首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Despite accelerated global population declines due to targeted and illegal fishing pressure for many top-level shark species, the impacts of coastal habitat modification have been largely overlooked. We present the first direct comparison of the use of natural versus artificial habitats for the bull shark, Carcharhinus leucas, an IUCN ‘Near-threatened’ species - one of the few truly euryhaline sharks that utilises natural rivers and estuaries as nursery grounds before migrating offshore as adults. Understanding the value of alternate artificial coastal habitats to the lifecycle of the bull shark is crucial for determining the impact of coastal development on this threatened but potentially dangerous species.

Methodology/Findings

We used longline surveys and long-term passive acoustic tracking of neonate and juvenile bull sharks to determine the ontogenetic value of natural and artificial habitats to bull sharks associated with the Nerang River and adjoining canals on the Gold Coast, Australia. Long-term movements of tagged sharks suggested a preference for the natural river over artificial habitat (canals). Neonates and juveniles spent the majority of their time in the upper tidal reaches of the Nerang River and undertook excursions into adjoining canals. Larger bull sharks ranged further and frequented the canals closer to the river mouth.

Conclusions/Significance

Our work suggests with increased destruction of natural habitats, artificial coastal habitat may become increasingly important to large juvenile bull sharks with associated risk of attack on humans. In this system, neonate and juvenile bull sharks utilised the natural and artificial habitats, but the latter was not the preferred habitat of neonates. The upper reaches of tidal rivers, often under significant modification pressure, serve as nursery sites for neonates. Analogous studies are needed in similar systems elsewhere to assess the spatial and temporal generality of this research.  相似文献   

2.
Coastal and estuarine systems provide critical shark habitats due to their relatively high productivity and shallow, protected waters. The young (neonates, young‐of‐the‐year, and juveniles) of many coastal shark species occupy a diverse range of habitats and areas where they experience environmental variability, including acute and seasonal shifts in local salinities and temperatures. Although the location and functioning of essential shark habitats has been a focus in recent shark research, there is a paucity of data from the South Pacific. In this study, we document the temporal and spatial distribution, age class composition, and environmental parameters of young bull sharks (Carcharhinus leucas) in the Rewa, Sigatoka, and Navua Rivers, Fiji's three largest riverine systems. One hundred and seventy‐two young bull sharks were captured in fisheries‐independent surveys from January 2016 to April 2018. The vast majority of the captures were neonates. Seasonality in patterns of occurrence of neonate individuals suggests a defined parturition period during summer. Environmental parameters between the Rewa and the Sigatoka River differed significantly, as did the recorded young bull sharks abundance. According to the surveys, young bull sharks occur in all three rivers with the Rewa River likely representing essential habitat for newly born bull sharks. These results enhance the understanding of bull shark ecology in Fiji and provide a scientific basis for the implementation of local conservation strategies that contribute to the protection of critical habitats.  相似文献   

3.
Trape S 《PloS one》2008,3(1):e1495

Background

The International Shark Attack File mentions only four unprovoked shark attacks on the coast of West Africa during the period 1828–2004, an area where high concentrations of sharks and 17 species potentially dangerous to man have been observed. To investigate if the frequency of shark attacks could be really low and not just under-reported and whether there are potentially sharks that might attack in the area, a study was carried out in Dakar and the Cap Vert peninsula, Senegal.

Methodology/Principal Findings

Personnel of health facilities, administrative services, traditional authorities and groups of fishermen from the region of Dakar were interviewed about the occurrence of shark attacks, and visual censuses were conducted along the coastline to investigate shark communities associated with the coasts of Dakar and the Cap Vert peninsula. Six attacks were documented for the period 1947–2005, including two fatal ones attributed to the tiger shark Galeocerdo cuvieri. All attacks concerned fishermen and only one occurred after 1970. Sharks were observed year round along the coastline in waters 3–15 m depth. Two species potentially dangerous for man, the nurse shark Ginglymostoma cirratum and the blacktip shark Carcharhinus limbatus, represented together 94% of 1,071 sharks enumerated during 1,459 hours of observations. Threatening behaviour from sharks was noted in 12 encounters (1.1%), including 8 encounters with C. limbatus, one with Galeocerdo cuvieri and 3 with unidentified sharks.

Conclusions/Significance

These findings suggest that the frequency of shark attacks on the coast of West Africa is underestimated. However, they also indicate that the risk is very low despite the abundance of sharks. In Dakar area, most encounters along the coastline with potentially dangerous species do not result in an attack. Compared to other causes of water related deaths, the incidence of shark attack appears negligible, at least one thousand fold lower.  相似文献   

4.

Background

In recent decades, large pelagic and coastal shark populations have declined dramatically with increased fishing; however, the status of sharks in other systems such as coral reefs remains largely unassessed despite a long history of exploitation. Here we explore the contemporary distribution and sighting frequency of sharks on reefs in the greater-Caribbean and assess the possible role of human pressures on observed patterns.

Methodology/Principal Findings

We analyzed 76,340 underwater surveys carried out by trained volunteer divers between 1993 and 2008. Surveys were grouped within one km2 cells, which allowed us to determine the contemporary geographical distribution and sighting frequency of sharks. Sighting frequency was calculated as the ratio of surveys with sharks to the total number of surveys in each cell. We compared sighting frequency to the number of people in the cell vicinity and used population viability analyses to assess the effects of exploitation on population trends. Sharks, with the exception of nurse sharks occurred mainly in areas with very low human population or strong fishing regulations and marine conservation. Population viability analysis suggests that exploitation alone could explain the large-scale absence; however, this pattern is likely to be exacerbated by additional anthropogenic stressors, such as pollution and habitat degradation, that also correlate with human population.

Conclusions/Significance

Human pressures in coastal zones have lead to the broad-scale absence of sharks on reefs in the greater-Caribbean. Preventing further loss of sharks requires urgent management measures to curb fishing mortality and to mitigate other anthropogenic stressors to protect sites where sharks still exist. The fact that sharks still occur in some densely populated areas where strong fishing regulations are in place indicates the possibility of success and encourages the implementation of conservation measures.  相似文献   

5.
Between June and December 2005, active and passive acoustic telemetry was used to examine fine scale movements of 13 white sharks (Carcharodon carcharias) (ten passive, three active) at Mossel Bay. A total of 24 active trackings (ranging from 2 h to 103 h in duration) were conducted. Patterns of rate of movement (ROM), swimming linearity (LI), swimming bearing, and instantaneous swimming speed (ISS) were assessed. A conversion quotient (Q) of 1.21 between ISS and ROM (10 min sample interval) was calculated suggesting ROM is a good indicator of white shark activity. The mean ROM for tracked sharks was 0.52 m·s−1, with a greatest sustained ROM of 1.33 m·s−1 (4.8 km·h−1). Sharks displayed greatest LI and ROM during directional travels between the three persistent aggregation sites. The majority of the shark movement was, however, non-linear as the sharks repeat patrolled at the three aggregation sites. Two of these sites were not associated with pinniped presence, and sharks typically patrolled back and forth parallel to the shore line at a comparatively low ROM which suggested resting. The third aggregation site was adjacent to Seal Island, and despite low LI, sharks displayed a high ROM, indicating high activity levels. We propose that the high ROM is related to maximising search area when patrolling to hunt Cape fur seals (Arctocephalus p. pusillus).  相似文献   

6.
Bull shark (Carcharhinus leucas) is a near-threatened elasmobranch species capable of moving between the fresh and salty waters of tropical and subtropical coastal areas, for which we still lack important ecological information. During their first years of life, bull sharks use estuarine systems as nursery areas, making them highly susceptible to environmental and anthropogenic pressures. We studied the trophic ecology of juveniles found in the Coyote estuary, a potential nursery area in Costa Rica, to understand the potential impact of further bull shark declines and gain knowledge that could aid in their conservation. We analysed the trophic ecology of juvenile bull sharks [81–103 cm total length (TL)] in the Coyote estuary, Costa Rica, using stable isotopes of δ15N and δ13C. Since one problem using this technique in juveniles is the confounding effect of the maternal signature, we sampled different tissues (muscle and plasma), verified the status of the shark's umbilical scar and identified the size at which the isotope signature is a result of the animal's current diet. The isotopic values of the muscle tissue reflected the maternal isotopic signature. In contrast, plasma values reflected the diet of juvenile bull sharks >95 cm TL and with a closed umbilical scar. Juvenile bull sharks fed primarily on teleost fishes of the order Anguilliformes and Siluriformes, and have a high trophic position (≥4.0) in the Coyote estuary. Our findings suggest that this estuary is an important feeding site for juvenile bull sharks of the Pacific of Costa Rica. Thus, the protection of essential habitats such as the Coyote estuary will benefit not only bull shark conservation, but also the conservation of an array of fish species that also use this habitat as a rookery, many of which are of commercial interest.  相似文献   

7.

Background

Increasingly, underwater visual censuses (UVC) are used to assess fish populations. Several studies have demonstrated the effectiveness of protected areas for increasing fish abundance or provided insight into the natural abundance and structure of reef fish communities in remote areas. Recently, high apex predator densities (>100,000 individuals·km−2) and biomasses (>4 tonnes·ha−1) have been reported for some remote islands suggesting the occurrence of inverted trophic biomass pyramids. However, few studies have critically evaluated the methods used for sampling conspicuous and highly mobile fish such as sharks. Ideally, UVC are done instantaneously, however, researchers often count animals that enter the survey area after the survey has started, thus performing non-instantaneous UVC.

Methodology/Principal Findings

We developed a simulation model to evaluate counts obtained by divers deploying non-instantaneous belt-transect and stationary-point-count techniques. We assessed how fish speed and survey procedure (visibility, diver speed, survey time and dimensions) affect observed fish counts. Results indicate that the bias caused by fish speed alone is huge, while survey procedures had varying effects. Because the fastest fishes tend to be the largest, the bias would have significant implications on their biomass contribution. Therefore, caution is needed when describing abundance, biomass, and community structure based on non-instantaneous UVC, especially for highly mobile species such as sharks.

Conclusions/Significance

Based on our results, we urge that published literature state explicitly whether instantaneous counts were made and that survey procedures be accounted for when non-instantaneous counts are used. Using published density and biomass values of communities that include sharks we explore the effect of this bias and suggest that further investigation may be needed to determine pristine shark abundances and the existence of inverted biomass pyramids. Because such studies are used to make important management and conservation decisions, incorrect estimates of animal abundance and biomass have serious and significant implications.  相似文献   

8.

Background

An increasing awareness of the vulnerability of sharks to exploitation by shark finning has contributed to a growing concern about an unsustainable shark fishery. Taiwan’s fleet has the 4th largest shark catch in the world, accounting for almost 6% of the global figures. Revealing the diversity of sharks consumed by Taiwanese is important in designing conservation plans. However, fins make up less than 5% of the total body weight of a shark, and their bodies are sold as filets in the market, making it difficult or impossible to identify species using morphological traits.

Methods

In the present study, we adopted a DNA barcoding technique using a 391-bp fragment of the mitochondrial cytochrome oxidase I (COI) gene to examine the diversity of shark filets and fins collected from markets and restaurants island-wide in Taiwan.

Results

Amongst the 548 tissue samples collected and sequenced, 20 major clusters were apparent by phylogenetic analyses, each of them containing individuals belonging to the same species (most with more than 95% bootstrap values), corresponding to 20 species of sharks. Additionally, Alopias pelagicus, Carcharhinus falciformis, Isurus oxyrinchus, and Prionace glauca consisted of 80% of the samples we collected, indicating that these species might be heavily consumed in Taiwan. Approximately 5% of the tissue samples used in this study were identified as species listed in CITES Appendix II, including two species of Sphyrna, C. longimanus and Carcharodon carcharias.

Conclusion

DNA barcoding provides an alternative method for understanding shark species composition when species-specific data is unavailable. Considering the global population decline, stock assessments of Appendix II species and highly consumed species are needed to accomplish the ultimate goal of shark conservation.  相似文献   

9.
Previous work on white sharks indicate the species show seasonally limited movement patters, at certain aggregation sites small areas may play vital roles in the life history of a large amount of the population. Acoustic telemetry was used to estimate habitat use of white sharks, Carcharodon carcharias, while aggregating at Mossel Bay, South Africa. Total range of all shark tracks combined accumulated 782 h and covered an area of 93.5 km2 however, within this range, sharks were found to highly utilise a core habitat (50 % Kernel, K50) of just 1.05 km2 over a reef system adjacent to a river mouth. Individual tracks revealed additional core habitats, some of which were previously undocumented and one adjacent to a commercial harbor. Much was found to be dependent on the size of the shark, with larger sharks (>400 cm) occupying smaller activity areas than subadult (300–399 cm) and juvenile (<300 cm) conspecifics, while Index of Reuse (IOR) and Index of Shared Space (IOSS) were both found to increase with shark size. Such results provide evidence that larger white sharks are more selective in habitat use, which indicates they have greater experience within aggregation sites. Furthermore, the focused nature of foraging means spatially restricted management strategies would offer a powerful tool to aid enforcement of current protective legislation for the white shark in similar environments of limited resources and capacity.  相似文献   

10.

Background

Bumble bees and other wild bees are important pollinators of wild flowers and several cultivated crop plants, and have declined in diversity and abundance during the last decades. The main cause of the decline is believed to be habitat destruction and fragmentation associated with urbanization and agricultural intensification. Urbanization is a process that involves dramatic and persistent changes of the landscape, increasing the amount of built-up areas while decreasing the amount of green areas. However, urban green areas can also provide suitable alternative habitats for wild bees.

Methodology/Principal Findings

We studied bumble bees in allotment gardens, i.e. intensively managed flower rich green areas, along a gradient of urbanization from the inner city of Stockholm towards more rural (periurban) areas. Keeping habitat quality similar along the urbanization gradient allowed us to separate the effect of landscape change (e.g. proportion impervious surface) from variation in habitat quality. Bumble bee diversity (after rarefaction to 25 individuals) decreased with increasing urbanization, from around eight species on sites in more rural areas to between five and six species in urban allotment gardens. Bumble bee abundance and species composition were most affected by qualities related to the management of the allotment areas, such as local flower abundance. The variability in bumble bee visits between allotment gardens was higher in an urban than in a periurban context, particularly among small and long-tongued bumble bee species.

Conclusions/Significance

Our results suggest that allotment gardens and other urban green areas can serve as important alternatives to natural habitats for many bumble bee species, but that the surrounding urban landscape influences how many species that will be present. The higher variability in abundance of certain species in the most urban areas may indicate a weaker reliability of the ecosystem service pollination in areas strongly influenced by human activity.  相似文献   

11.

Background

Home range is defined as the extent and location of the area covered annually by a wild animal in its natural habitat. Studies of African and Indian elephants in landscapes of largely open habitats have indicated that the sizes of the home range are determined not only by the food supplies and seasonal changes, but also by numerous other factors including availability of water sources, habitat loss and the existence of man-made barriers. The home range size for the Bornean elephant had never been investigated before.

Methodology/Principal Findings

The first satellite tracking program to investigate the movement of wild Bornean elephants in Sabah was initiated in 2005. Five adult female elephants were immobilized and neck collars were fitted with tracking devices. The sizes of their home range and movement patterns were determined using location data gathered from a satellite tracking system and analyzed by using the Minimum Convex Polygon and Harmonic Mean methods. Home range size was estimated to be 250 to 400 km2 in a non-fragmented forest and 600 km2 in a fragmented forest. The ranging behavior was influenced by the size of the natural forest habitat and the availability of permanent water sources. The movement pattern was influenced by human disturbance and the need to move from one feeding site to another.

Conclusions/Significance

Home range and movement rate were influenced by the degree of habitat fragmentation. Once habitat was cleared or converted, the availability of food plants and water sources were reduced, forcing the elephants to travel to adjacent forest areas. Therefore movement rate in fragmented forest was higher than in the non-fragmented forest. Finally, in fragmented habitat human and elephant conflict occurrences were likely to be higher, due to increased movement bringing elephants into contact more often with humans.  相似文献   

12.

Background

Despite its importance for reducing wildlife-vehicle collisions, there is still incomplete understanding of factors responsible for high road mortality. In particular, few empirical studies examined the idea that spatial variation in roadkills is influenced by a complex interplay between road-related factors, and species-specific habitat quality and landscape connectivity.

Methodology/Principal Findings

In this study we addressed this issue, using a 7-year dataset of tawny owl (Strix aluco) roadkills recorded along 37 km of road in southern Portugal. We used a multi-species roadkill index as a surrogate of intrinsic road risk, and we used a Maxent distribution model to estimate habitat suitability. Landscape connectivity was estimated from least-cost paths between tawny owl territories, using habitat suitability as a resistance surface. We defined 10 alternative scenarios to compute connectivity, based on variation in potential movement patterns according to territory quality and dispersal distance thresholds. Hierarchical partitioning of a regression model indicated that independent variation in tawny owl roadkills was explained primarily by the roadkill index (70.5%) and, to a much lesser extent, by landscape connectivity (26.2%), while habitat suitability had minor effects (3.3%). Analysis of connectivity scenarios suggested that owl roadkills were primarily related to short range movements (<5 km) between high quality territories. Tawny owl roadkills were spatially autocorrelated, but the introduction of spatial filters in the regression model did not change the type and relative contribution of environmental variables.

Conclusions

Overall, results suggest that road-related factors may have a dominant influence on roadkill patterns, particularly in areas like ours where habitat quality and landscape connectivity are globally high for the study species. Nevertheless, the study supported the view that functional connectivity should be incorporated whenever possible in roadkill models, as it may greatly increase their power to predict the location of roadkill hotspots.  相似文献   

13.

Aim

Concurrently, assessing the effectiveness of marine protected areas and evaluating the degree of risk from humans to key species provide valuable information that can be integrated into conservation management planning. Tiger sharks (Galeocerdo cuvier) are a wide‐ranging ecologically important species subject to various threats. The aim of this study was to identify “hotspots” of tiger shark habitat use in relation to protected areas and potential risks from fishing.

Location

Southwest Indian Ocean, east coast of South Africa and Mozambique.

Methods

Satellite tags were fitted to 26 tiger sharks. A subset of 19 sharks with an average period at liberty of 197 (SD = 110) days were analysed using hotspot analysis to identify areas of core habitat use. The spatial and temporal overlap of significant hotspots with current and planned marine protected areas as well as risks from fishing and culling was then calculated.

Results

There was a 5.97% spatial overlap between tiger shark hotspots and marine protected areas, which would increase significantly (p < .05) to 24.36% with the expansion of planned protected areas in South Africa and could be as high as 41.43% if Mozambique similarly expanded neighbouring protected area boundaries. Tiger sharks remained largely coastal, but only showed a spatial overlap of 5.12% with shark culling nets in South Africa. Only three sharks undertook open ocean migrations during which they were more likely to interact with longline fisheries in the region.

Main conclusions

This study demonstrates how spatial information can be used to assess the overlap between marine protected areas and the core habitats of top marine predators and highlights how congruent transnational conservation management can improve the effectiveness of protected areas. Core habitat use of marine apex predators may also be indicative of productive habitats, and therefore, predators such as tiger sharks could act as surrogate species for identifying key habitats to prioritize for conservation planning.
  相似文献   

14.

Background

Understanding movement patterns is fundamental to population and conservation biology. The way an animal moves through its environment influences the dynamics of local populations and will determine how susceptible it is to natural or anthropogenic perturbations. It is of particular interest to understand the patterns of movement for species which are susceptible to human activities (e.g. fishing), or that exert a large influence on community structure, such as sharks.

Methodology/Principal Findings

We monitored the patterns of movement of 34 sixgill sharks Hexanchus griseus using two large-scale acoustic arrays inside and outside Puget Sound, Washington, USA. Sixgill sharks were residents in Puget Sound for up to at least four years before making large movements out of the estuary. Within Puget Sound, sixgills inhabited sites for several weeks at a time and returned to the same sites annually. Across four years, sixgills had consistent seasonal movements in which they moved to the north from winter to spring and moved to the south from summer to fall. Just prior to leaving Puget Sound, sixgills altered their behavior and moved twice as fast among sites. Nineteen of the thirty-four sixgills were detected leaving Puget Sound for the outer coast. Three of these sharks returned to Puget Sound.

Conclusions/Significance

For most large marine predators, we have a limited understanding of how they move through their environment, and this clouds our ability to successfully manage their populations and their communities. With detailed movement information, such as that being uncovered with acoustic monitoring, we can begin to quantify the spatial and temporal impacts of large predators within the framework of their ecosystems.  相似文献   

15.

Background and Aims

Archipelagos are unique systems for studying evolutionary processes promoting diversification and speciation. The islands of the Mediterranean basin are major areas of plant richness, including a high proportion of narrow endemics. Many endemic plants are currently found in rocky habitats, showing varying patterns of habitat occupancy at different spatial scales throughout their range. The aim of the present study was to understand the impact of varying patterns of population distribution on genetic diversity and structure to shed light on demographic and evolutionary processes leading to population diversification in Crepis triasii, an endemic plant from the eastern Balearic Islands.

Methods

Using allozyme and chloroplast markers, we related patterns of genetic structure and diversity to those of habitat occupancy at a regional (between islands and among populations within islands) and landscape (population size and connectivity) scale.

Key Results

Genetic diversity was highly structured both at the regional and at the landscape level, and was positively correlated with population connectivity in the landscape. Populations located in small isolated mountains and coastal areas, with restricted patterns of regional occupancy, were genetically less diverse and much more differentiated. In addition, more isolated populations had stronger fine-scale genetic structure than well-connected ones. Changes in habitat availability and quality arising from marine transgressions during the Quaternary, as well as progressive fragmentation associated with the aridification of the climate since the last glaciation, are the most plausible factors leading to the observed patterns of genetic diversity and structure.

Conclusions

Our results emphasize the importance of gene flow in preventing genetic erosion and maintaining the evolutionary potential of populations. They also agree with recent studies highlighting the importance of restricted gene flow and genetic drift as drivers of plant evolution in Mediterranean continental islands.  相似文献   

16.
Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches.  相似文献   

17.
The leopard shark (Triakis semifasciata) is one of the most common species of elasmobranch in California, and uses the shallow bays and estuaries of California extensively throughout its life history. To examine the role that tides and time of day play on the distribution and movements of leopard sharks in an estuarine environment, a total of 22 female leopard sharks (78–140 cm TL) were tagged with acoustic transmitters in Elkhorn Slough, California, USA. Eight sharks were manually tracked for 20–71.5 h, and 13 sharks were monitored for 4–280 days using an array of acoustic receivers. Overall, the distribution and movements of sharks were strongly influenced by the tides and to a lesser extent by period of day, although general patterns of movement differed depending on what region of Elkhorn Slough the sharks were using. In the main channel of Elkhorn Slough, sharks generally moved with the tide, maximizing the area over which they could forage on a more dispersed prey field. Conversely, leopard sharks within the Elkhorn Slough National Estuarine Research Reserve regularly swam against strong currents to remain in proximity to the intertidal mudflats. This high degree of fidelity to a specific region was probably due to an abundance of important prey in the area. These results indicate that movements, and thus the foraging ecology, of leopard sharks show a high degree of plasticity and are influenced by tidal stage, tidal current, availability of suitable habitat, and availability and distribution of important prey items.  相似文献   

18.
The bull shark (Carcharhinus leucas) is a widely distributed, large coastal shark species known to travel long distances. These characteristics, coupled with the species?? long life span and late age of maturity, would lead one to predict significant global genetic exchange among bull shark populations. By contrast, data show localized depletion in some areas of large coastal shark fisheries, indicating some geographic isolation may exist. We examined genetic variation in the control region of mitochondrial DNA and at five nuclear microsatellite loci in bull sharks sampled from the western Atlantic to investigate the degree of population subdivision. The average per sample haplotype and nucleotide diversity in the mtDNA (0.51 ± 0.26 and 0.12% ± 0.12, respectively) and expected heterozygosity (0.84) in the microsatellite loci contrast sharply in having lower and higher values (respectively) relative to many other shark species. Significant structure exists between the Brazilian and all northern populations at the mtDNA control region (pairwise ??ST > 0.8, P < 0.001), but not at the nuclear microsatellite loci. Adjacent northern populations show weak to no genetic differentiation for both markers. These results are congruent with restricted maternal gene flow between populations caused by female site fidelity to nursery areas. We estimate the current effective population size to be around 160,000 and 221,000 individuals for the southern and northern Atlantic populations, respectively. The philopatric habits and the relatively low levels of mtDNA genetic diversity observed in bull sharks must be considered in the conservation of this species. Our results indicate that effective bull shark management strategies will require local, regional, and international attention and cooperation.  相似文献   

19.

Background

Knowledge about how frugivory and seed deposition are spatially distributed is valuable to understand the role of dispersers on the structure and dynamics of plant populations. This may be particularly important within anthropogenic areas, where either the patchy distribution of wild plants or the presence of cultivated fleshy-fruits may influence plant-disperser interactions.

Methodology/Principal Findings

We investigated frugivory and spatial patterns of seed deposition by carnivorous mammals in anthropogenic landscapes considering two spatial scales: ‘landscape’ (∼10 km2) and ‘habitat type’ (∼1–2 km2). We sampled carnivore faeces and plant abundance at three contrasting habitats (chestnut woods, mosaics and scrublands), each replicated within three different landscapes. Sixty-five percent of faeces collected (n = 1077) contained seeds, among which wild and cultivated seeds appeared in similar proportions (58% and 53%) despite that cultivated fruiting plants were much less abundant. Seed deposition was spatially structured among both spatial scales being different between fruit types. Whereas the most important source of spatial variation in deposition of wild seeds was the landscape scale, it was the habitat scale for cultivated seeds. At the habitat scale, seeds of wild species were mostly deposited within mosaics while seeds of cultivated species were within chestnut woods and scrublands. Spatial concordance between seed deposition and plant abundance was found only for wild species.

Conclusions/Significance

Spatial patterns of seed deposition by carnivores differed between fruit types and seemed to be modulated by the fleshy-fruited plant assemblages and the behaviour of dispersers. Our results suggest that a strong preference for cultivated fruits by carnivores may influence their spatial foraging behaviour and lower their dispersal services to wild species. However, the high amount of seeds removed within and between habitats suggests that carnivores must play an important role – often overlooked – as ‘restorers’ and ‘habitat shapers’ in anthropogenic areas.  相似文献   

20.
Understanding the factors that influence the distribution and abundance of predators, including sharks, is important for predicting the impacts of human changes to the environment. Such studies are particularly important in Florida Bay, USA where there are planned large-scale changes to patterns of freshwater input from the Everglades ecosystem. Studies of many marine predators suggest that links between predator and prey habitat use may vary with spatial scale, but there have been few studies of the role of prey distribution in shaping habitat use and abundance of sharks. We used longline catches of sharks and trawls for potential teleost prey to determine the influence of teleost abundance on shark abundance at the scale of regions and habitats in Florida Bay. We found that shark catch per unit effort (CPUE) was not linked to CPUE ofteleosts at the scale of sampling sites, but shark CPUE was positively correlated with the mean CPUE for teleosts within a region. Although there does not appear to be a strong match between the abundance of teleosts and sharks at small spatial scales, regional shark abundance is likely driven, at least partially, by the availability of prey. Management strategies that influence teleost abundance will have cascading effects to higher trophic levels in Florida Bay. Electronic Supplementary Material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号