首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodomyrtone from a medicinal plant species, Rhodomyrtus tomentosa, is a challenged effective agent against Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). The present study was undertaken to provide insight into MRSA extracellular protein expression following rhodomyrtone treatment. Secreteomic approach was performed on a representative clinical MRSA isolate exposing to subinhibitory concentration rhodomyrtone (0.174 μg/ml). The identified extracellular proteins of a response of MRSA to rhodomyrtone treated condition were both suppressed and overexpressed. Staphylococcal antigenic proteins, immunodominant antigen A (IsaA) and staphylococcal secretory antigen (SsaA) involved in cell wall hydrolysis were downregulated after the treatment. The results suggested that rhodomyrtone may interfere with WalK/WalR (YycG/YycF) system. Other enzymes such as lipase precursor and another lipase, glycerophosphoryl diester phosphodiesterase, were absent. In contrast, cytoplasmic proteins such as SpoVG and glycerol phosphate lipoteichoic acid synthase, and ribosomal proteins were found in the treated sample. Appearance of several cytoplasmic proteins in the treated culture supernatant revealed that the bacterial cell wall biosynthesis was disturbed. This finding provides a proteomic mapping of extracellular proteins after rhodomytone treatment. Extensive investigation is required for this natural compound as it has a great potency as an alternative anti-MRSA drug.  相似文献   

2.
The ethanolic extract from Rhodomyrtus tomentosa leaf exhibited good antibacterial activities against both methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213. Its minimal inhibitory concentration (MIC) values ranged from 31.25-62.5 μg/ml, and the minimal bactericidal concentration (MBC) was 250 μg/ml. Rhodomyrtone, an acylphloroglucinol derivative, was 62.5-125 times more potent at inhibiting the bacteria than the ethanolic extract, the MIC and MBC values were 0.5 μg/ml and 2 μg/ml, respectively. To provide insights into antibacterial mechanisms involved, the effects of rhodomyrtone on cellular protein expression of MRSA have been investigated using proteomic approaches. Proteome analyses revealed that rhodomyrtone at subinhibitory concentration (0.174 μg/ml) affected the expression of several major functional classes of whole cell proteins in MRSA. The identified proteins involve in cell wall biosynthesis and cell division, protein degradation, stress response and oxidative stress, cell surface antigen and virulence factor, and various metabolic pathways such as amino acid, carbohydrate, energy, lipid, and nucleotide metabolism. Transmission electron micrographs confirmed the effects of rhodomyrtone on morphological and ultrastructural alterations in the treated bacterial cells. Biological processes in cell wall biosynthesis and cell division were interrupted. Prominent changes including alterations in cell wall, abnormal septum formation, cellular disintegration, and cell lysis were observed. Unusual size and shape of staphylococcal cells were obviously noted in the treated MRSA. These pioneer findings on proteomic profiling and phenotypic features of rhodomyrtone-treated MRSA may resolve its antimicrobial mechanisms which could lead to the development of a new effective regimen for the treatment of MRSA infections.  相似文献   

3.
Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry worldwide. Oxygen deprivation is a stress that A. pleuropneumoniae will encounter during both early infection and the later, persistent stage. To understand modulation of A. pleuropneumoniae gene expression in response to the stress caused by anaerobic conditions, gene expression profiles under anaerobic and aerobic conditions were compared in this study. The microarray results showed that 631 genes (27.7% of the total ORFs) were differentially expressed in anaerobic conditions. Many genes encoding proteins involved in glycolysis, carbon source uptake systems, pyruvate metabolism, fermentation and the electron respiration transport chain were up-regulated. These changes led to an increased amount of pyruvate, lactate, ethanol and acetate in the bacterial cells as confirmed by metabolite detection. Genes encoding proteins involved in cell surface structures, especially biofilm formation, peptidoglycan biosynthesis and lipopolysaccharide biosynthesis were up-regulated as well. Biofilm formation was significantly enhanced under anaerobic conditions. These results indicate that induction of central metabolism is important for basic survival of A. pleuropneumoniae after a shift to an anaerobic environment. Enhanced biofilm formation may contribute to the persistence of this pathogen in the damaged anaerobic host tissue and also in the early colonization stage. These discoveries give new insights into adaptation mechanisms of A. pleuropneumoniae in response to environmental stress.  相似文献   

4.
The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the construction of in vivo selection systems. We have isolated the asd, dapA, dapB, dapD, and dapE genes involved in the DAP biosynthetic pathway of Mycobacterium bovis BCG. These genes were isolated by complementation of Escherichia coli mutations with an expression library of BCG DNA. Our analysis of these genes suggests that BCG may use more than one pathway for biosynthesis of DAP. The nucleotide sequence of the BCG dapB gene was determined. The activity of the product of this gene in Escherichia coli provided evidence that the gene may encode a novel bifunctional dihydrodipicolinate reductase and DAP dehydrogenase.  相似文献   

5.
6.
7.
Mycobacterial peptidoglycan contains L-alanyl-D-iso-glutaminyl-meso-diaminopimelyl-D-alanyl-D-alanine peptides, with the exception of the peptidoglycan of Mycobacterium leprae, in which glycine replaces the L-alanyl residue. The third-position amino acid of the peptides is where peptidoglycan cross-linking occurs, either between the meso-diaminopimelate (DAP) moiety of one peptide and the penultimate D-alanine of another peptide or between two DAP residues. We previously described a collection of spontaneous mutants of DAP-auxotrophic strains of Mycobacterium smegmatis that can grow in the absence of DAP. The mutants are grouped into seven classes, depending on how well they grow without DAP and whether they are sensitive to DAP, temperature, or detergent. Furthermore, the mutants are hypersusceptible to beta-lactam antibiotics when grown in the absence of DAP, suggesting that these mutants assemble an abnormal peptidoglycan. In this study, we show that one of these mutants, M. smegmatis strain PM440, utilizes lanthionine, an unusual bacterial metabolite, in place of DAP. We also demonstrate that the abilities of PM440 to grow without DAP and use lanthionine for peptidoglycan biosynthesis result from an unusual mutation in the putative ribosome binding site of the cbs gene, encoding cystathionine beta-synthase, an enzyme that is a part of the cysteine biosynthetic pathway.  相似文献   

8.
The nitrogen composition of grape musts affects fermentation kinetics and production of aroma and spoilage compounds in wine. It is common practice in wineries to supplement grape musts with diammonium phosphate (DAP) to prevent nitrogen-related fermentation problems. Laboratory strains of Saccharomyces cerevisiae preferentially use rich nitrogen sources, such as ammonia, over poor nitrogen sources. We used global gene expression analysis to monitor the effect of DAP addition on gene expression patterns in wine yeast in fermenting Riesling grape must. The expression of 350 genes in the commercial wine yeast strain VIN13 was affected; 185 genes were down-regulated and 165 genes were up-regulated in response to DAP. Genes that were down-regulated encode small molecule transporters and nitrogen catabolic enzymes, including those linked to the production of urea, a precursor of ethyl carbamate in wine. Genes involved in amino acid metabolism, assimilation of sulfate, de novo purine biosynthesis, tetrahydrofolate one-carbon metabolism, and protein synthesis were up-regulated. The expression level of 86 orphan genes was also affected by DAP.  相似文献   

9.
Diaminopimelate (DAP) epimerase is involved in the biosynthesis of meso-DAP and lysine, which are important precursors for the synthesis of peptidoglycan, housekeeping proteins, and virulence factors in bacteria. Accordingly, DAP epimerase is a promising antimicrobial target. Previous studies report that DAP epimerase exists as a monomeric enzyme. However, we show using analytical ultracentrifugation, X-ray crystallography, and enzyme kinetic analyses that DAP epimerase from Escherichia coli exists as a functional dimer in solution and the crystal state. Furthermore, the 2.0-Å X-ray crystal structure of the E. coli DAP epimerase dimer shows for the first time that the enzyme exists in an open, active conformation. The importance of dimerization was subsequently probed by using site-directed mutagenesis to generate a monomeric mutant (Y268A). Our studies show that Y268A is catalytically inactive, thus demonstrating that dimerization of DAP epimerase is essential for catalysis. Molecular dynamics simulations indicate that the DAP epimerase monomer is inherently more flexible than the dimer, suggesting that dimerization optimizes protein dynamics to support function. Our findings offer insight into the development of novel antimicrobial agents targeting the dimeric antibiotic target DAP epimerase.  相似文献   

10.

Background

The increasing resistance of Staphylococcus aureus to conventional antibiotics poses a major health problem. Moreover, S. aureus can survive within phagocytes, thus evading some antibiotics and the innate immune response. Rhodomyrtone, a bioactive compound from the leaves of Rhodomyrtus tomentosa, possesses potent antibacterial activity against methicillin-resistant S. aureus (MRSA). This study was to investigate the immunomodulatory effects of rhodomyrtone on THP-1 monocytes in response to MRSA.

Methods

THP-1 monocytes were stimulated with heat-killed MRSA, followed by treatment with rhodomyrtone. The cell pellets were prepared to detect pro-inflammatory molecules using real-time PCR. The supernatants were collected to assess nitric oxide production using Griess assay. Assays for phagocytosis and bacterial killing by THP-1 monocytes were performed to determine if they were affected by rhodomyrtone.

Results

Expression of pro-inflammatory molecules including IL-1β, TNF-α, IL-6, and iNOS was enhanced in THP-1 monocytes stimulated with high doses of heat-killed MRSA (108 to 109 cfu/ml). In contrast, monocytes stimulated with MRSA at lower doses (106 to 107 cfu/ml) did not induce the expression of these cytokines. However, rhodomyrtone significantly increased the expression of pro-inflammatory mediators, IL-6 and iNOS in monocytes stimulated with heat-killed MRSA at low doses, and displayed some anti-inflammatory activity by reducing TNF-α expression in monocytes stimulated with heat-killed MRSA at high doses. Treatment with rhodomyrtone also significantly up-regulated the expression of the key pattern recognition receptors, TLR2 and CD14, in THP-1 monocytes stimulated with heat-killed MRSA at 106 to 109 cfu/ml, while heat-killed MRSA alone did not induce the expression of these molecules. The ability of rhodomyrtone to eliminate MRSA from the monocytes was observed within 24 h after treatment.

Conclusion

Rhodomyrtone enhanced the expression of pattern recognition receptors by monocytes in response to MRSA. Increased expression of these receptors might improve MRSA clearance by modulating pro- and anti-inflammatory cytokine responses.  相似文献   

11.
Ramoplanin is a potent lipoglycodepsipeptide antibiotic that is active against a wide range of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). It acts as an inhibitor of peptidoglycan (PG) biosynthesis that disrupts glycan chain polymerization by binding and sequestering Lipid II, a PG precursor. Herein, we report the functional antimicrobial activity (MIC, S. aureus) and fundamental biochemical assessments against a peptidoglycan glycosyltransferase (Escherichia coli PBP1b) of a set of key alanine scan analogues of ramoplanin that provide insight into the importance and role of each of its individual amino acid residues.  相似文献   

12.
13.
14.
Pristinamycin I (PI), a streptogramin type B antibiotic produced by Streptomyces pristinaespiralis, contains the aproteinogenic amino acid l-phenylglycine. Recent sequence analysis led to the identification of a set of putative phenylglycine biosynthetic genes. Successive inactivation of the individual genes resulted in a loss of PI production. Production was restored by supplementation with externally added l-phenylglycine, which demonstrates that these genes are involved in phenylglycine biosynthesis and thus probably disclosing the last essential pristinamycin biosynthetic genes. Finally, a putative pathway for phenylglycine synthesis is proposed.  相似文献   

15.
16.
Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered and attached to the bottom of the plate when cells were grown in the presence of pyrimidinedione. Scanning electron microscopy analysis demonstrated the absence of an extracellular polysaccharide matrix in pyrimidinedione-grown biofilms compared to control-biofilms. Pyrimidinedione also significantly inhibited MRSA, MSSA, and Staphylococcus epidermidis biofilm growth in vitro. Furthermore, pyrimidinedione does not exhibit eukaryotic cell toxicity. In a microarray analysis, 56 genes were significantly up-regulated and 204 genes were significantly down-regulated. Genes involved in galactose metabolism were exclusively up-regulated in pyrimidinedione-grown biofilms. Genes related to DNA replication, cell division and the cell cycle, pathogenesis, phosphate-specific transport, signal transduction, fatty acid biosynthesis, protein folding, homeostasis, competence, and biofilm formation were down regulated in pyrimidinedione-grown biofilms. This study demonstrated that the small molecule Dam inhibitor, pyrimidinedione, inhibits pneumococcal biofilm growth in vitro at concentrations that do not inhibit planktonic cell growth and down regulates important metabolic-, virulence-, competence-, and biofilm-related genes. The identification of a small molecule (pyrimidinedione) with S. pneumoniae biofilm-inhibiting capabilities has potential for the development of new compounds that prevent biofilm formation.  相似文献   

17.
The peptidoglycan cell wall of bacteria is a complex macromolecule composed of glycan strands that are cross-linked by short peptide bridges. Its biosynthesis involves a conserved group of enzymes, the bifunctional penicillin-binding proteins (bPBPs), which contain both a transglycosylase and a transpeptidase domain, thus being able to elongate the glycan strands and, at the same time, generate the peptide cross-links. The stalked model bacterium Caulobacter crescentus possesses five bPBP paralogs, named Pbp1A, PbpC, PbpX, PbpY, and PbpZ, whose function is still incompletely understood. In this study, we show that any of these proteins except for PbpZ is sufficient for growth and normal morphogenesis when expressed at native or elevated levels, whereas inactivation of all five paralogs is lethal. Growth analyses indicate a central role of PbpX in the resistance of C. crescentus against the noncanonical amino acid d-alanine. Moreover, we show that PbpX and PbpY localize to the cell division site. Their recruitment to the divisome is dependent on the essential cell division protein FtsN and likely involves interactions with FtsL and the putative peptidoglycan hydrolase DipM. The same interaction pattern is observed for Pbp1A and PbpC, although these proteins do not accumulate at midcell. Our findings demonstrate that the bPBPs of C. crescentus are, to a large extent, redundant and have retained the ability to interact with the peptidoglycan biosynthetic machineries responsible for cell elongation, cytokinesis, and stalk growth. Nevertheless, they may preferentially act in specific peptidoglycan biosynthetic complexes, thereby facilitating the independent regulation of distinct growth processes.  相似文献   

18.
Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.  相似文献   

19.
Genes coding for entire pathways of antibiotic biosynthesis have been cloned in Streptomyces. Inter-species cloning of antibiotic biosynthesis genes makes it possible to express in the same cell two biosynthetic pathways, which normally operate in different organisms, resulting in the formation of new hybrid structures different from those produced by either parent organism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号