi Haruko Takeyama Yukio Nagasaki Chuya Shinzato Mitsuyoshi Ueda 《Marine biotechnology (New York, N.Y.)》2018,20(4):542-548
Coral reefs are one of the most biologically diverse and economically important ecosystems on earth. However, the destruction of coral reefs has been reported worldwide owing to rising seawater temperature associated with global warming. In this study, we investigated the potential of a redox nanoparticle (RNPO) to scavenge reactive oxygen species (ROS), which are overproduced under heat stress and play a crucial role in causing coral mortality. When reef-building coral (Acropora tenuis) larvae, without algal symbionts, were exposed to thermal stress at 33 °C, RNPO treatment significantly increased the survival rate. Proteome analysis of coral larvae was performed using nano-liquid chromatography-tandem mass spectrometry for the first time. The results revealed that several proteins related to ROS-induced oxidative stress were specifically identified in A. tenuis larvae without RNPO treatment, whereas these proteins were absent in RNPO-treated larvae, which suggested that RNPO effectively scavenged ROS from A. tenuis larvae. Results from this study indicate that RNPO treatment can reduce ROS in aposymbiotic coral larvae and would be a promising approach for protecting corals from thermal stress. 相似文献
17.
Francisco J. Padillo Adolfo Cruz Carmen Navarrete Inmaculada Bujalance Javier Briceño José I. Gallardo 《Free radical research》2013,47(7):697-704
The induction of oxidative stress precedes liver injury during experimental obstructive jaundice (OJ). In this sense, different evidences suggest that melatonin (MEL), as antioxidant, may be useful in the protection against apoptosis and necrosis during experimental cholestasis. In addition, we will also assess if MEL-dependent protection is related to a recovery of antioxidant status disturbances induced by OJ. Cholestasis was achieved by double ligature and sectioning of the principal bile duct. MEL was injected intraperitoneally (500?μg/kg/day). Lipid peroxidation was evaluated by the measurement of malondialdehyde (MDA) content in liver. Different parameters related to antioxidant status, such as reduced glutathione (GSH), glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD) were determined in liver. Liver injury was assessed by alanine aminotransferase (ALT) in serum, histological examination, DNA fragmentation and TUNEL assay. The activation of perisinusoidal stellate cells was evaluated by immunohistochemical measurement of α-smooth muscle actin in liver sections. The induction of OJ increased all the parameters related to apoptosis and necrosis in liver. The induction of liver injury was associated with stellate cell activation, as well as an increase in MDA (p<0.0001) and a reduction in GSH, GPx, catalase and SOD content (p<0.0001) in liver. MEL reduced hepatic apoptosis and necrosis (p<0.004) with a significant improvement in all oxidative stress markers. In conclusion, our results showed that MEL recovered the antioxidant status and reduced apoptosis and necrosis induced by experimental cholestasis. 相似文献
18.
Qingsong Xu Pan Ma Weiting Yu Chengyu Tan Hongtao Liu Chuannan Xiong Ying Qiao Yuguang Du 《Marine biotechnology (New York, N.Y.)》2010,12(3):292-298
Chitooligosaccharides (COS) has many biological activities, such as antitumor activity and hepatoprotective effect. Herein,
we investigated the protective effect of COS against hydrogen peroxide (H2O2)-induced oxidative stress on human embryonic hepatocytes (L02 cells) and its scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl
radical in vitro. The results showed that the lost cell viability induced by H2O2 was markedly restored after 24 h pre-incubation with COS (0.1–0.4 mg/ml). This rescue effect could be related to the antioxidant
property of COS, in which we showed that the radical scavenging activity of COS reached 80% at concentration of 2 mg/ml. In
addition, COS could prevent cell apoptosis induced by H2O2, as shown by the inhibition of the cleavage of poly (adenosine diphosphate-ribose) polymerase and increased expression of
the anti-apoptotic protein Bcl-xL. Furthermore, we have utilized confocal laser microscopy to observe cellular uptake of COS,
an important step for COS to exert its effects on target cells. Taken together, our findings suggested that COS could effectively
protect L02 cells against oxidative stress, which might be useful in clinical setting during the treatment of oxidative stress-related
liver damages. 相似文献
19.
Shizhu Chen Yingjian Hou Gong Cheng Cuimiao Zhang Shuxiang Wang Jinchao Zhang 《Biological trace element research》2013,154(1):156-166
Oxidative stress is well documented to cause injury to endothelial cells (ECs), which in turn trigger cardiovascular diseases. Previous studies revealed that cerium oxide nanoparticles (nanoceria) had antioxidant property, but the protective effect of nanoceria on ROS injury to ECs and cardiovascular diseases has not been reported. In the current study, we investigated the protective effect and underlying mechanisms of nanoceria on oxidative injury to ECs. The cell viability, lactate dehydrogenase release, cellular uptake, intracellular localization and reactive oxygen species (ROS) levels, endocytosis mechanism, cell apoptosis, and mitochondrial membrane potential were performed. The results indicated that nanoceria had no cytotoxicity on ECs but had the ability to prevent injury by H2O2. Nanoceria could be uptaken into ECs through caveolae- and clathrin-mediated endocytosis and distributed throughout the cytoplasma. The internalized nanoceria effectively attenuated ROS overproduction induced by H2O2. Apoptosis was also alleviated greatly by nanoceria pretreatment. These results may be helpful for more rational application of nanoceria in biomedical fields in the future. 相似文献
20.
Induction of Oxidative Stress in Roots of Oryza sativa L. in Response to Salt Stress 总被引:3,自引:0,他引:3
With the imposition of salt stress (0.5 to 3 % NaCl or CaCl2) a decrease in germination rate and accumulation of proline was observed in the root tissue. Both NaCl and CaCl2 solutions induced an increase in the total peroxide content and lipid peroxidation and decrease in catalase, guaiacol peroxidase and superoxide dismutase activities in root tissues suggesting an oxidative stress in the salt sensitive rice cultivar. 相似文献