首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
3-Hydroxyacids are a group of valuable fine chemicals with numerous applications, and 3-hydroxybutyrate (3-HB) represents the most common species with acetyl-CoA as a precursor. Due to the lack of propionyl-CoA in most, if not all, microorganisms, bio-based production of 3-hydroxyvalerate (3-HV), a longer-chain 3-hydroxyacid member with both acetyl-CoA and propionyl-CoA as two precursors, is often hindered by high costs associated with the supplementation of related carbon sources, such as propionate or valerate. Here, we report the derivation of engineered Escherichia coli strains for the production of 3-HV from unrelated cheap carbon sources, in particular glucose and glycerol. Activation of the sleeping beauty mutase (Sbm) pathway in E. coli enabled the intracellular formation of non-native propionyl-CoA. A selection of enzymes involved in 3-HV biosynthetic pathway from various microorganisms were explored for investigating their effects on 3-HV biosynthesis in E. coli. Glycerol outperformed glucose as the carbon source, and glycerol dissimilation for 3-HV biosynthesis was primarily mediated through the aerobic GlpK-GlpD route. To further enhance 3-HV production, we developed metabolic engineering strategies to redirect more dissimilated carbon flux from the tricarboxylic acid (TCA) cycle to the Sbm pathway, resulting in an enlarged intracellular pool of propionyl-CoA. Both the presence of succinate/succinyl-CoA and their interconversion step in the TCA cycle were identified to critically limit the carbon flux redirection into the Sbm pathway and, therefore, 3-HV biosynthesis. A selection of E. coli host TCA genes encoding enzymes near the succinate node were targeted for manipulation to evaluate the contribution of the three TCA routes (i.e. oxidative TCA cycle, reductive TCA branch, and glyoxylate shunt) to the redirected carbon flux into the Sbm pathway. Finally, the carbon flux redirection into the Sbm pathway was enhanced by simultaneously deregulating glyoxylate shunt and blocking the oxidative TCA cycle, significantly improving 3-HV biosynthesis. With the implementation of these biotechnological and bioprocessing strategies, our engineered E. coli strains can effectively produce 3-HV up to 3.71 g l−1 with a yield of 24.1% based on the consumed glycerol in shake-flask cultures.  相似文献   

2.
3.
Oxygen and oxidative stress have become relevant components in clarifying the mechanism that weakens bacterial cells in parallel to the mode of action of bactericidal antibiotics. Given the importance of oxidative stress in the overall defense mechanism of bacteria and their apparent role in the antimicrobial mode of action, it is important to understand how bacteria respond to this stress at a metabolic level. The aim of this study was to determine the impact of oxygen on the metabolism of the facultative anaerobe Enterococcus faecalis using continuous culture, metabolomics, and 13C enrichment of metabolic intermediates. When E. faecalis was rapidly transitioned from anaerobic to aerobic growth, cellular metabolism was directed toward intracellular glutathione production and glycolysis was upregulated 2-fold, which increased the supply of critical metabolite precursors (e.g., glycine and glutamate) for sulfur metabolism and glutathione biosynthesis as well as reducing power for cellular respiration in the presence of hemin. The ultimate metabolic response of E. faecalis to an aerobic environment was the upregulation of fatty acid metabolism and benzoate degradation, which was linked to important changes in the bacterial membrane composition as evidenced by changes in membrane fatty acid composition and the reduction of membrane-associated demethylmenaquinone. These key metabolic pathways associated with the response of E. faecalis to oxygen may represent potential new targets to increase the susceptibility of this bacterium to bactericidal drugs.  相似文献   

4.
Aymeric Goyer 《Phytochemistry》2010,71(14-15):1615-1624
Thiamine diphosphate (vitamin B1) plays a fundamental role as an enzymatic cofactor in universal metabolic pathways including glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. In addition, thiamine diphosphate has recently been shown to have functions other than as a cofactor in response to abiotic and biotic stress in plants. Recently, several steps of the plant thiamine biosynthetic pathway have been characterized, and a mechanism of feedback regulation of thiamine biosynthesis via riboswitch has been unraveled. This review focuses on these most recent advances made in our understanding of thiamine metabolism and functions in plants. Phenotypes of plant mutants affected in thiamine biosynthesis are described, and genomics, proteomics, and metabolomics data that have increased further our knowledge of plant thiamine metabolic pathways and functions are summarized. Aspects of thiamine metabolism such as catabolism, salvage, and transport in plants are discussed.  相似文献   

5.
Plants recognize potential microbial pathogens through microbial‐associated molecular patterns (MAMPs) and activate a series of defense responses, including cell death and the production of reactive oxygen species (ROS) and diverse anti‐microbial secondary metabolites. Mitogen‐activated protein kinase (MAPK) cascades are known to play a pivotal role in mediating MAMP signals; however, the signaling pathway from a MAPK cascade to the activation of defense responses is poorly understood. Here, we found in rice that the chitin elicitor, a fungal MAMP, activates two rice MAPKs (OsMPK3 and OsMPK6) and one MAPK kinase (OsMKK4). OsMPK6 was essential for the chitin elicitor‐induced biosynthesis of diterpenoid phytoalexins. Conditional expression of the active form of OsMKK4 (OsMKK4DD) induced extensive alterations in gene expression, which implied dynamic changes of metabolic flow from glycolysis to secondary metabolite biosynthesis while suppressing basic cellular activities such as translation and cell division. OsMKK4DD also induced various defense responses, such as cell death, biosynthesis of diterpenoid phytoalexins and lignin but not generation of extracellular ROS. OsMKK4DD‐induced cell death and expression of diterpenoid phytoalexin pathway genes, but not that of phenylpropanoid pathway genes, were dependent on OsMPK6. Collectively, the OsMKK4–OsMPK6 cascade plays a crucial role in reprogramming plant metabolism during MAMP‐triggered defense responses.  相似文献   

6.
Maintaining metabolic homeostasis is critical for plant growth and development. Here we report proteome and metabolome changes when the metabolic homeostasis is perturbed due to gene-dosage dependent mutation of Arabidopsis isopropylmalate dehydrogenases (IPMDHs). By integrating complementary quantitative proteomics and metabolomics approaches, we discovered that gradual ablation of the oxidative decarboxylation step in leucine biosynthesis caused imbalance of amino acid homeostasis, redox changes and oxidative stress, increased protein synthesis, as well as a decline in photosynthesis, which led to rearrangement of central metabolism and growth retardation. Disruption of IPMDHs involved in aliphatic glucosinolate biosynthesis led to synchronized increase of both upstream and downstream biosynthetic enzymes, and concomitant repression of the degradation pathway, indicating metabolic regulatory mechanisms in controlling glucosinolate biosynthesis.  相似文献   

7.
8.
Growth on glycerol has already been a topic of research for several yeast species, and recent publications deal with the regulatory mechanisms of glycerol assimilation by the fission yeast Schizosaccharomyces pombe. We investigated glycerol metabolism of S. pombe from a physiological point of view, characterizing growth and metabolism on a mixture of glycerol and acetate and comparing it to growth on glucose under respirative growth conditions in chemostat experiments. On glycerol/acetate mixtures, the cells grew with a maximum specific growth rate of 0.11 h?1 where 46 % of the carbon was channeled into biomass and the key fermentation product ethanol was not detectable. 13C-assisted metabolic flux analysis resolved substrate distributions through central carbon metabolism, proving that glycerol is used as a precursor for glycolysis, gluconeogenesis, and the pentose phosphate pathway, while acetate enters the tricarboxylic acid cycle via acetyl-CoA. Considering compartmentalization between cytosol and mitochondria in the metabolic model, we found compartmentalization of biosynthesis for the amino acids aspartate and leucine. Balancing of redox cofactors revealed an abundant production of cytosolic NADPH that must be finally regenerated via the respiratory chain shown by the simulated and measured CO2 production and oxygen consumption rates which were in good agreement.  相似文献   

9.
Glycolysis is the primary metabolic pathway in all living organisms. Maintaining the balance of glycolysis flux and biosynthetic pathways is the crucial matter involved in the microbial cell factory. Few regulation systems can address the issue of metabolic flux imbalance in glycolysis. Here, we designed and constructed a bifunctional glycolysis flux biosensor that can dynamically regulate glycolysis flux for overproduction of desired biochemicals. A series of positive-and negative-response biosensors were created and modified for varied thresholds and dynamic ranges. These engineered glycolysis flux biosensors were verified to be able to characterize in vivo fructose-1,6-diphosphate concentration. Subsequently, the biosensors were applied for fine-tuning glycolysis flux to effectively balance the biosynthesis of two chemicals: mevalonate and N-acetylglucosamine. A glycolysis flux-dynamically controlled Escherichia coli strain achieved a 111.3 g/L mevalonate titer in a 1L fermenter.  相似文献   

10.
11.
4-Ethylphenol (4-EP) is an industrially versatile commodity chemical widely applied in the pharmaceutical and food industries. In this study, an artificial biosynthetic pathway was constructed in Escherichia coli for production of 4-ethylphenol from simple sources of carbon. The pathway consists of the tal, pad and vpr genes, which encode tyrosine ammonia lyase (TAL), phenolic acid decarboxylase (PAD) and vinylphenol reductase (VPR), respectively. Our results confirmed that the TAL from Saccharothrix espanaensis possessed higher catalytic activity than the TAL from Rhodobacter sphaeroides for biosynthesis of p-hydroxycinnamic acid. The low solubility of Lactobacillus plantarum VPR (LpVPR) in E. coli was a critical factor limiting its availability in the biosynthetic pathway. The solubility of LpVPR was improved by E. coli strain and induction condition optimization. Under the optimized conditions, the engineered E. coli TransB-TPV produced as high as 110 mg/L 4-EP at 37 ℃ in Terrific Broth (TB) medium with glycerol as carbon source after cultivation of 48 h. This study provided a new and feasible strategy for biosynthesis of 4-EP from simple sugars, which may provide a basis for future large-scale industrial application.  相似文献   

12.
《Process Biochemistry》2010,45(9):1459-1467
The aim of this work was to understand the relevance of central carbon metabolism in salt stress adaptation of Escherichia coli. The cells were grown anaerobically in batch and chemostat reactors at different NaCl concentrations using glycerol as a carbon source. Enzyme activities of the main metabolic pathways, external metabolites, ATP level, NADH/NAD+ ratio, l-carnitine production and the expression level of the main genes related to stress response were used to characterize the metabolic state under the osmotic stress. The results provided the first experimental evidence of the important role played by central metabolism adaptation and cell survival after long-term exposure to salt stress. Increased glycolytic fluxes and higher production of fermentation products indicated the importance of energy metabolism. Carbon fluxes under stress conditions were controlled by the decrease in the isocitrate dehydrogenase/isocitrate lyase ratio and the phosphoenolpyruvate carboxykinase/phosphoenolpyruvate carboxylase ratio, and the increase in the phosphotransferase/acetyl-CoA synthetase ratio. Altogether, the results demonstrate that, under salt stress, E. coli enhances energy production by substrate-level phosphorylation (Pta–Ack pathway) and the anaplerotic function of the TCA cycle, in order to provide precursors for biosynthesis. The results are discussed in relation with the general stress response and metabolic adaptation of E. coli.  相似文献   

13.
The heterologous production of the complex antibiotic erythromycin through Escherichia coli provides a unique challenge in metabolic engineering. In addition to introducing the 19 foreign genes needed for heterologous biosynthesis, E. coli metabolism must be engineered to provide the propionyl-CoA and (2S)-methylmalonyl-CoA substrates required to allow erythromycin formation. In this work, three different pathways to propionyl-CoA were compared in the context of supporting E. coli erythromycin biosynthesis. The comparison revealed that alternative citramalate and threonine metabolic pathways (both starting from exogenous glycerol) were capable of supporting final compound formation equal to a proven pathway reliant upon exogenous propionate. Furthermore, two pathways to (2S)-methylmalonyl-CoA were compared in the production of a novel benzyl-erythromycin analog. A pathway dependent upon exogenous methylmalonate improved selectivity and facilitated antibiotic assessment of this new analog.  相似文献   

14.
Genistin is one of the bioactive isoflavone glucosides found in legumes, which have great nutraceutical and pharmaceutical significance. The market available isoflavones are currently produced by direct plant extraction. However, its low abundance in plant and structural complexity hinders access to this phytopharmaceutical via plant extraction or chemical synthesis. Here, the E. coli cell factory for sustainable production of genistin from glycerol was constructed. First, we rebuilt the precursor genistein biosynthesis pathway in E. coli, and its titer was then increased by 668% by identifying rate-limiting steps and applying an artificial protein scaffold system. Then de novo production of genistin from glycerol was achieved by functional screening and introduction of glycosyl-transferases, UDP-glucose pathway and specific genistin efflux pumps, and 48.1 mg/L of genistin was obtained. A further engineered E. coli strain equipped with an improved malonyl-CoA pathway, alternative glycerol-utilization pathways, acetyl-CoA carboxylase (ACC), and CRISPR interference (CRISPRi) mediated regulation produced up to 137.8 mg/L of genistin in shake flask cultures. Finally, 202.7 mg/L genistin was achieved through fed-batch fermentation in a 3-L bioreactor. This study represents the de novo genistin production from glycerol for the first time and will lay the foundation for low-cost microbial production of glucoside isoflavones. In addition, the multiphase workflow may provide a reference for engineering the biosynthetic pathways in other microbial hosts as well, for green manufacturing of complex natural products.  相似文献   

15.
16.
Engineered heterologous multi-gene metabolic pathways often suffer from flux imbalance and toxic metabolites, as the production host typically lacks the regulatory mechanisms for the heterologous pathway. Here, we first coordinated the expression of all genes of the mevalonate (MEV) pathway from Saccharomyces cerevisiae using the tunable intergenic regions (TIGRs), and then dynamically regulated the TIGR-mediated MEV pathway to prevent the accumulation of toxic metabolites by using IPP/FPP-responsive promoter. After introduction of the dynamically controlled TIGR-mediated MEV pathway into Escherichia coli, the content and concentration of zeaxanthin in shaker flask cultures were 2.0- and 2.1-fold higher, respectively, than those of the strain harboring the statically controlled non-TIGR-mediated MEV pathway. The content and concentration of zeaxanthin in E. coli ZEAX (pZSPgadE-MevTTIGR-MevBTIGRIS-2) reached 722.46 mg/L and 23.16 mg/g dry cell weight (DCW), respectively, in 5.0 L fed-batch fermentation. We also comparatively analyzed the proteomes between E. coli ZEAX and E. coli ZEAX (pZSPgadE-MevTTIGR-MevBTIGRIS-2) to understand the mechanism of zeaxanthin biosynthesis. The results of the comparative proteomes demonstrate that zeaxanthin overproduction may be associated with increased precursor availability, increased NADPH availability, increased ATP availability, oxidative stress response, and increased membrane storage capacity for zeaxanthin due to changes in both cellular shape and membrane composition.  相似文献   

17.
Inflammation and oxidative stress are closely linked patho-physiological processes which occur concurrently in many diseased conditions. Recently, interdependence between these two processes explains the antioxidant paradox associated with failure to select appropriate agents required for prevention of diseases known to be induced by oxidative stress. Present study established the overlapping anti-inflammatory and anti-oxidative potential along with bio-accessibility of milk casein derived tripeptide (LLY). Tripeptide exhibited anti-inflammatory response under ex vivo conditions by suppressing (P<.01) mice splenocytes proliferation and modulating their cytokines (IFN-γ, IL-10 and TGF-β) with improved phagocytosis of peritoneal macrophages. Conversely, tripeptide displayed extraordinary radical scavenging ability and cellular anti-oxidative potential using chemical assays and H2O2 induced oxidative stress model on Caco-2 cells. Under cellular assessment, on one hand tripeptide inhibited (P<.01) intracellular ROS generation and reduced MDA and protein carbonyls but on the other also increased (P<.01) the activity of anti-oxidative enzyme, catalase without much effect on SOD and GPx. This anti-oxidative potential was further established by studying relative expression of genes (Nrf-2 and Keap1) and Nrf-2 nuclear translocation associated with anti-oxidative signaling in Caco-2 cells. Bio-accessibility of tripeptide and its intact transport across Caco-2 cell monolayer was also found to be 1.72±0.22% through PepT1 mediated transport mechanism. Besides, tripeptide displayed strong anti-oxidative and anti-inflammatory potential under in vivo conditions in mice against ethanol induced oxidative stress by elevating (P<.01) liver GSH content and by decreasing (P<.01) the activities of anti-oxidative enzymes, MDA along with reduced expression of CYP2E1, PPAR-α, TNF-α and COX-2 genes than ethanol control.  相似文献   

18.
The effect of calorie restriction (CR) on life span extension, demonstrated in organisms ranging from yeast to mice, may involve the down-regulation of pathways, including Tor, Akt, and Ras. Here, we present data suggesting that yeast Tor1 and Sch9 (a homolog of the mammalian kinases Akt and S6K) is a central component of a network that controls a common set of genes implicated in a metabolic switch from the TCA cycle and respiration to glycolysis and glycerol biosynthesis. During chronological survival, mutants lacking SCH9 depleted extracellular ethanol and reduced stored lipids, but synthesized and released glycerol. Deletion of the glycerol biosynthesis genes GPD1, GPD2, or RHR2, among the most up-regulated in long-lived sch9Δ, tor1Δ, and ras2Δ mutants, was sufficient to reverse chronological life span extension in sch9Δ mutants, suggesting that glycerol production, in addition to the regulation of stress resistance systems, optimizes life span extension. Glycerol, unlike glucose or ethanol, did not adversely affect the life span extension induced by calorie restriction or starvation, suggesting that carbon source substitution may represent an alternative to calorie restriction as a strategy to delay aging.  相似文献   

19.
Abstract

Entamoeba histolytica, the parasite which causes amebiasis is responsible for 110?000 deaths a year. Entamoeba histolytica depends on glycolysis to obtain ATP for cellular work. According to metabolic flux studies, hexokinase exerts the highest flux control of this metabolic pathway; therefore, it is an excellent target in the search of new antiamebic drugs. To this end, a tridimensional model of E. histolytica hexokinase 1 (EhHK1) was constructed and validated by homology modeling. After virtual screening of 14?400 small molecules, the 100 with the best docking scores were selected, purchased and assessed in their inhibitory capacity. The results showed that three molecules (compounds 2921, 11275 and 2755) inhibited EhHK1 with an I50 of 48, 91 and 96?µM, respectively. Thus, we found the first inhibitors of EhHK1 that can be used in the search of new chemotherapeutic agents against amebiasis.  相似文献   

20.
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号