首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition and spatial arrangement of cuticular waxes on the leaves of Prunus laurocerasus were investigated. In the wax mixture, the triterpenoids ursolic acid and oleanolic acid as well as alkanes, fatty acids, aldehydes, primary alcohols and alcohol acetates were identified. The surface extraction of upper and lower leaf surfaces yielded 280 mg m ? 2 and 830 mg m ? 2, respectively. Protocols for the mechanical removal of waxes from the outermost layers of the cuticle were devised and evaluated. With the most selective of these methods, 130 mg m ? 2 of cuticular waxes could be removed from the adaxial surface before a sharp, physically resistant boundary was reached. Compounds thus obtained are interpreted as ‘epicuticular waxes’ with respect to their localization in a distinct layer on the surface of the cutin matrix. The epicuticular wax film can be transferred onto glass and visualized by scanning electron microscopy. Prunus laurocerasus epicuticular waxes consisted entirely of aliphatic compounds, whereas the remaining intracuticular waxes comprised 63% of triterpenoids. The ecological relevance of this layered structure for recognition by phytotrophic fungi and herbivorous insects that probe the surface composition for sign stimuli is discussed.  相似文献   

2.

Main conclusion

The Arabidopsis cuticle, as observed by electron microscopy, consists primarily of the cutin/cutan matrix. The cuticle possesses a complex substructure, which is correlated with the presence of intracuticular waxes. The plant cuticle is composed of an insoluble polyester, cutin, and organic solvent soluble cuticular waxes, which are embedded within and coat the surface of the cutin matrix. How these components are arranged in the cuticle is not well understood. The Arabidopsis cuticle is commonly understood as ‘amorphous,’ lacking in ultrastructural features, and is often observed as a thin (~80–100 nm) electron-dense layer on the surface of the cell wall. To examine this cuticle in more detail, we examined cuticles from both rapidly elongating and mature sections of the stem and compared the preservation of the cuticles using conventional chemical fixation methods and high-pressure freezing/freeze-substitution (HPF/FS). We found that HPF/FS preparation revealed a complex cuticle substructure, which was more evident in older stems. We also found that the cuticle increases in thickness with development, indicating an accretion of polymeric material, likely in the form of the non-hydrolyzable polymer, cutan. When wax was extracted by chloroform immersion prior to sample preparation, the contribution of waxes to cuticle morphology was revealed. Overall, the electron-dense cuticle layer was still visible but there was loss of the cuticle substructure. Furthermore, the cuticle of cer6, a wax-deficient mutant, also lacked this substructure, suggesting that these fine striations were dependent on the presence of cuticular waxes. Our findings show that HPF/FS preparation can better preserve plant cuticles, but also provide new insights into the fine structure of the Arabidopsis cuticle.
  相似文献   

3.
Plant cuticular waxes play a crucial role in limiting nonstomatal water loss. The goal of this study was to localize the transpiration barrier within the layered structure of cuticles of eight selected plant species and to put its physiological function into context with the chemical composition of the intracuticular and epicuticular wax layers. Four plant species (Tetrastigma voinierianum, Oreopanax guatemalensis, Monstera deliciosa, and Schefflera elegantissima) contained only very-long-chain fatty acid (VLCFA) derivatives such as alcohols, alkyl esters, aldehydes, and alkanes in their waxes. Even though the epicuticular and intracuticular waxes of these species had very similar compositions, only the intracuticular wax was important for the transpiration barrier. In contrast, four other species (Citrus aurantium, Euonymus japonica, Clusia flava, and Garcinia spicata) had waxes containing VLCFA derivatives, together with high percentages of alicyclic compounds (triterpenoids, steroids, or tocopherols) largely restricted to the intracuticular wax layer. In these species, both the epicuticular and intracuticular waxes contributed equally to the cuticular transpiration barrier. We conclude that the cuticular transpiration barrier is primarily formed by the intracuticular wax but that the epicuticular wax layer may also contribute to it, depending on species-specific cuticle composition. The barrier is associated mainly with VLCFA derivatives and less (if at all) with alicyclic wax constituents. The sealing properties of the epicuticular and intracuticular layers were not correlated with other characteristics, such as the absolute wax amounts and thicknesses of these layers.The plant cuticle is one of the major adaptations of vascular plants for life in the atmospheric environment. Accordingly, the primary function of cuticles is to limit nonstomatal water loss and, thus, to protect plants against drought stress (Burghardt and Riederer, 2006). However, plant cuticles also play roles in minimizing the adhesion of dust, pollen, and spores (Barthlott and Neinhuis, 1997), protecting tissues from UV radiation (Krauss et al., 1997; Solovchenko and Merzlyak, 2003), mediating biotic interactions with microbes (Carver and Gurr, 2006; Leveau, 2006; Hansjakob et al., 2010, 2011; Reisberg et al., 2012) as well as insects (Eigenbrode and Espelie, 1995; Müller and Riederer, 2005), and preventing deleterious fusions between different plant organs (Tanaka and Machida, 2013).Cuticles are composite (nonbilayer) membranes consisting of an insoluble polymer matrix and solvent-soluble waxes. The polymer matrix (MX) is mainly made of the hydroxy fatty acid polyester cutin (Nawrath, 2006) and also contains polysaccharides and proteins (Heredia, 2003). In contrast, cuticular waxes are complex mixtures of aliphatic compounds derived from very-long-chain fatty acids (VLCFAs) with hydrocarbon chains of C20 and more (Jetter et al., 2007). Wax quantities and compositions vary greatly between plant species and, in many cases, even between organs and developmental stages. Diverse VLCFA derivatives can be present, including free fatty acids, aldehydes, ketones, primary and secondary alcohols, alkanes, and alkyl esters. Besides, the cuticular waxes of many plant species also contain cyclic compounds such as triterpenoids and aromatics.In order to characterize the physiological function of cuticular waxes, methods have been developed for the isolation of astomatous cuticles and the measurement of transpiration rates under exactly controlled conditions, so that well-defined physical transport parameters such as permeances and resistances can be determined and compared across species and organs (Schönherr and Lendzian, 1981; Kerstiens, 1996; Riederer and Schreiber, 2001; Lendzian, 2006). With these methods, it was demonstrated that the cuticular water permeance increases by up to 3 orders of magnitude upon wax removal, thus showing the central role of waxes as a transpiration barrier (Schönherr, 1976). Permeances for water determined so far with astomatous isolated leaf cuticular membranes (CMs) or in situ leaf cuticles range over 2.5 orders of magnitude, from 3.63 × 10−7 m s−1 (Vanilla planifolia) to 7.7 × 10−5 m s−1 (Maianthemum bifolium; Riederer and Schreiber, 2001).The species-dependent differences of both wax composition and permeance led to a search for correlations between cuticle structure and function. If such a structure-function relationship could be established, then it would become possible to select or alter wax composition in order to improve cuticle performance in crop species (Kosma and Jenks, 2007). However, all attempts to understand cuticle permeance based on cuticle composition have failed so far: correlations between wax amounts and permeances could not be established, contrary to the common assumption that thicker wax layers must provide better protection against desiccation (Schreiber and Riederer, 1996; Riederer and Schreiber, 2001). Similarly, a correlation between wax quality (i.e. the relative portions of its constituents) and permeance could also not be established to date (Burghardt and Riederer, 2006). It is not clear how certain wax components contribute to the vital barrier function of the cuticle.Previous attempts to establish wax structure-function relationships may have failed because only bulk wax properties were studied and important effects of substructures were averaged out. However, distinct compartments of wax exist within the cuticle, most prominently as a layer of intracuticular wax embedded within the MX and a layer of epicuticular wax deposited on the outer surface of the polymer (Jeffree, 2006). Over the last years, methods have been developed that allow the selective removal of epicuticular wax by adhesive surface stripping, followed by equally selective extraction of intracuticular wax (Jetter et al., 2000; Jetter and Schäffer, 2001). Chemical analyses showed that, for most plant species investigated to date, both wax layers have distinct compositions (Buschhaus and Jetter, 2011). The most pronounced differences between the layers were found for the triterpenoids, which were localized predominantly (or even exclusively) in the intracuticular wax. These findings raised the possibility that the chemically distinct wax layers might also have distinct functions, leading back to the long-standing question of whether the water barrier function is exerted by the intracuticular and/or the epicuticular wax. There are only scant data to answer this question so far, mainly because methods allowing a distinction between epicuticular and intracuticular waxes were established only recently. Using these sampling techniques, it was recently found that, for leaves of Prunus laurocerasus, the epicuticular wax layer does not contribute to the transpiration barrier (Zeisler and Schreiber, 2016). In contrast, it had been reported that removal of the epicuticular wax layer from tomato (Solanum lycopersicum) fruit caused an approximately 2-fold increase in transpiration, suggesting that, in this species, the epicuticular layer constitutes an important part of the barrier (Vogg et al., 2004). Based on these conflicting reports, it is not clear to what extent the intracuticular or the epicuticular waxes contribute to the sealing function of the plant skin.The goal of this study was to localize the transpiration barrier within the cuticular membrane of selected plant species and to put the physiological function into context with the chemical composition of both the epicuticular and intracuticular wax layers. To this end, we selected eight species from which leaf cuticles could be isolated and methods for step-wise wax removal could be applied without damaging the cuticle. Preliminary studies had shown that the adaxial cuticles on leaves of Citrus aurantium (Rutaceae), Euonymus japonica (Celastraceae), Clusia flava (Clusiaceae), Garcinia spicata (Clusiaceae), Tetrastigma voinierianum (Vitaceae), Oreopanax guatemalensis (Araliaceae), Monstera deliciosa (Araceae), and Schefflera elegantissima (Araliaceae) were astomateous and showed wide chemical diversity. Therefore, these eight species were selected to address the following questions: (1) What are the amounts of epicuticular and intracuticular waxes? (2) Do compositional differences exist between the layers? (3) Where are the cuticular triterpenoids located? (4) How much do the epicuticular and intracuticular waxes contribute to the transpiration barrier? (5) Is the barrier associated with certain components of the intracuticular or epicuticular waxes?  相似文献   

4.
Radiolabelling of epicuticular waxes and cutin of isolated tomato fruit cuticles were determined after fruit surface application of 3 H-phenylalanine precursor. During fruit ripening, the precursor is incorporated in different phenolic components: the flavanone naringenin was found to be the major compound in the epicuticular waxes, while the amount of the labelled flavonoid in the cutin matrix was progressively increased throughout fruit ripening. Confocal microscopy, together with experimental estimation of the mobility (diffusion coefficient, D ) and affinity (partition coefficient, K ) of the flavonoids naringenin and chalconaringenin for the different cuticular components, indicate that these compounds are extruded to the outer surface of tomato fruits, forming molecular clusters.  相似文献   

5.
Plant cuticles are broadly composed of two major components: polymeric cutin and a mixture of waxes, which infiltrate the cutin matrix and also accumulate on the surface, forming an epicuticular layer. Although cuticles are thought to play a number of important physiological roles, with the most important being to restrict water loss from aerial plant organs, the relative contributions of cutin and waxes to cuticle function are still not well understood. Tomato ( Solanum lycopersicum ) fruits provide an attractive experimental system to address this question as, unlike other model plants such as Arabidopsis, they have a relatively thick astomatous cuticle, providing a poreless uniform material that is easy to isolate and handle. We identified three tomato mutants, cutin deficient 1 ( cd1 ), cd2 and cd3 , the fruit cuticles of which have a dramatic (95–98%) reduction in cutin content and substantially altered, but distinctly different, architectures. This cutin deficiency resulted in an increase in cuticle surface stiffness, and in the proportions of both hydrophilic and multiply bonded polymeric constituents. Furthermore, our data suggested that there is no correlation between the amount of cutin and the permeability of the cuticle to water, but that cutin plays an important role in protecting tissues from microbial infection. The three cd mutations were mapped to different loci, and the cloning of CD2 revealed it to encode a homeodomain protein, which we propose acts as a key regulator of cutin biosynthesis in tomato fruit.  相似文献   

6.
Previous research has shown that cuticular triterpenoids are exclusively found in the intracuticular wax layer of Prunus laurocerasus. To investigate whether this partitioning was species-specific, the intra- and epicuticular waxes were identified and quantified for the glossy leaves of Ligustrum vulgare, an unrelated shrub with similar wax morphology. Epicuticular wax was mechanically stripped from the adaxial leaf surface using the adhesive gum arabic. Subsequently, the organic solvent chloroform was used to extract the intracuticular wax from within the cutin matrix. The isolated waxes were quantified using gas chromatography with flame ionization detection and identified by mass spectrometry. The results were visually confirmed by scanning electron microscopy. The outer wax layer consisted entirely of homologous series of very-long-chain aliphatic compound classes. By contrast, the inner wax layer was dominated (80%) by two cyclic triterpenoids, ursolic and oleanolic acid. The accumulation of triterpenoids in the intracuticular leaf wax of a second, unrelated species suggests that this localization may be a more general phenomenon in smooth cuticles lacking epicuticular wax crystals. The mechanism and possible ecological or physiological reasons for this separation are currently being investigated.  相似文献   

7.
The specific heat of isolated plant cuticles and their corresponding cuticular waxes have been measured for the physiological temperature in the range of 273-318 K at regular intervals. C(p) values ranged from 1.5 up to 4 J K(-1) g(-1) indicating a high cohesion, at the molecular level, of the molecular lipophilic components that constitute the plant cuticle. Second order phase transitions around 293 K, assigned to the cuticular matrix mainly constituted of the biopolyester cutin, have been detected and measured. Ecophysiological and physical implications of these thermodynamic data are discussed.  相似文献   

8.
H. W. Schmidt  J. Schönherr 《Planta》1982,156(4):380-384
The effect of BF3-methanol treatment on the mass and fine structure of isolated Clivia leaf cuticles at different stages of development has been investigated. BF3-methanol cleaves ester linkages in cutin; however, the cuticles are not completely depolymerized. With increasing age, the residue left after BF3-methanol treatment increases in mass. In very young cuticles, 10% of the total cutin resisted BF3-methanol and the fraction of nonester cutin increased up to 62% in mature leaves. Transmission electron microscopy shows that fine structure of the cuticle proper is severely distorted but not destroyed. The internal cuticular layer, which exhibits a heavy contrast when fixed with KMnO4, is completely depolymerized, while the external cuticular layer is hardly affected. The results are discussed in relation to cuticle development and to the function of cuticles as transpiration resistances.Abbreviation CP cuticle proper - ECL external cuticular layer - E cutin ester bonded cutin - ICL internal cuticular layer - MX-membrane polymer matrix membrane - NE-cutin non-ester bonded cutin - TEM transmission electron microscopy  相似文献   

9.
In its natural environment, the plant cuticle, which is composed of the biopolymer cutin and a mixture of surface and embedded cuticular waxes, experiences a wide variety of temperatures and hydration states. Consequently, a complete understanding of cuticular function requires study of its thermal and mechanical properties as a function of hydration. Herein, we report the results of a comprehensive 13C nuclear magnetic resonance (NMR) relaxation study of hydrated tomato fruit cuticle. Cross-polarization and direct-polarization experiments serve to measure the solid-like and liquid-like components, respectively, of hydrated cuticle. Localized, high-frequency motions are probed by T1(C) spin relaxation measurements, whereas T1rho(H) and T1rho(C) experiments reflect low-frequency, lower amplitude polymer-chain motions. In addition, variable-temperature measurements of T1(C) and T1rho(C) for dry tomato cuticles are used to evaluate the impact of temperature stress. Results of these experiments are interpreted in terms of changes occurring in individual polymer motions of the cutin/wax components of tomato cuticle and in the interaction of these components within intact cuticle, both of which are expected to influence the functional integrity of this protective plant covering.  相似文献   

10.
The scale, mechanism, and physiological importance of cuticular transpiration were last reviewed in this journal 5 and 10 years ago. Progress in our basic understanding of the underlying processes and their physiological and structural determinants has remained frustratingly slow ever since. There have been major advances in the quantification of cuticular water permeability of stomata-bearing leaf and fruit surfaces and its dependence on leaf temperature in astomatous surfaces, as well as in our understanding of the respective roles of epicuticular and intracuticular waxes and molecular-scale aqueous pores in its physical control. However, understanding the properties that determine the thousand-fold differences between permeabilities of different cuticles remains a huge challenge. Molecular biology offers unique opportunities to elucidate the relationships between cuticular permeability and structure and chemical composition of cuticles, provided care is taken to quantify the effects of genetic manipulation on cuticular permeability by reliable experimental approaches.  相似文献   

11.
J. Schönherr 《Planta》1976,131(2):159-164
Summary The water permeability of astomatous cuticular membranes isolated from Citrus aurantium L. leaves, pear (Pyrus communis L.) leaves and onion (Allium cepa L.) bulb scales was determined before and after extraction of cuticular waxes with lipid solvents. In pear, the permeability coefficients for diffusion of tritiated water across cuticular membranes (CM) prior to extraction [P d(CM)] decreased by a factor of four during leaf expansion. In all three species investigated P d(CM) values of cuticular membranes from fully expanded leaves varied between 1 to 2×10-7 cm-3 s-1·P d(CM) values were not affected by pH. Extraction of cuticular waxes from the membranes increased their water permeability by a factor of 300 to 500. Permeability coefficients for diffusion of THO across the cutin matrix (MX) after extraction [P d(MX)] increased with increasing pH. P dvalues were not inversely proportional to the thickness of cuticular membranes. By treating the cutin matrix and cuticular waxes as two resistances acting in series it was shown that the water permeability of cuticles is completely determined by the waxes. The lack of the P d(CM) values to respond to pH appeared to be due to structural effects of waxes in the cutin matrix. Cuticular membranes from the submerse leaves of the aquatic plant Potamogeton lucens L. were three orders of magnitude more permeable to water than the cuticular membranes of the terrestrial species investigated.Abbreviations CM cuticular membrane - MX cutin matrix - WAX waxes This study was supported by a grant from the Deutsche Forschungsgemeinschaft.  相似文献   

12.
植物角质层内外蜡质的差异及其与抗逆性的关系   总被引:1,自引:0,他引:1  
植物角质层是覆盖在植物地上部分的叶、花和非木质茎等器官表面的保护层,包括角质和蜡质。其中蜡质根据分布位置不同又分为表皮蜡质和内部蜡质。大量研究表明,表皮蜡质含量和结构在植物生长发育和抗逆性申发挥着重要作用。近年来有研究发现构成蜡质的成分在内外蜡质层中的分布存在差异,角质层蜡质成分影响植物抗逆性。本文针对角质层结构和内外蜡质差异性以及角质层结构和组成与植物抗逆性之间的关系进行了综述。  相似文献   

13.
Cuticular waxes play a pivotal role in limiting transpirational water loss across the plant surface. The correlation between the chemical composition of the cuticular waxes and their function as a transpiration barrier is still unclear. In the present study, intact tomato fruits (Lycopersicon esculentum) are used, due to their astomatous surface, as a novel integrative approach to investigate this composition- function relationship: wax amounts and compositions of tomato were manipulated before measuring unbiased cuticular transpiration. First, successive mechanical and extractive wax-removal steps allowed the selective modification of epi- and intracuticular wax layers. The epicuticular film consisted exclusively of very-long-chain aliphatics, while the intracuticular compartment contained large quantities of pentacyclic triterpenoids as well. Second, applying reverse genetic techniques, a loss-of-function mutation with a transposon insertion in a very-long-chain fatty acid elongase beta-ketoacyl-CoA synthase was isolated and characterized. Mutant leaf and fruit waxes were deficient in n-alkanes and aldehydes with chain lengths beyond C30, while shorter chains and branched hydrocarbons were not affected. The mutant fruit wax also showed a significant increase in intracuticular triterpenoids. Removal of the epicuticular wax layer, accounting for one-third of the total wax coverage on wild-type fruits, had only moderate effects on transpiration. By contrast, reduction of the intracuticular aliphatics in the mutant to approximately 50% caused a 4-fold increase in permeability. Hence, the main portion of the transpiration barrier is located in the intracuticular wax layer, largely determined by the aliphatic constituents, but modified by the presence of triterpenoids, whereas epicuticular aliphatics play a minor role.  相似文献   

14.
15.
Atomic force microscopy, FT-IR spectroscopy, and solid-state nuclear magnetic resonance have been used to improve our current knowledge on the molecular characteristics of the biopolyester cutin, the main component of the plant cuticle. After comparison of samples of cutin isolated from young and mature tomato fruit cuticles has been possible to establish different degrees of cross-linking in the biopolymer and that the polymer is mainly formed after esterification of secondary hydroxyl groups of the monomers that form this type of cutin. Atomic force microscopy gave useful structural information on the molecular topography of the outer surface of the isolated samples. The texture of these samples is a consequence of the cross-linking degree or chemical status of the polymer. Thus, the more dense and cross-linked cutin from ripe or mature tomato fruit is characterized by a flatter and more globular texture in addition to the development of elongated and orientated superstructures.  相似文献   

16.
Some physical and morphological factors of grape berry cuticlewere investigated at different developmental stages of threeclones ofVitis vinifera cv. Pinot noir. The surface morphologyof grape berries was examined by scanning electron microscopyand cuticle anatomy was examined by light and transmission electronmicroscopy. During the period from flowering to maturity, thecomposition of the cuticular waxes changed, corresponding withan increase of waxy deposits and significant modifications ofthe wax surface morphology. The content in cutin per unit surfacedecreased more than 2.5-fold between berry set (16 d after anthesis)and veraison of the grape berries, and might predispose thegrape berry to fungal infection. This result was correlatedwith the differentiation of the cuticle layers and particularlywith a decrease in the thickness of the primary cuticle at harvest. Key words: Botrytis cinerea, cuticle, cutin, epicuticular waxes, Vitis vinifera L  相似文献   

17.
Benny Chefetz 《Plant and Soil》2007,298(1-2):21-30
The sorption of organic compounds by plant cuticular matter has been extensively investigated; however, little has been studied regarding the effect of plant cuticle degradation on their role in the sorption of organic compounds in soils. The sorption of phenanthrene was studied in soil samples which had been incubated for up to 9 months with three different types of plant cuticle isolated from tomato fruits, pepper fruits and citrus leaves. The main change in the diffuse reflectance Fourier-transform infrared (DRIFT) spectra during incubation of the cuticles was related to cutin decomposition. The peaks assigned to methyl and ethyl vibration and C=O vibration in ester links decreased with decomposition. In general, with all samples, the phenanthrene sorption coefficients calculated for the whole incubated soils (K d) decreased with incubation time. In contrast, the carbon-normalized K d values (K oc) did not exhibit a similar trend for the different cuticles during incubation. The origin of the cuticle also affected the linearity of the sorption isotherms. With the tomato and citrus cuticle samples, the Freundlich N values were close to unity and were stable throughout incubation. However with the green pepper cuticle, the N values exhibited a significant decrease (from 0.98 to 0.70). This study demonstrates that the structural composition of the plant cuticle affects its biodegradability and therefore its ability to sorb organic compounds in soils. Of the residues originating from plant cuticular matter in soils, the cutan biopolymer and lignin-derived structures appear to play a dominant role in sorption as decomposition progresses. Responsible Editor: Alfonso Escudero.  相似文献   

18.
Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking.  相似文献   

19.
The fine structure and monomeric composition of the ester-cutin fraction (susceptible to BF3/CH3OH transesterification) of the adaxial leaf cuticle of Clivia miniata Reg. were studied in relation to leaf and cuticle development. Clivia leaves grow at their base such that cuticle and tissues increase in age from the base to the tip. The zone of maximum growth (cell expansion) was located between 1 and 4 cm from the base. During cell expansion, the projected surface area of the upper epidermal cells increased by a factor of nine. In the growth region the cuticle consists mainly of a polylamellate cuticle proper of 100–250 nm thickness. After cell expansion has ceased both the outer epidermal wall and the cuticle increase in thickness. Thickening of the cuticle is accomplished by interposition of a cuticular layer between the cuticle proper and the cell wall. The cuticular layer exhibits a reticulate fine structure and contributes most of the total mass of the cuticle at positions above 6 cm from the leaf base. The composition of ester cutin changed with the age of cuticles. In depolymerisates from young cuticles, 26 different monomers could be detected whereas in older ones their number decreased to 13. At all developmental stages, 9,16-/10,16-dihydroxyhexadecanoic acid (positional isomers not separated), 18-hydroxy-9-octadecenoic acid, 9,10,18-trihydroxyoctadecanoic acid and 9,10-epoxy-18-hydroxyoctadecanoic acid were most frequent with the epoxy alkanoic acid clearly predominating (47% at 16 cm). The results are discussed as to (i) the age dependence of cutin composition, (ii) the relationship between fine structure and composition, (iii) the composition of the cuticle proper, the cuticular layer and the non-depolymerizable cutin fraction, and (iv) the polymeric structure of cutin.Abbreviations CL cuticular layer - CP cuticle proper - MX cutin polymer matrix  相似文献   

20.
The effects of chlorine substitution on the movement of phenoxyaceticand benzoic acids through enzymatically-isolated cuticles ofLycopersicon fruits were determined by following the transferof each acid containing 14C from a donor to a receiver solution.This cuticle is characterized by an isotropic cutin matrix,within which patches of birefringent cuticular waxes are foundnear the outer surface. The outer, morphological surface isrelatively smooth while at the junction with the outer wallsof the epidermal cells there is extensive cuticular developmentextending down between the anticlinal walls. The epicuticularwax appears as a soft sheet-like covering of which the surfaceis relatively featureless. Chlorination of phenoxyacetic acid results in an enhanced transferacross the isolated cuticle. The order was 2,4,5- and 2,4,6-trichlorophenoxyacetic> 2,4- and 3,5-dichlorophenoxyacetic > 2-chlorophenoxyacetic> phenoxyacetic acid. Removal of the epicuticular wax resultedin greater permeability for all compounds; transfer of the morepolar acids was favoured. In contrast, chlorination of benzoicacid decreases passage through the cuticle; the rate is highestfor benzoic acid followed in descending order by 2-chlorobenzoic,2,4- and 2,5-dichlorobenzoic and 2,3,6-trichlorobenzoic acid.Chlorination also depresses the passage of both phenoxyaceticand benzoic acid through a dialysis membrane. The effects ofchlorination on the lipid solubility of both series of compoundsare discussed in relation to differences in transfer acrossthe cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号