首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial impairment is commonly found in many diseases such as diabetes, cancer, and Alzheimer disease. We demonstrate that the enzymes responsible for the addition or removal of the O-GlcNAc modification, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively, are critical regulators of mitochondrial function. Using a SILAC (stable isotope labeling of amino acids in cell culture)-based proteomics screen, we quantified the changes in mitochondrial protein expression in OGT- and OGA-overexpressing cells. Strikingly, overexpression of OGT or OGA showed significant decreases in mitochondria-localized proteins involved in the respiratory chain and the tricarboxylic acid cycle. Furthermore, mitochondrial morphology was altered in these cells. Both cellular respiration and glycolysis were reduced in OGT/OGA-overexpressing cells. These data demonstrate that alterations in O-GlcNAc cycling profoundly affect energy and metabolite production.  相似文献   

2.
The transfer of N-acetylglucosamine (GlcNAc) to Ser or Thr in cytoplasmic and nuclear proteins is a well known post-translational modification that is catalyzed by the O-GlcNAc transferase OGT. A more recently identified O-GlcNAc transferase, EOGT, functions in the secretory pathway and transfers O-GlcNAc to proteins with epidermal growth factor-like (EGF) repeats. A number of antibodies that detect O-GlcNAc in cytosolic and nuclear extracts have been described previously. Here we compare seven of these antibodies (CTD110.6, 10D8, RL2, HGAC85, 18B10.C7(#3), 9D1.E4(#10), and 1F5.D6 (#14) for detection of the O-GlcNAc modification on extracellular domains of membrane or secreted glycoproteins that may also carry various N- and O-glycans. We found that CTD110.6 binds not only to O-GlcNAc on proteins but also to terminal β-GlcNAc on the complex N-glycans of Lec8 Chinese hamster ovary (CHO) cells that lack UDP-Gal transporter activity and express GlcNAc-terminating, complex N-glycans. We show that CTD110.6, #3, and #10 antibodies can be used to detect cell surface glycoproteins bearing O-GlcNAc. Cell surface glycoproteins recognized by CTD110.6 antibody included NOTCH1 that possesses many EGF repeats with a consensus site for EOGT. Knockdown of CHO Eogt reduced binding of CTD110.6 to Lec1 CHO cells, and expression of a human EOGT cDNA increased the O-GlcNAc signal on Lec1 cells and the extracellular domain of NOTCH1. Thus, with careful controls, antibodies CTD110.6 (IgM), #3 (IgG), and #10 (IgG) can be used to detect membrane and secreted proteins modified by O-GlcNAc on EGF repeats.  相似文献   

3.
FG-repeat nucleoporins at the center of the nuclear pore complex (NPC) are highly modified with O-GlcNAc. In this issue, Yoo and Mitchison (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202010141) use optogenetic probes to show that O-GlcNAc enhances permeability of the NPC, accelerating transport in both directions.

O-linked β-N-acetylglucosamine (O-GlcNAc) is an abundant post-translational modification found on thousands of nuclear, cytoplasmic, and mitochondrial proteins in multicellular organisms (1). This single sugar modification of serine or threonine residues is reversible: it is added by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA). Intracellular O-GlcNAc levels respond acutely to nutritional cues and often increase in response to stressful stimuli. O-GlcNAc was discovered nearly 40 yr ago, and nucleoporins (NUPs) were among the first proteins reported to be O-GlcNAcylated (2). Glycoproteomics analysis has since identified O-GlcNAc sites on the majority of NUPs, with some carrying 10 or more O-GlcNAc sites (3).Although NUPs are among the most highly O-GlcNAcylated proteins, the function of O-GlcNAc in the nuclear pore complex (NPC) has remained enigmatic. Much of the O-GlcNAc in the NPC is found on FG NUPs, proteins named for their extensive, intrinsically disordered phenylalanine-glycine (FG) repeat regions. The O-GlcNAcylated FG domains project into the central channel of the NPC, forming a selective permeability barrier that regulates traffic in and out of the nucleus (4). Small proteins transit the pore through passive diffusion while larger proteins (cargo) are escorted through by karyopherins. Facilitated transport through the NPC depends on direct, yet transient, interactions between karyopherins and FG domains of NUPs.Testing the function of O-GlcNAc in the NPC has proved challenging. The large number of O-GlcNAc sites in the NPC make analysis by mutagenesis impractical. Simple knockout of OGT is unworkable because it is required for mammalian cell proliferation. In vitro studies conducted by Görlich and co-workers examined the role of O-GlcNAc using a model system in which purified FG regions of NUPs assemble into elastic hydrogels that recapitulate transport properties of intact NPCs (5). They showed that O-GlcNAc modification of NUP98 altered both the physical properties and the selectivity of the resulting hydrogel. Additional clues have come from cellular assays where O-GlcNAc was shown to regulate the cellular stability of NUPs, with reductions in O-GlcNAc levels leading to increased NUP degradation and compromising the integrity of the selectivity filter (6, 7).What has been missing is a method to accurately measure the rate of protein transport through the NPC in intact cells. In this issue, Yoo and Mitchison solve this challenge by taking advantage of two optogenetic probe molecules originally designed for a different purpose (8). Each probe molecule contains a nuclear export signal (NES), a nuclear localization sequence (NLS), and the light-oxygen-voltage-sensing 2 (LOV2) domain (9). The import probe is designed such that the NLS packs against the LOV domain in the dark state and remains concealed from nuclear import machinery. Under these conditions, the NES dominates, and the probe is localized primarily to the cytoplasm. Upon application of 447 nm light, the LOV2 domain undergoes a conformation change that reveals the NLS, causing the probe to be translocated to the nucleus. The export probe has the opposite design, localizing to the nucleus in the dark state and translocated to the cytoplasm upon illumination. Both probe molecules also include the mCherry fluorescent protein, allowing their locations to be monitored in real time by live-cell imaging. Yoo and Mitchison recognized that these probes could be repurposed to measure nuclear import and export rates, and to determine how these rates change under different conditions.The researchers first validated that the probes could indeed be used to measure nuclear transport rates in live cells. Next, they perturbed global O-GlcNAc levels using siRNA or small molecule inhibitors to modulate OGT or OGA activity and measured the impact on nuclear import and export rates. Reduced O-GlcNAc levels decreased both import and export rates, while elevated O-GlcNAc levels increased both rates (Fig. 1). Remarkably, transport rates were linearly correlated with O-GlcNAc levels over the entire range of O-GlcNAc levels the researchers could achieve. An important caveat is that the O-GlcNAc perturbations applied were global and affect O-GlcNAcylation of thousands of proteins, making it impossible to ascribe the observed changes in transport rate solely to changes in NPC glycosylation. To address this, the researchers created heterokaryons in which cells with low O-GlcNAc levels were fused with cells with high O-GlcNAc levels. The resulting multinucleated cells contain some nuclei with low O-GlcNAc levels and others with high O-GlcNAc levels. Analysis of these cells revealed that the nuclear import rate was determined by the O-GlcNAc level of the nucleus with only a minor contribution from the cytoplasm. Additional experiments excluded the possibility that the Ran transport pathway was modulated by O-GlcNAc levels. Yoo and Mitchison concluded that O-GlcNAcylation of the NPC is what drives the observed alterations in transport rates (8).Open in a separate windowFigure 1.O-GlcNAc increases transport rates through the nuclear pore. Intrinsically disordered FG NUPs (green) form a selectivity filter in the central channel of NPCs (gray). Increased O-GlcNAc (blue) modification of FG NUPs results in accelerated transport in and out of the nucleus.How might O-GlcNAcylation of the NPC affect transport rates? Multiple models have been proposed to explain exactly how karyopherin–cargo complexes transit the selectivity filter at the center of the NPC (10). The molecular details of the interactions that occur and the physical properties of the FG domains remain active areas of investigation. The finding that O-GlcNAc accelerates facilitated transport can be incorporated into any of the disparate models for translocation across the NPC. As a bulky and hydrophilic modification, O-GlcNAc has the potential to change the chemical and physical properties of FG regions, potentially sterically interfering with FG domain interactions or modulating FG region dynamics. Notably, Yoo and Mitchison found that increased O-GlcNAc levels also led to an increased rate of passive diffusion through the NPC, suggesting that at least some of O-GlcNAc’s effects must be on properties of the NPC that are independent of interactions with karyopherins.O-GlcNAc levels change rapidly in response to nutrition cues and stressful stimuli, but cells also employ mechanisms to rapidly regulate OGT and OGA levels to restore O-GlcNAc homeostasis (11, 12). Nonetheless, altered O-GlcNAc levels are observed in a number of chronic diseases including cancer, diabetes, and neurodegenerative diseases (13). The O-GlcNAc–dependent modulation of nuclear transport rates suggests an unexplored mechanism by which altered O-GlcNAc levels might contribute to these disease states. The optogenetic method to measure nuclear import and export rates will be a powerful tool to further investigate exactly how nuclear transport is altered under conditions of dysregulated O-GlcNAcylation.  相似文献   

4.
Meiotic maturation and fertilization are metabolically demanding processes, and thus the mammalian oocyte is highly susceptible to changes in nutrient availability. O‐GlcNAcylation—the addition of a single sugar residue (O‐linked β‐N‐acetylglucosamine) on proteins—is a posttranslational modification that acts as a cellular nutrient sensor and likely modulates the function of oocyte proteins. O‐GlcNAcylation is mediated by O‐GlcNAc transferase (OGT), which adds O‐GlcNAc onto proteins, and O‐GlcNAcase (OGA), which removes it. Here we investigated O‐GlcNAcylation dynamics in bovine and human oocytes during meiosis and determined the developmental sequelae of its perturbation. OGA, OGT, and multiple O‐GlcNAcylated proteins were expressed in bovine cumulus oocyte complexes (COCs), and they were localized throughout the gamete but were also enriched at specific subcellular sites. O‐GlcNAcylated proteins were concentrated at the nuclear envelope at prophase I, OGA at the cortex throughout meiosis, and OGT at the meiotic spindles. These expression patterns were evolutionarily conserved in human oocytes. To examine O‐GlcNAc function, we disrupted O‐GlcNAc cycling during meiotic maturation in bovine COCs using Thiamet‐G (TMG), a highly selective OGA inhibitor. Although TMG resulted in a dramatic increase in O‐GlcNAcylated substrates in both cumulus cells and the oocyte, there was no effect on cumulus expansion or meiotic progression. However, zygote development was significantly compromised following in vitro fertilization of COCs matured in TMG due to the effects on sperm penetration, sperm head decondensation, and pronuclear formation. Thus, proper O‐GlcNAc homeostasis during meiotic maturation is important for fertilization and pronuclear stage development.  相似文献   

5.
6.
The dynamic modification of many nuclear and cytoplasmic proteins with O-linked beta-N-acetylglucosamine (O-GlcNAc) on serine or threonine is catalyzed by O-GlcNAc transferase (OGT). The conserved GPGTF (glycogen phosphorylase/glycosyl transferase) motif, one of the α-helices of the second domain in OGT, was identified as a putative UDP-GlcNAc binding site. A miniature protein was designed which contains all of the conserved residues of GPGTF motif in the O-GlcNAc transferase, and was shown to adopt an alpha helix in 10% trifluoroethanol. It was anticipated that the miniature protein could shed light on the mechanism of dynamic O-GlcNAc modification and provide a potential drug for the diabetes and neurodegenerative diseases.  相似文献   

7.
Endochondral ossification is an essential step for skeletal development, which requires chondrocyte differentiation in growth cartilage. The low-density lipoprotein receptor-related protein 4 (LRP4), a member of LDLR family, is an inhibitor for Wnt signaling, but its roles in chondrocyte differentiation remain to be investigated. Here we found by laser capture microdissection that LRP4 expression was induced during chondrocyte differentiation in growth plate. In order to address the roles, we overexpressed recombinant human LRP4 or knocked down endogenous LRP4 by lentivirus in mouse ATDC5 chondrocyte cells. We found that LRP4 induced gene expressions of extracellular matrix proteins of type II collagen (Col2a1), aggrecan (Acan), and type X collagen (Col10a1), as well as production of total proteoglycans in ATDC5 cells, whereas LRP4 knockdown had opposite effects. Interestingly, LRP4-knockdown reduced mRNA expression of Sox9, a master regulator for chondrogenesis, as well as Dkk1, an extracellular Wnt inhibitor. Analysis of Wnt signaling revealed that LRP4 blocked the Wnt/β-catenin signaling activity in ATDC5 cells. Finally, the reduction of these extracellular matrix productions by LRP4-knockdown was rescued by a β-catenin/TCF inhibitor, suggesting that LRP4 is an important regulator for extracellular matrix productions and chondrocyte differentiation by suppressing Wnt/β-catenin signaling.  相似文献   

8.
Derangements in metabolism and related signaling pathways characterize the failing heart. One such signal, O-linked β-N-acetylglucosamine (O-GlcNAc), is an essential post-translational modification regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase (OGA), which modulate the function of many nuclear and cytoplasmic proteins. We recently reported reduced OGA expression in the failing heart, which is consistent with the pro-adaptive role of increased O-GlcNAcylation during heart failure; however, molecular mechanisms regulating these enzymes during heart failure remain unknown. Using miRNA microarray analysis, we observed acute and chronic changes in expression of several miRNAs. Here, we focused on miR-539 because it was predicted to target OGA mRNA. Indeed, co-transfection of the OGA-3′UTR containing reporter plasmid and miR-539 overexpression plasmid significantly reduced reporter activity. Overexpression of miR-539 in neonatal rat cardiomyocytes significantly suppressed OGA expression and consequently increased O-GlcNAcylation; conversely, the miR-539 inhibitor rescued OGA protein expression and restored O-GlcNAcylation. In conclusion, this work identifies the first target of miR-539 in the heart and the first miRNA that regulates OGA. Manipulation of miR-539 may represent a novel therapeutic target in the treatment of heart failure and other metabolic diseases.  相似文献   

9.
BMP2 (bone morphogenetic protein 2) is known to activate unfolded protein response signaling molecules, including XBP1S and ATF6. However, the influence on XBP1S and ATF6 in BMP2-induced chondrocyte differentiation has not yet been elucidated. In this study, we demonstrate that BMP2 mediates mild endoplasmic reticulum stress-activated ATF6 and directly regulates XBP1S splicing in the course of chondrogenesis. XBP1S is differentially expressed during BMP2-stimulated chondrocyte differentiation and exhibits prominent expression in growth plate chondrocytes. This expression is probably due to the activation of the XBP1 gene by ATF6 and splicing by IRE1a. ATF6 directly binds to the 5′-flanking regulatory region of the XBP1 gene at its consensus binding elements. Overexpression of XBP1S accelerates chondrocyte hypertrophy, as revealed by enhanced expression of type II collagen, type X collagen, and RUNX2; however, knockdown of XBP1S via the RNAi approach abolishes hypertrophic chondrocyte differentiation. In addition, XBP1S associates with RUNX2 and enhances RUNX2-induced chondrocyte hypertrophy. Altered expression of XBP1S in chondrocyte hypertrophy was accompanied by altered levels of IHH (Indian hedgehog) and PTHrP (parathyroid hormone-related peptide). Collectively, XBP1S may be a novel regulator of hypertrophic chondrocyte differentiation by 1) acting as a cofactor of RUNX2 and 2) affecting IHH/PTHrP signaling.  相似文献   

10.
11.
Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation   总被引:1,自引:0,他引:1  
Yu Y  Zhang L  Li X  Run X  Liang Z  Li Y  Liu Y  Lee MH  Grundke-Iqbal I  Iqbal K  Vocadlo DJ  Liu F  Gong CX 《PloS one》2012,7(4):e35277
Abnormal hyperphosphorylation of microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD). The aggregation of hyperphosphorylated tau into neurofibrillary tangles is also a hallmark brain lesion of AD. Tau phosphorylation is regulated by tau kinases, tau phosphatases, and O-GlcNAcylation, a posttranslational modification of proteins on the serine or threonine residues with β-N-acetylglucosamine (GlcNAc). O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase, the enzyme catalyzing the transfer of GlcNAc to proteins, and N-acetylglucosaminidase (OGA), the enzyme catalyzing the removal of GlcNAc from proteins. Thiamet-G is a recently synthesized potent OGA inhibitor, and initial studies suggest it can influence O-GlcNAc levels in the brain, allowing OGA inhibition to be a potential route to altering disease progression in AD. In this study, we injected thiamet-G into the lateral ventricle of mice to increase O-GlcNAcylation of proteins and investigated the resulting effects on site-specific tau phosphorylation. We found that acute thiamet-G treatment led to a decrease in tau phosphorylation at Thr181, Thr212, Ser214, Ser262/Ser356, Ser404 and Ser409, and an increase in tau phosphorylation at Ser199, Ser202, Ser396 and Ser422 in the mouse brain. Investigation of the major tau kinases showed that acute delivery of a high dose of thiamet-G into the brain also led to a marked activation of glycogen synthase kinase-3β (GSK-3β), possibly as a consequence of down-regulation of its upstream regulating kinase, AKT. However, the elevation of tau phosphorylation at the sites above was not observed and GSK-3β was not activated in cultured adult hippocampal progenitor cells or in PC12 cells after thiamet-G treatment. These results suggest that acute high-dose thiamet-G injection can not only directly antagonize tau phosphorylation, but also stimulate GSK-3β activity, with the downstream consequence being site-specific, bi-directional regulation of tau phosphorylation in the mammalian brain.  相似文献   

12.
Epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) is an endoplasmic reticulum (ER)-resident O-linked N-acetylglucosamine (O-GlcNAc) transferase that acts on EGF domain-containing proteins such as Notch receptors. Recently, mutations in EOGT have been reported in patients with Adams-Oliver syndrome (AOS). Here, we have characterized enzymatic properties of mouse EOGT and EOGT mutants associated with AOS. Simultaneous expression of EOGT with Notch1 EGF repeats in human embryonic kidney 293T (HEK293T) cells led to immunoreactivity with the CTD110.6 antibody in the ER. Consistent with the GlcNAc modification in the ER, the enzymatic properties of EOGT are distinct from those of Golgi-resident GlcNAc transferases; the pH optimum of EOGT ranges from 7.0 to 7.5, and the Km value for UDP N-acetylglucosamine (UDP-GlcNAc) is 25 μm. Despite the relatively low Km value for UDP-GlcNAc, EOGT-catalyzed GlcNAcylation depends on the hexosamine pathway, as revealed by the increased O-GlcNAcylation of Notch1 EGF repeats upon supplementation with hexosamine, suggesting differential regulation of the luminal UDP-GlcNAc concentration in the ER and Golgi. As compared with wild-type EOGT, O-GlcNAcylation in the ER is nearly abolished in HEK293T cells exogenously expressing EOGT variants associated with AOS. Introduction of the W207S mutation resulted in degradation of the protein via the ubiquitin-proteasome pathway, although the stability and ER localization of EOGTR377Q were not affected. Importantly, the interaction between UDP-GlcNAc and EOGTR377Q was impaired without adversely affecting the acceptor substrate interaction. These results suggest that impaired glycosyltransferase activity in mutant EOGT proteins and the consequent defective O-GlcNAcylation in the ER constitute the molecular basis for AOS.  相似文献   

13.
14.
The Integrin β1 family is the major receptors of the Extracellular matrix (ECM), and the synthesis and degradation balance of ECM is seriously disrupted during Osteoarthritis (OA). In this scenario, integrins modify their pattern expression and regulate chondrocyte differen-tiation in the articular cartilage. Members of the Transforming growth factor beta (Tgf-β) Su-perfamily, such as Growth differentiation factor 5 (Gdf-5) and Bone morphogenetic protein 7 (Bmp-7), play a key role in joint formation and could regulate the integrin expression during chondrocyte differentiation and osteoarthritis progression in an experimental OA rat model. Decrease of α5 integrin expression in articular cartilage was related with chondrocyte dedif-ferentiation during OA progression, while increase of α1, α2, and α3 integrin expression was related with fibrous areas in articular cartilage during OA. Hypertrophic chondrocytes expressedαV integrin and was increased in the articular cartilage of rats with OA. Integrin expression during chondrocyte differentiation was also analyzed in a micromass culture system of mouse embryo mesenchymal cells, micromass cultures was treated with Gdf-5 or Bmp-7 for 4 and 6 days, respectively. Gdf-5 induced the expression of theα5 sub-unit, while Bmp-7 induced the expression of the αV sub-unit. This suggests a switch in signaling for prehypertrophic chondrocyte differentiation towards hypertrophy, where Gdf-5 could maintain the articular chondrocyte phenotype and Bmp-7 would induce hypertrophy. Decrease of Ihh expression during late stages of OA in rat model suggest that the ossification in OA rat knees and endochondral ossification could be activated by Bmp-7 and αV integrin in absence of Ihh. Thus, chondrocyte phenotype in articular cartilage is similar to prehypetrophic chondrocyte in growth plate, and is preserved due to the presence of Indian hedgehog (Ihh), Gdf-5 and α5 integrin to maintain articular cartilage and prevent hy-pertrophy.  相似文献   

15.
Mutations in the sulfate transporter gene, SCL26A2, lead to cartilage proteoglycan undersulfation resulting in chondrodysplasia in humans; the phenotype is mirrored in the diastrophic dysplasia (dtd) mouse. It remains unclear whether bone shortening and deformities are caused solely by changes in the cartilage matrix, or whether chondroitin sulfate proteoglycan undersulfation affects also signalling pathways involved in cell proliferation and differentiation. Therefore we studied macromolecular sulfation in the different zones of the dtd mouse growth plate and these data were related to growth plate histomorphometry and proliferation analysis.A 2-fold increase of non-sulfated disaccharide in dtd animals compared to wild-type littermates in the resting, proliferative and hypertrophic zones was detected indicating proteoglycan undersulfation; among the three zones the highest level of undersulfation was in the resting zone. The relative height of the hypertrophic zone and the average number of cells per column in the proliferative and hypertrophic zones were significantly reduced compared to wild-types; however the total height of the growth plate was within normal values. The chondrocyte proliferation rate, measured by bromodeoxyuridine labelling, was also significantly reduced in mutant mice. Immunohistochemistry combined with expression data of the dtd growth plate demonstrated that the sulfation defect alters the distribution pattern, but not expression, of Indian hedgehog, a long range morphogen required for chondrocyte proliferation and differentiation.These data suggest that in dtd mice proteoglycan undersulfation causes reduced chondrocyte proliferation in the proliferative zone via the Indian hedgehog pathway, therefore contributing to reduced long bone growth.  相似文献   

16.
During embryogenesis, the expression of mammalian stanniocalcin (STC1) in the appendicular skeleton suggests its involvement in the regulation of longitudinal bone growth. Such a role is further supported by the presence of dwarfism in mice overexpressing STC1. Yet, the STC 1 inhibitory effect on growth may be related to both postnatal metabolic abnormalities and prenatal defective bone formation. In our study, we used an organ culture system to evaluate the effects of STC on growth plate chondrogenesis, which is the primary determinant of longitudinal bone growth. Fetal rat metatarsal bones were cultured in the presence of recombinant human STC (rhSTC). After 3 days, rhSTC suppressed metatarsal growth, growth plate chondrocyte proliferation and hypertrophy/differentiation, and extracellular matrix synthesis. In addition, rhSTC increased the number of apoptotic chondrocytes in the growth plate. In cultured chondrocytes, rhSTC increased phosphate uptake, reduced chondrocyte proliferation and matrix synthesis, and induced apoptosis. All these effects were reversed by culturing chondrocytes with rhSTC and phosphonoformic acid, an inhibitor of phosphate transport. The rhSTC-mediated inhibition of metatarsal growth and growth plate chondrocyte proliferation and hypertrophy/differentiation was abolished by culturing metatarsals with rhSTC and phosphonoformic acid. Taken together, our findings indicate that STC1 inhibits longitudinal bone growth directly at the growth plate. Such growth inhibition, likely mediated by an increased chondrocyte phosphate uptake, results from suppressed chondrocyte proliferation, hypertrophy/differentiation, and matrix synthesis and by increased apoptosis. Last, the expression of both STC1 and its binding site in the growth plate would support an autocrine/paracrine role for this growth factor in the regulation of growth plate chondrogenesis.  相似文献   

17.
18.
19.
The axial and appendicular skeleton of vertebrates develops by endochondral ossification, in which skeletogenic tissue is initially cartilaginous and the differentiation of chondrocytes via the hypertrophic pathway precedes the differentiation of osteoblasts and the deposition of a definitive bone matrix. Results from both loss-of-function and misexpression studies have implicated the related homeobox genes Dlx5 and Dlx6 as partially redundant positive regulators of chondrocyte hypertrophy. However, experimental perturbations of Dlx expression have either not been cell type specific or have been done in the context of endogenous Dlx5 expression. Thus, it has not been possible to conclude whether the effects on chondrocyte differentiation are cell autonomous or whether they are mediated by Dlx expression in adjacent tissues, notably the perichondrium. To address this question we first engineered transgenic mice in which Dlx5 expression was specifically restricted to immature and differentiating chondrocytes and not the perichondrium. Col2a1-Dlx5 transgenic embryos and neonates displayed accelerated chondrocyte hypertrophy and mineralization throughout the endochondral skeleton. Furthermore, this transgene specifically rescued defects of chondrocyte differentiation characteristic of the Dlx5/6 null phenotype. Based on these results, we conclude that the role of Dlx5 in the hypertrophic pathway is cell autonomous. We further conclude that Dlx5 and Dlx6 are functionally equivalent in the endochondral skeleton, in that the requirement for Dlx5 and Dlx6 function during chondrocyte hypertrophy can be satisfied with Dlx5 alone.  相似文献   

20.
The pathogenic free-living amoeba Naegleria fowleri causes primary amoebic meningoencephalitis, a fatal infection, by penetrating the nasal mucosa and migrating to the brain via the olfactory nerves. N. fowleri can induce host cell death via lytic necrosis. Similar to phosphorylation, O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is involved in various cell-signaling processes, including apoptosis and proliferation, with O-GlcNAc addition and removal regulated by O-GlcNAc transferase and O-GlcNAcase (OGA), respectively. However, the detailed mechanism of host cell death induced by N. fowleri is unknown. In this study, we investigated whether N. fowleri can induce the modulation of O-GlcNAcylated proteins during cell death in Jurkat T cells. Co-incubation with live N. fowleri trophozoites increased DNA fragmentation. In addition, incubation with N. fowleri induced a dramatic reduction in O-GlcNAcylated protein levels in 30 min. Moreover, pretreatment of Jurkat T cells with the OGA inhibitor PUGNAc prevented N. fowleri–induced O-deGlcNAcylation and DNA fragmentation. These results suggest that O-deGlcNAcylation is an important signaling process that occurs during Jurkat T cell death induced by N. fowleri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号