共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Yinghao Z Jun W Yuanbo C Jiachang Y Xiaohong F 《Biochemical and biophysical research communications》2005,331(1):370-374
We have attempted direct observation of the light-driven rotation of a FoF(1)-ATP motor. The FoF(1)-ATP motor was co-reconstituted by the deletion-delta subunit of FoF(1)-ATP synthase with bacteriorhodopsins (BRs) into a liposome. The BR converts radiation energy into electrochemical gradient of proton to drive the FoF(1)-ATP motor. Therefore, the light-driven rotation of FoF(1)-ATP motor has been directly observed by a fluorescence microscopy using a fluorescent actin filament connected to beta-subunit as a marker of its orientation. The rotational torque value of the Fo motor was calculated as 27.93+/-1.88pNnm. The ATP motor is expected to be a promising rotary molecular motor in the development of nanodevices. 相似文献
3.
1. The kinetic properties of FoF1-ATPase from submitochondrial particles isolated from rat heart were studied, with emphasis to the pH effect. The velocity data were treated according to the Hill equation, and the results were discussed on the basis of the knowledge on the soluble F1-ATPase properties. 2. Three kinetic phases were observed in the range of pH 6.0-8.5, with apparent dissociation constant values (K0.5) of 0.001, 0.04 and 1.5 mM (respectively sites I, II and III) at pH 7.0. Their contribution to the total activity of the enzyme were pH-dependent on the range of 6.0-7.0, but not from 7.0 to 8.5, where the maximal velocity (V) for site III was some 4-fold larger than for site II, and the total V of sites II and III was some 40-fold larger than V assumed for site I. Therefore, two catalytic sites seem to participate significantly in the catalysis at steady-state condition. 3. Azide increased the sites II and III K0.5 values as well as decreased the site III V. In the presence of bicarbonate these two sites were not distinguishable, and the kinetic parameters at pH 7.0 were similar to those for sites II and III combined. Both azide and bicarbonate did not have a significant effect on site I, and this behavior was not pH-dependent. 4. The studies on the effect of pH on the kinetic parameters showed the following results: (1) the optimum pH for V was around 8.5; (2) decrease in the K0.5 values at pH below 7.0 for site II, and increase at pH over 7.0 for sites II and III; (3) in the pH range of 6.0-8.5 the Hill coefficient increased for site II, decreased for site III, and an intermediary effect was observed for the sites II and III combined, with a Michaelis-Menten behavior in the highest affinity pH, which was found in the physiological range. 相似文献
4.
5.
Pea (Pisum sativum) chloroplast thylakoid membranes were prepared by washing in hypotonic buffers. These membranes contained bound ribosomes which were active in protein synthesis when supplemented with soluble components from a strain of Escherichia coli low in ribonuclease. After dissolving the membranes by Triton and purification of the ribosomes, sucrose density gradient profiles indicated the presence of polysomal material as well as monomeric ribosomes. Most of the products of protein synthesis remained associated with the thylakoid membranes even after ribosomes were removed completely by high salt concentrations in the absence of Mg2+. Of the newly formed products, 50% could be digested by pronase, while the remainder were protected by their association with the thylakoid membranes. The products are likely to be a mixture of intrinsic and extrinsic membrane proteins, with only the former completely protected by the membranes from attack by proteases. 相似文献
6.
S. M. Kochubei V. V. Shevchenko O. Yu. Bondarenko 《Russian Journal of Plant Physiology》2005,52(4):441-447
Two fractions of membrane fragments—the pellets precipitated at 1300 and 20000 g (fractions G1.3 and G20, respectively)—were isolated from pea (Pisum sativum L.) chloroplasts after solubilization with digitonin. These fragments assigned to grana displayed the following differences: (1) in spectra of low-temperature fluorescence, the ratio of short-wave and long-wave band intensities, as well as integrated intensity of the whole spectrum, were higher for G1.3 than for G20 fraction; (2) in excitation spectra of long-wave fluorescence, the ratio of peaks at 650 and 680 nm and integrated intensity of the spectrum were higher for G1.3 than for G20 fraction; and (3) the shapes of fluorescence excitation spectra differed for G1.3 and G20. These results indicate that the two fractions examined differed in proportion of photosystem I and photosystem II complexes, as well as in organization of these complexes. The size of light-harvesting antenna was larger in PSI complexes of G1.3 fraction, owing, in particular, to a higher content of chlorophyll a/b-protein complexes in this fraction. After repeated digitonin fragmentation of G1.3 and G20 preparations, more than 80% of G1.3 fraction was decomposed into lighter fragments, whereas G20 fraction was resistant to fragmentation (it lost about 10% of its material). Analysis of the data suggests the presence of two structurally different types of thylakoids in grana. The yield of G20 fraction (about 20%) is comparable to the ratio between the number of intergranal thylakoids, connected to granum in pea chloroplasts, and the total number of thylakoids in this granum. Based on these data, we assume that G20 fraction represent the fragments of intergranal thylakoids that extend into the granum.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 499–506.Original Russian Text Copyright © 2005 by Kochubei, Shevchenko, Bondarenko. 相似文献
7.
利用免疫印迹,免疫电镜和ATP水解活性的测定对豌豆(Pisum sativum L.)根细胞胞质中V1-ATPase复合物的存在进行鉴定。用兔抗绿豆V-typeH^ -ATPase的A,B亚基的抗体进行的immuno-blotting和胶体金电镜结果都表明,胞质中存在有A,B亚基。活性测定结果进一步表明胞质具有ATP水解活性,这些结果说明豌豆根胞质具有活性的V1-ATPase复合物。这是首次直接证明植物中有胞质V1-ATPase的存在。 相似文献
8.
豌豆叶绿体经焦磷酸钠盐溶液洗涤,并以加蔗糖的Tris—Tricine缓冲液作分离介质,其抽提液通过 DEAE—Sephadex A_59柱层析,可得较高纯度的腺三磷酶制剂。经免疫沉淀反应、需镁腺三磷酶活和 SDS—聚丙烯酸胺凝胶电泳证明,这种豌豆叶绿体偶联因子腺三磷酶具有五种蛋白带,与菠菜叶绿体偶联因子腺三磷酶的五种亚单位(α,β,γ,δ和ε亚单位)具有相近的分子量,但两者的α和β亚单位大小有异。 相似文献
9.
利用免疫印迹、免疫电镜和ATP水解活性的测定对豌豆(Pisum sativum L.)根细胞胞质中V1-ATPase复合物的存在进行鉴定.用兔抗绿豆V-type H+-ATPase 的A、B亚基的抗体进行的immuno-blotting和胶体金电镜结果都表明,胞质中存在有A、B亚基.活性测定结果进一步表明胞质具有ATP水解活性.这些结果说明豌豆根胞质具有有活性的V1-ATPase复合物.这是首次直接证明植物中有胞质V1-ATPase的存在. 相似文献
10.
Sérgio A. Uyemura Maria C. Jordani Ana C. M. Polizello Carlos Curti 《Molecular and cellular biochemistry》1996,165(2):127-133
The kinetic properties of ATP hydrolysis and synthesis by FoF1-ATPase of heart mitochondria were evaluated during the acute phase of T. cruzi infection in rats. Mitochondria and submitochondrial particles were isolated 7 days (early stage) and 25 days (late stage) following infection of rats with 2 × 105 trypomastigote forms of the Y strain of T. cruzi. The kinetic properties for ATP hydrolysis were altered for the early but not the late stage, showing a changed pH profile, increased K0.5 values, and a decreased total Vmax. The Arrhenius' plot for membrane-associated enzyme showed a higher transition temperature with a lower value for the activation energy in body temperature. For the Triton X-100 - solubilized enzyme, the plot was similar to the control. A decrease in the efficiency of ADP phosphorylation by mitochondria, measured by the firefly-luciferase luminescence, was observed only during the late stage and appeared to be correlated with a decrease in the affinity of the FoF1-ATPase for ADP. It is proposed that in the early stage, during the acute phase of T. cruzi infection in rats, heart FoF1-ATPase undergoes a membrane-dependent conformational change in order to maintain the phosphorylation potential of mitochondria, which would compensate for the uncoupling of mitochondrial function. Also, during both the early and late stages, the enzyme seems to be under the regulation of the endogenous inhibitor protein for the preservation of cellular ATP levels. 相似文献
11.
12.
Rikiya Watanabe Kumiko Hayashi Hiroshi Ueno Hiroyuki Noji 《Biophysical journal》2013,105(10):2385-2391
Protein conformational fluctuations modulate the catalytic powers of enzymes. The frequency of conformational fluctuations may modulate the catalytic rate at individual reaction steps. In this study, we modulated the rotary fluctuation frequency of F1-ATPase (F1) by attaching probes with different viscous drag coefficients at the rotary shaft of F1. Individual rotation pauses of F1 between rotary steps correspond to the waiting state of a certain elementary reaction step of ATP hydrolysis. This allows us to investigate the impact of the frequency modulation of the rotary fluctuation on the rate of the individual reaction steps by measuring the duration of rotation pauses. Although phosphate release was significantly decelerated, the ATP-binding and hydrolysis steps were less sensitive or insensitive to the viscous drag coefficient of the probe. Brownian dynamics simulation based on a model similar to the Sumi-Marcus theory reproduced the experimental results, providing a theoretical framework for the role of rotational fluctuation in F1 rate enhancement. 相似文献
13.
F1-ATPase is a rotary motor protein in which 3 catalytic β-subunits in a stator α3β3 ring undergo unidirectional and cooperative conformational changes to rotate the rotor γ-subunit upon adenosine triphosphate hydrolysis. The prevailing view of the mechanism behind this rotary catalysis elevated the γ-subunit as a “dictator” completely controlling the chemical and conformational states of the 3 catalytic β-subunits. However, our recent observations using high-speed atomic force microscopy clearly revealed that the 3 β-subunits undergo cyclic conformational changes even in the absence of the rotor γ-subunit, thus dethroning it from its dictatorial position. Here, we introduce our results in detail and discuss the possible operating principle behind the F1-ATPase, along with structurally related hexameric ATPases, also mentioning the possibility of generating hybrid nanomotors. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). 相似文献
14.
Pea (Pisum sativum L.) leaf acetyl-coenzyme A carboxylase (ACCase) exists as two structurally different forms: a major, chloroplastic, dissociable form and a minor, multifunctional enzyme form located in the leaf epidermis. The dissociable form is able to carboxylate free D-biotin as an alternate substrate in place of the natural substrate, biotin carboxyl carrier protein. Here we report the purification of the biotin carboxylase component of the chloroplastic pea leaf ACCase. The purified enzyme, free from carboxyltransferase activity, is composed of two firmly bound polypeptides, one of which (38 kD) is biotinylated. In contrast to bacterial biotin carboxylase, which retains full activity upon removal of the biotin carboxyl carrier component, attempts to dissociate the two subunits of the plant complex led to a complete loss of biotin carboxylase activity. Steady-state kinetic studies of the biotin carboxylase reaction reveal that addition of all substrates on the enzyme is sequential and that no product release is possible until all three substrates (MgATP, D-biotin, bicarbonate) are bound to the enzyme and all chemical processes at the active site are completed. In agreement with this mechanism, bicarbonate-dependent ATP hydrolysis by the enzyme is found to be strictly dependent on the presence of exogenous D-biotin in the reaction medium. 相似文献
15.
Rikiya Watanabe Yuki Matsukage Ayako Yukawa Kazuhito V. Tabata Hiroyuki Noji 《The Journal of biological chemistry》2014,289(28):19331-19340
F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought. 相似文献
16.
Charge displacements during ATP-hydrolysis and synthesis of the Na+-transporting FoF1-ATPase of Ilyobacter tartaricus 下载免费PDF全文
Transient electrical currents generated by the Na(+)-transporting F(o)F(1)-ATPase of Ilyobacter tartaricus were observed in the hydrolytic and synthetic mode of the enzyme. Two techniques were applied: a photochemical ATP concentration jump on a planar lipid membrane and a rapid solution exchange on a solid supported membrane. We have identified an electrogenic reaction in the reaction cycle of the F(o)F(1)-ATPase that is related to the translocation of the cation through the membrane bound F(o) subcomplex of the ATPase. In addition, we have determined rate constants for the process: For ATP hydrolysis this reaction has a rate constant of 15-30 s(-1) if H(+) is transported and 30-60 s(-1) if Na(+) is transported. For ATP synthesis the rate constant is 50-70 s(-1). 相似文献
17.
V. G. Ladygin 《Applied Biochemistry and Microbiology》2004,40(5):506-516
A combined effect of iron deficiency and root anoxia on the biochemical composition, function, and structure of pea leaf chloroplasts was studied. It was found that the chlorosis of apical leaves in response to iron deficiency was determined by the reduction of light-harvesting complexes I and II. Under root anoxia, complexes of the reaction centers of photosystems I and II degraded first. Weak activity was preserved even in yellow and white leaves under the effect of both factors. The ultrastructure of leaf chloroplasts gradually degraded. Initially, intergranal thylakoid sites were reduced, and the longitudinal orientation of grana was disturbed. However, yellow and white leaves still retained small thylakoids and grana. It is concluded that the degrading effects of iron deficiency and root anoxia on the complex composition and leaf chloroplast structure and function are additive because of their autonomous mechanisms. 相似文献
18.
The absorbance change at 505 nm was used to monitor the kinetics of violaxanthin deepoxidation in isolated pea (Pisum sativum) chloroplasts under dark conditions at various pH values. In long-term measurements (65 min) a fast and a slow exponential component of the 505-nm absorbance change could be resolved. The fast rate constant was up to 10 times higher than the slow rate constant. The asymptote value of the fast kinetic component was twice that of the slow component. The pH dependency of the parameters of the fast kinetic component was analyzed from pH 5.2 to pH 7.0. It was found that the asymptote value dropped slightly with increasing pH. The rate constant was zero at pH values greater than 6.3 and showed maximum values at pH values less than 5.8. Hill plot analysis revealed a strong positive cooperativity for the pH dependency of the fast rate constant (Hill coefficient nH = 5.3). The results are discussed with respect to published activity curves of violaxanthin deepoxidation. 相似文献
19.
Correlation between Photosynthetic Activity and Membrane Integrity in Isolated Pea Chloroplasts 总被引:15,自引:15,他引:0
D. A. Walker 《Plant physiology》1965,40(6):1157-1161
20.
The effect of tribenzylphosphate on the activity of the phosphatetranslocator of intact pea chloroplasts was tested. The translocatoractivity was followed by O2 evolution, 14CO2 fixation and 32Pback-exchange. The reagent inhibited 3-phosphoglycerate dependent-photosyntheticactivities probably through an interaction with the PGA translocator. (Received September 11, 1985; Accepted November 21, 1985) 相似文献