首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
International Journal of Peptide Research and Therapeutics - The growth of pathogens across the globe is developing at a very fast rate, thus turning into a worldwide health problem. Since, current...  相似文献   

2.
Antimicrobial Peptides and their Potential as Oral Therapeutic Agents   总被引:1,自引:0,他引:1  
Dental caries (tooth decay) and periodontal diseases are the most prevalent bacterial infectious diseases of mankind, together affecting almost the entire population of the world. Both diseases are caused by oral bacteria that exist as components of a polymicrobial biofilm, known as dental plaque, on the tooth surface. The control of specific types of bacteria and/or total numbers of bacteria in dental plaque could lead to prevention or resolution of disease. Antimicrobial peptides isolated from a wide range of natural sources have been known for over 30 years yet little progress had been made in the therapeutic application of these peptides. This is due in part to the characteristics, including susceptibility to proteolysis, of the cationic amphipathic antimicrobial peptides that form the majority of peptides discovered to date. Bovine milk is a readily available source of a range of bioactive peptides. We have isolated and characterized a novel anionic antimicrobial peptide, Kappacin, from bovine milk. Antibacterial activity of the peptide is increased when it is complexed with zinc ions. We have demonstrated that a Kappacin:Zn2+ preparation is able to suppress the growth of oral cariogenic bacteria in a biofilm. The Kappacin:Zn2+ antibacterial complex may have potential as an additive to oral care products and other delivery vehicles for the control of oral disease.  相似文献   

3.
Antimicrobial peptides are promising candidates for anti-infective pharmaceuticals. Unfortunately, because of their low proteolytic and chemical stability, their usage is generally narrowed down to topical formulations. Until now, numerous approaches to increase peptide stability have been proposed. One of them, peptide hydrocarbon stapling, a modification based on stabilizing peptide secondary structure with a side-chain covalent hydrocarbon bridge, have been successfully applied to many peptides. Moreover, constraining secondary structure of peptides have also been proven to increase their biological activity. This review article describes studies on hydrocarbon stapled antimicrobial peptides with respect to improved drug-like properties.  相似文献   

4.
Peptides with antimicrobial properties are present in most if not all plant species. All plant antimicrobial peptides isolated so far contain even numbers of cysteines (4, 6, or 8), which are all pairwise connected by disulfide bridges, thus providing high stability to the peptides. Based on homologies at the primary structure level, plant antimicrobial peptides can be classified into distinct families including thionins, plant defensins, lipid transfer proteins, and he vein- and knottin-type antimicrobial peptides. Detailed three-dimensional structure information has been obtained for one or more members of these peptide families. All antimicrobial peptides studied thus far appear to exert their antimicrobial effect at the level of the plasma membrane of the target microorganism, but the different peptide types are likely to act via different mechanisms. Antimicrobial peptides can occur in all plant organs. In unstressed organs, antimicrobial peptides are usually most abundant in the outer cell layer lining the organ, which is consistent with a role for the antimicrobial peptides in constitutive host defense against microbial invaders attacking from the outside. Thionins are predominantly located intracellularly but are also found in the extracellular space, whereas most plant defensins and lipid transfer proteins are deposited exclusively in the extracellular space. In a number of plant species, a strong induction of genes expressing either thionins, plant defensins, or lipid transfer proteins has been observed on infection of the leaves by microbial pathogens. Hence, antimicrobial peptides can also take part in the inducible defense response of plants. Constitutive expression in transgenic plants of heterologous antimicrobial peptide genes has been achieved, which in some cases has led to enhanced resistance to particular microbial plant pathogens.  相似文献   

5.
贻贝抗菌肽的研究进展   总被引:1,自引:0,他引:1  
贻贝中存在多种抗菌肽,根据一级结构的不同分为4种:defensin(防卫肽)、mytilin、myticin和mytimycin。抗菌肽以前体的形式存在,在缺乏感染等刺激物的情况下。成熟前体以活性方式储存在血液中,当受到感染后便参与组织反应。它们的抗感染反应与哺乳动物吞噬细胞的作用相似,不同的抗菌肽具有不同的抗菌谱。抗菌肽是机体在进化过程中非特异性免疫系统中的一种。  相似文献   

6.
International Journal of Peptide Research and Therapeutics - Antimicrobial peptides (AMPs) are small sized protein molecules which play a crucial role in host inborn immune framework. AMPs with...  相似文献   

7.
8.
Comparative antimicrobial properties of three artificial cationic synthetic antimicrobial peptides (SAMP): (RAhaR)4AhaβA (where R is Arg, Aha is 6-aminohexanoic acid, βA is beta-alanine), (KFF)3K and R9F2 with various amphiphilic properties have been studied relative to pathogenic strains of microorganisms: Gram-negative bacteria Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, and Salmonella enterica, Gram-positive bacteria Staphylococcus aureus, and pathogenic yeast fungus Candida albicans. The selectivity index (SI) values of the peptide preparations were calculated as the ratio of the 50% cytotoxic concentration (TC50) towards eukaryotic host cells to the MIC50 values of the testing antimicrobial peptides. The studied SAMPs appeared to be the most active against the pathogenic yeast fungus C. albicans and the bacterial strains St. aureus and P. aeruginosa. The SI values in these cases exceed 40. Some assumed molecular interactions of the studied SAMPs on the microbial cells have been considered, and possible pathways to increase their antimicrobial activity have been suggested. The proposed SAMPs can serve as a basis for the design and synthesis of new promising synthetic antimicrobial agents.  相似文献   

9.
抗菌肽数据库简介   总被引:1,自引:0,他引:1  
随着抗菌肽研究的不断发展,科研工作者建立了抗菌肽数据库。这些数据库使得抗菌肽的研究更加方便。就几个重要抗菌肽数据库的内容和使用方法作一简介  相似文献   

10.
Antimicrobial peptides have been recognized as a novel class of antibiotics and several candidates are currently in clinical trials. In the present study, new antimicrobial compounds were synthesized by coupling quinazolinone moiety with the fragments of elastin sequences VP, GVP, VGVP and GVGVP. They were evaluated for their antibacterial activity against both gram positive and gram negative bacterial strains. We are here reporting that heterocyclic conjugated tetra peptide and penta peptide showed enhanced antibacterial activity compare to the conventional antimicrobial drugs.  相似文献   

11.
抗菌肽的研究进展   总被引:11,自引:0,他引:11  
抗菌肽又称抗微生物肽(antimicrobial peptide)或肽抗生素(peptide antibiotics),在动植物体内分布广泛,是天然免疫防御系统的一部分。抗菌肽不仅有广谱抗细菌能力,而且对真菌、病毒及癌细胞也有作用。对抗菌肽作用机理的研究是近来的热点之一,本文综述了此方面近来的进展,并对微生物针对抗菌肽的耐药性进行了讨论。  相似文献   

12.
A novel method for rapid screening of antimicrobial peptides (AMPs) was developed by using immobilized lipid affinity capture (ILAC) coupled with LC-MS. Phospholipid (PL) mixture containing phosphatidyl glycerol (PG): phosphatidyl ethanolamine (PE) (4:1), roughly mimic the PL composition of Gram-positive bacterial membrane, was covalently immobilized on magnetic particles (MPs). PL monolayer immobilized on MPs was used as a matrix for capturing of the membrane-disruptive AMPs. Hominicin, a new AMP against Gram-positive bacteria, was successfully captured by ILAC from the peptide pool of Staphylococcus hominis MBBL 2–9. The hominicin was identified by the comparative analysis of LC-MS 2Dprofiles of peptides captured by bare and PL-immobilized MPs. This is the first report for the development of rapid AMP screening method using lipid-immobilized MPs and LC-MS which will be a promising tool for discovery of various kinds of AMPs.  相似文献   

13.
This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents.  相似文献   

14.
新疆家蚕抗菌肽抗菌作用的超微结构观察及抗菌机理初探   总被引:1,自引:0,他引:1  
为探讨基因工程表达的新疆家蚕(Bombyx mori)抗菌肽(cecropin-XJ)的抗菌机制,通过紫外分光光度法研究抗菌肽的抑菌动力学,并采用透射电镜观察抗菌肽作用于金黄色葡萄球菌(Staphylococcus aureus)后的超微结构,对抗菌肽抗菌机理进行初步探讨。结果表明,抗菌肽抑菌作用比较明显,抗菌肽的活性与作用时间有关。抗菌肽可能是通过"桶-板"模式渗透细胞膜,从而影响细胞膜的结构和功能,使细胞膜形成许多孔道,增强了金黄色葡萄球菌细胞的通透性,造成细胞内的原生质扩散,并从孔道向胞外渗漏,影响了细菌的代谢系统,从而起到抑菌、杀菌作用。抗菌肽使金黄色葡萄球菌细胞内容物大量渗漏而死亡,死亡细胞的细胞壁保持完整,表明细胞膜是抗菌肽作用的主要靶位点。  相似文献   

15.
During inhalational anthrax, Bacillus anthracis survives and replicates in alveolar macrophages, followed by rapid invasion into the host's bloodstream, where it multiplies to cause heavy bacteremia. B. anthracis must therefore defend itself from host immune functions encountered during both the intracellular and the extracellular stages of anthrax infection. In both of these niches, cationic antimicrobial peptides are an essential component of the host's innate immune response that targets B. anthracis. However, the genetic determinants of B. anthracis contributing to resistance to these peptides are largely unknown. Here we generated Tn917 transposon mutants in the ΔANR strain (pXO1 pXO2) of B. anthracis and screened them for altered protamine susceptibility. A protamine-sensitive mutant identified carried the transposon inserted in the BA1486 gene encoding a putative membrane protein homologous to MprF known in several gram-positive pathogens. A mutant strain with the BAS1375 gene (the orthologue of BA1486) deleted in the Sterne 34F2 strain (pXO1+ pXO2) of B. anthracis exhibited hypersusceptibility not only to protamine but also to α-helical cathelicidin LL-37 and β-sheet defensin human neutrophil peptide 1 compared to the wild-type Sterne strain. Analysis of membrane lipids using isotopic labeling demonstrated that the BAS1375 deletion mutant is unable to synthesize lysinylated phosphatidylglycerols, and this defect is rescued by genetic complementation. Further, we determined the structures of these lysylphosphatidylglycerols by using various mass spectrometric analyses. These results demonstrate that in B. anthracis a functional MprF is required for the biosynthesis of lysylphosphatidylglycerols, which is critical for resistance to cationic antimicrobial peptides.  相似文献   

16.
This review highlights the design principles, progress and advantages attributed to the structural diversity associated with both natural and synthetic multivalent antimicrobial peptides (AMPs). Natural homo- or hetero-dimers of AMPs linked by intermolecular disulfide bonds existed in the animal kingdom, but the multivalency strategy has been adopted to create synthetic branched or polymeric AMPs that do not exist in nature. The multivalent strategy for the design of multivalent AMPs provides advantages to overcome the challenges faced in clinical applications of AMPs, such as: stability, efficiency, toxicity, maintenance of activity in high salt concentrations and under physiological conditions, and importantly overcoming bacterial resistance which is currently a leading health problem in the world. The multivalency strategy is valuable for moving multivalent AMPs toward clinical applications.  相似文献   

17.
Outer membrane vesicles (OMVs) that are released from Gram-negative pathogenic bacteria can serve as vehicles for the translocation of effectors involved in infectious processes. In this study we have investigated the role of OMVs of the Vibrio cholerae O1 El Tor A1552 strain in resistance to antimicrobial peptides (AMPs). To assess this potential role, we grew V. cholerae with sub-lethal concentrations of Polymyxin B (PmB) or the AMP LL-37 and analyzed the OMVs produced and their effects on AMP resistance. Our results show that growing V. cholerae in the presence of AMPs modifies the protein content of the OMVs. In the presence of PmB, bacteria release OMVs that are larger in size and contain a biofilm-associated extracellular matrix protein (Bap1). We demonstrated that Bap1 binds to the OmpT porin on the OMVs through the LDV domain of OmpT. In addition, OMVs from cultures incubated in presence of PmB also provide better protection for V. cholerae against LL-37 compared to OMVs from V. cholerae cultures grown without AMPs or in presence of LL-37. Using a bap1 mutant we showed that cross-resistance between PmB and LL-37 involved the Bap1 protein, whereby Bap1 on OMVs traps LL-37 with no subsequent degradation of the AMP.  相似文献   

18.
Typical of many viral fusion proteins, the sequence of the Newcastle disease virus (NDV) fusion protein has several heptad repeat regions. One, HR1, is located just carboxyl terminal to the fusion peptide, while the other, HR2, is located adjacent to the transmembrane domain. The structure and function of a synthetic peptide with a sequence from the region of the NDV HR1 region (amino acids 150 to 173) were characterized. The peptide inhibited fusion with a half-maximal concentration of approximately 2 microM; however, inhibition was observed only if the peptide was added prior to protease activation of the fusion protein. This inhibition was virus specific since the peptide had minimal effect on fusion directed by the Sendai virus glycoproteins. To explore the mechanism of action, the potential HR1 peptide interaction with a previously characterized fusion inhibitory peptide with a sequence from the HR2 domain (J. K. Young, R. P. Hicks, G. E. Wright, and T. G. Morrison, Virology 238:291-304, 1997) was characterized. The results demonstrated an interaction between the two peptides both functionally and directly. First, while the individual peptides each inhibit fusion, equimolar mixtures of the two peptides had minimal effect on fusion, suggesting that the two peptides form a complex preventing their interaction with a target protein. Second, an HR2 peptide covalently linked with biotin was found to bind specifically to HR1 peptide in a Western blot. The structure of the HR1 peptide was analyzed by nuclear magnetic resonance spectroscopy and found to be an alpha helix.  相似文献   

19.
长期滥用抗生素导致了耐药菌株“超级细菌”的出现,增加了动物、人类健康和环境污染风险.寻找抗生素替代品正成为全球研究热点,抗菌肽因其高效抗菌效果和不同于抗生素的独特作用机制引起了各国研究者的关注,并进行了相关研究.然而抗菌肽的安全性、稳定性、生产成本等问题限制了其生产与应用.为了克服这些不利因素,研究者们对抗菌肽进行了多种方式的改造,产生了模拟型、同源型、杂合型、轭合型、稳定型和固位型等改良型抗菌肽,并有望在畜牧业、食品业、医药业等领域得到广泛的应用.本文主要综述了这些改良型抗菌肽近年来的研究进展.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号