首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An algorithm and computer program is presented that fits a largelynon-parametric model to pharmacokinetic (PK) and pharmacodynamic(PD) data; it is an extension of a recently proposed approach.A PK model relates dose to plasma concentrations (Cp), a linkmodel relates plasma concentrations to the concentration inthe effect site (Ce), a PD model relates Ce to the effect. Boththe PK and the PD model are non-parametric, but the link modelis parametric. The extension presented here allows modelingof PK/PD data arising from non-steady-state experiments afterarbitrary dosage. In addition, several data sets from the sameindividual (or from different individuals) can now be analyzedsimultaneously, assuming the same link model for all, but allowingeither all the PD models to be the same, or all to be different. Received on March 15, 1987; accepted on July 27, 1987  相似文献   

2.
Bennett J  Wakefield J 《Biometrics》2001,57(3):803-812
Pharmacokinetic (PK) models describe the relationship between the administered dose and the concentration of drug (and/or metabolite) in the blood as a function of time. Pharmacodynamic (PD) models describe the relationship between the concentration in the blood (or the dose) and the biologic response. Population PK/PD studies aim to determine the sources of variability in the observed concentrations/responses across groups of individuals. In this article, we consider the joint modeling of PK/PD data. The natural approach is to specify a joint model in which the concentration and response data are simultaneously modeled. Unfortunately, this approach may not be optimal if, due to sparsity of concentration data, an overly simple PK model is specified. As an alternative, we propose an errors-in-variables approach in which the observed-concentration data are assumed to be measured with error without reference to a specific PK model. We give an example of an analysis of PK/PD data obtained following administration of an anticoagulant drug. The study was originally carried out in order to make dosage recommendations. The prior for the distribution of the true concentrations, which may incorporate an individual's covariate information, is derived as a predictive distribution from an earlier study. The errors-in-variables approach is compared with the joint modeling approach and more naive methods in which the observed concentrations, or the separately modeled concentrations, are substituted into the response model. Throughout, a Bayesian approach is taken with implementation via Markov chain Monte Carlo methods.  相似文献   

3.
同型半胱氨酸对大鼠血管平滑肌细胞增殖的作用   总被引:11,自引:0,他引:11  
血中同型半胱氨酸(homocysteine,HCY)浓度的升高已成为动脉粥样硬化发生的一个独立危险因子.为进一步阐明HCY促进血管平滑肌细胞(vascularsmoothmusclecels,VSMCs)增殖,从而引起动脉粥样硬化发生的机理.本实验采用细胞计数、3H-TdR参入、细胞周期分析、Northern杂交方法证明,一定剂量的HCY可促进离体培养的WKY大鼠血管平滑肌细胞增殖,使其DNA合成增加,细胞周期中S期细胞所占比例增加43%,并促进c-myc与c-fos原癌基因mRNA表达增加.提示HCY可能通过促进VSMCs增殖而诱发动脉粥样硬化  相似文献   

4.
Grey-box pharmacokinetic/pharmacodynamic (PK/PD) modelling is presented as a promising way of modelling the pharmacokinetics and pharmacodynamics of the in vivo system of insulin and glucose and to estimate model and derived PK/PD parameters. The concept behind grey-box modelling consists in using a priori physiological knowledge along with information from data in the estimation of model parameters. The PK/PD properties of two types of insulin are investigated in a euglycaemic clamp study where a single bolus of insulin is injected subcutaneously. The effect of insulin on the glucose disappearance is investigated by artificially maintaining a blood glucose concentration close to the normal fasting level. The infused glucose needed to maintain the clamped blood glucose concentration can therefore be used as a measure for the glucose utilization. The PK and PD parameters are successfully estimated simultaneously thereby describing the uptake, distribution, and effect of the two different types of insulin.  相似文献   

5.
Genetic and nutritional factors play a role in determining the functionality of the one-carbon (1C) metabolism cycle, a network of biochemical reactions critical to intracellular processes. Genes encoding enzymes for methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MTR) may determine biomarkers of the cycle including homocysteine (HCY), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH). MTHFR C677T is an established genetic determinant of HCY but less is known of its effect on SAM and SAH. Conversely, the relationship between MTR A2756G and HCY remains inconclusive, and its effect on SAM and SAH has only been previously investigated in a female-specific population. Folate and vitamin B12 are essential substrate and cofactor of 1C metabolism; thus, consideration of gene–nutrient interactions may clarify the role of genetic determinants of HCY, SAM and SAH. This cross-sectional study included 570 healthy volunteers from Kingston, Ontario, Ottawa, Ontario and Halifax, Nova Scotia, Canada. Least squares regression was used to examine the effects of MTR and MTHFR polymorphisms on plasma HCY, SAM and SAH concentrations; gene–gene and gene–nutrient interactions were considered with the inclusion of cross-products in the model. Main effects of MTR and MTHFR polymorphisms on HCY concentrations were observed; however, no gene–gene or gene–nutrient interactions were found. No association was observed for SAM. For SAH, interactions between MTR and MTHFR polymorphisms, and MTHFR polymorphism and serum folate were found. The findings of this research provide evidence that HCY and SAH, biomarkers of 1C metabolism, are influenced by genetic and nutritional factors and their interactions.  相似文献   

6.
Interleukin (IL)-21 is an attractive antitumor agent with potent immunomodulatory functions. Yet thus far, the cytokine has yielded only partial responses in solid cancer patients, and conditions for beneficial IL-21 immunotherapy remain elusive. The current work aims to identify clinically-relevant IL-21 regimens with enhanced efficacy, based on mathematical modeling of long-term antitumor responses. For this purpose, pharmacokinetic (PK) and pharmacodynamic (PD) data were acquired from a preclinical study applying systemic IL-21 therapy in murine solid cancers. We developed an integrated disease/PK/PD model for the IL-21 anticancer response, and calibrated it using selected "training" data. The accuracy of the model was verified retrospectively under diverse IL-21 treatment settings, by comparing its predictions to independent "validation" data in melanoma and renal cell carcinoma-challenged mice (R(2)>0.90). Simulations of the verified model surfaced important therapeutic insights: (1) Fractionating the standard daily regimen (50 μg/dose) into a twice daily schedule (25 μg/dose) is advantageous, yielding a significantly lower tumor mass (45% decrease); (2) A low-dose (12 μg/day) regimen exerts a response similar to that obtained under the 50 μg/day treatment, suggestive of an equally efficacious dose with potentially reduced toxicity. Subsequent experiments in melanoma-bearing mice corroborated both of these predictions with high precision (R(2)>0.89), thus validating the model also prospectively in vivo. Thus, the confirmed PK/PD model rationalizes IL-21 therapy, and pinpoints improved clinically-feasible treatment schedules. Our analysis demonstrates the value of employing mathematical modeling and in silico-guided design of solid tumor immunotherapy in the clinic.  相似文献   

7.
Discovery of the upregulation of fibroblast growth factor-inducible-14 (Fn14) receptor following tissue injury has prompted investigation into biotherapeutic targeting of the Fn14 receptor for the treatment of conditions such as chronic kidney diseases. In the development of monoclonal antibody (mAb) therapeutics, there is an increasing trend to use biomeasures combined with mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling to enable decision making in early discovery. With the aim of guiding preclinical efforts on designing an antibody with optimized properties, we developed a mechanistic site-of-action (SoA) PK/PD model for human application. This model incorporates experimental biomeasures, including concentration of soluble Fn14 (sFn14) in human plasma and membrane Fn14 (mFn14) in human kidney tissue, and turnover rate of human sFn14. Pulse-chase studies using stable isotope-labeled amino acids and mass spectrometry indicated the sFn14 half-life to be approximately 5 hours in healthy volunteers. The biomeasures (concentration, turnover) of sFn14 in plasma reveals a significant hurdle in designing an antibody against Fn14 with desired characteristics. The projected dose (>1 mg/kg/wk for 90% target coverage) derived from the human PK/PD model revealed potential high and frequent dosing requirements under certain conditions. The PK/PD model suggested a unique bell-shaped relationship between target coverage and antibody affinity for anti-Fn14 mAb, which could be applied to direct the antibody engineering towards an optimized affinity. This investigation highlighted potential applications, including assessment of PK/PD risks during early target validation, human dose prediction and drug candidate optimization.  相似文献   

8.
Animal infection models in the pharmacokinetic/pharmacodynamic (PK/PD) evaluation of antimicrobial therapy serve an important role in preclinical assessments of new antibiotics, dosing optimization for those that are clinically approved, and setting or confirming susceptibility breakpoints. The goal of animal model studies is to mimic the infectious diseases seen in humans to allow for robust PK/PD studies to find the optimal drug exposures that lead to therapeutic success. The PK/PD index and target drug exposures obtained in validated animal infection models are critical components in optimizing dosing regimen design in order to maximize efficacy while minimize the cost and duration of clinical trials. This review outlines the key components in animal infection models which have been used extensively in antibiotic discovery and development including PK/PD analyses.  相似文献   

9.
This paper presents a robust closed-loop strategy for control of depth of hypnosis. The proposed method regulates the electroencephalogram (EEG)-derived WAVCNS index as measure of hypnosis by manipulating intravenous propofol administration. In contrast to many existing closed-loop control methods for hypnosis drug delivery, the control design presented in this paper produces stability and robustness against uncertainty by explicitly accounting for the pharmacokinetic (PK) and pharmacodynamic (PD) variability between individuals, as well as the unexpected surgical stimulation and anesthetic–analgesic interaction that the closed-loop control is required to tolerate. This robust closed-loop controller was evaluated in comparison with a heuristically tuned proportional-derivative-integral (PID) controller using a simulated surgical procedure on 44 patients whose PK and PD models were identified using real clinical data. The results demonstrate that the robust control strategy can deliver propofol to yield consistent and acceptable closed-loop induction and maintenance phase responses over wide-ranging PK and PD differences (mean rise and settling times of 4 min and 7 min and mean overshoot of less than 8%, which meets anesthesiologists’ response specifications), whereas its PID control counterpart exhibits limitations in performance.  相似文献   

10.
Findings of a recent clinical study showed indomethacin has lower plasma levels and higher steady-state apparent clearance in pregnant subjects when compared to those in non-pregnant subjects reported in separate studies. Thus, in the current work we developed a pregnancy physiological based pharmacokinetic/pharmacodynamic (PBPK/PD) model for indomethacin to explain the differences in indomethacin pharmacokinetics between pregnancy and non-pregnancy. A whole-body PBPK model with key pregnancy-related physiological changes was developed to characterize indomethacin PK in pregnant women and compare these parameters to those in non-pregnant subjects. Data related to maternal physiological and biological changes were obtained from literature and incorporated into the structural PBPK model that describes non-pregnant PK data. Changes in indomethacin area under the curve (AUC), maximum concentration (Cmax) and average steady-state concentration (Cave) in pregnant women were predicted. Model-simulated PK profiles were in agreement with observed data. The predicted mean ratio (non-pregnant:second trimester (T2)) of indomethacin Cave was 1.6 compared to the observed value of 1.59. In addition, the predicted steady-state apparent clearance (CL/Fss) ratio was almost similar to the observed value (0.46 vs. 0.42). Sensitivity analysis suggested changes in CYP2C9 activity, and to a lesser extent UGT2B7, as the primary factor contributing to differences in indomethacin disposition between pregnancy and non-pregnancy. The developed PBPK model which integrates prior physiological knowledge, in vitro and in vivo data, allowed the successful prediction of indomethacin disposition during T2. Our PBPK/PD model suggested a higher indomethacin dosing requirement during pregnancy.  相似文献   

11.
DSTA4637A, a THIOMAB? antibody-antibiotic conjugate targeting Staphylococcus aureus, has shown promising bactericidal activity in a mouse model. DSTA4637A consists of a monoclonal anti-S. aureus antibody with an average of two rifalogue antibiotic molecules, dmDNA31, linked to its light chains. The goal of this study was to develop a minimal physiologically-based pharmacokinetic (mPBPK) model to characterize the pharmacokinetic (PK) properties of three analytes of DSTA4637A (i.e., total antibody, antibody-conjugated dmDNA31, and unconjugated dmDNA31) in mice, and to predict pharmacokinetics of DSTA4637A analytes in humans, as well as to provide an initial assessment for potential PK drug-drug interactions (DDI) in clinical trials via cross-species scaling of the mPBPK model. In the proposed model, selected organs, including heart, liver, and kidney, were connected anatomically with plasma and lymph flows. Mouse plasma and tissue concentrations of the three analytes of DSTA4637A were fitted simultaneously to estimate the PK parameters. Cross-species scaling of the model was performed by integrating allometric scaling and human physiological parameters. The final mPBPK model was able to successfully capture PK profiles of three DSTA4637A analytes in mouse plasma and in investigated organs. The model predicted a steady-state peak unbound dmDNA31 concentration lower than 5% of the IC50 of dmDNA31 towards cytochrome P450 following 100 mg/kg weekly intravenous dose, which suggests a low risk of PK DDI in humans for DSTA4637A with co-administered cytochrome P450 substrates. The proposed mPBPK modeling and cross-species scaling approaches provide valuable tools that facilitate the understanding and translation of DSTA4637A disposition from preclinical species to humans.  相似文献   

12.
Despite enormous efforts, achieving a safe and efficacious concentration profile in the brain remains one of the big challenges in central nervous system (CNS) drug discovery and development. Although there are multiple reasons, many failures are due to underestimating the complexity of the brain, also in terms of pharmacokinetics (PK). To this day, PK support of CNS drug discovery heavily relies on improving the blood–brain barrier (BBB) permeability in vitro and/or the brain/plasma ratio (Kp) in vivo, even though neither parameter can be reliably linked to pharmacodynamic (PD) and efficacy readouts. While increasing BBB permeability may shorten the onset of drug action, an increase in the total amount in brain may not necessarily increase the relevant drug concentration at the pharmacological target. Since the traditional Kp ratio is based on a crude homogenization of brain tissue, it ignores the compartmentalization of the brain and an increase favors non‐specific binding to brain lipids rather than free drug levels. To better link exposure/PK to efficacy/PD and to delineate key parameters, an integrated approach to CNS drug discovery is emerging which distinguishes total from unbound brain concentrations. As the complex nature of the brain requires different compartments to be considered when trying to understand and improve new compounds, several complementary parameters need to be measured in vitro and in vivo, and integrated into a coherent model of brain penetration and distribution. The new paradigm thus concentrates on finding drug candidates with the right balance between free fraction in plasma and brain, and between rate and extent of CNS penetration. Integrating this data into a coherent model of CNS distribution which can be linked to efficacy will allow it to design compounds with an optimal mix in physicochemical, pharmacologic, and pharmacokinetic properties, ultimately mitigating the risk for failures in the clinic.  相似文献   

13.
In the oncology therapeutic area, the mouse is the primary animal model used for efficacy studies. Often with mouse pharmacokinetic (PK) and pharmacokinetic/pharmacodynamic (PK/PD) studies, less than 20 μL of total plasma sample volume is available for bioanalysis due to the small size of the animal and the need to split samples for other measurements such as biomarker analyses. The need to conduct automated "small volume" sample processing for quantitative bioanalysis has therefore increased. An automated fit for purpose protein precipitation (PPT) method using a Hamilton MicroLab Star (Reno, NV, USA) to support mouse PK and PK/PD studies for an oncology drug candidate PD 0332991, (a specific inhibitor of cyclin-dependent kinase 4 (CDK-4) currently in development) for processing "small volumes" was developed. The automated PPT method was achieved by extracting and processing 10 μL out of a minimum sample volume of 15 μL plasma utilizing the Hamilton MicroLab Star. A 96-conical shallow well plate by Agilent Technologies, Inc (Wilmington, DE, USA) was the labware of choice used in the automated Hamilton "small volume" method platform. Analyses of a 10 μL plasma aliquot from 15 μL of plasma study samples were conducted by both automated and manual PPT method. All plasma samples were quantitated using a Sciex API 4000 triple quadrupole mass spectrometer coupled with an Eksigent Express HT Ultra HPLC system. The chromatography was achieved using an Agilent microbore C(18) Extend, 1.0 × 50 mm, 3.5 μm column at a flow rate of 0.150 mL/min with a total run time of 1.8 min. Accuracy and precision of standard and QC concentration levels were within 90-107% and <14%, respectively. Calibration curves were linear over the dynamic range of 1.0-1000 ng/mL. PK studies for PD 0332991 were conducted in female C3H mice following intravenous administration at 1mg/kg and oral administration at 2mg/kg. PK values such as area under curve (AUC), volume of distribution (Vd), clearance (Cl), half life (T(1/2)) and bioavailability (F%) demonstrated less than 11% difference between the automated Hamilton and manual PPT methods. The results demonstrate that the automated Hamilton PPT method can accurately and precisely aliquot 10 μL of plasma from 15 μL or larger volume plasma samples. The fit for purpose Hamilton PPT method is suitable for routine analyses of plasma samples from micro-sampling PK and PK/PD samples to support discovery studies.  相似文献   

14.
For a particular chemical, one can treat the chemical-by-chemical variation in relative doses for equal toxicity in experimental animals and humans as a characterization of the likelihoods of extrapolation factors of different magnitudes. An emerging approach to noncancer risk assessment is to use such empirical distributions in place of fixed Uncertainty Factors. This paper discusses dividing the overall variation into two sub-distributions representing pharmacokinetic (PK) and pharmacodynamic (PD) contributions to the variation among chemicals in the animal-to-human toxicologically equivalent dose. If a physiologically based pharmacokinetic model (PBPK model) is used to derive a compound specific adjustment factor (CSAF) for the pharmacokinetic component, the deconvolution of the PK and PD components allows one to remove the PK component (to be replaced with the CSAF), while retaining the uncertainty in pharmacodynamics that PBPK models do not address. One must then add back the uncertainty in the PBPK determination of the CSAF (which may be considerable). A candidate criterion for whether one can use an uncertain PBPK model is whether the generic uncertainty about cross-species pharmacokinetics (reflected in the PK component of the overall empirical distribution) is larger than the chemical-specific uncertainty in the determination of kinetically equivalent doses in experimental animals and humans.  相似文献   

15.
In the presence of methotrexate, cultured human choriocarcinoma (BeWo) cells undergo a differentiative response that resembles normal trophoblastic development. In the current study, the effects of cell number and population density on drug-induced conversion of BeWo cells from the cytotrophoblastlike to the syncytiotrophoblastlike phenotype were investigated using as markers of differentiation formation of "giant" cells, a process shown to require exogenous purines, and expression of placental (heat-stable) alkaline phosphatase. Giant cell formation, assessed by determination of cell volumes, was reduced in crowded cultures, and addition of hypoxanthine to growth media partially restored methotrexate-induced cell enlargement. Cellular uptake of methotrexate, assessed by following the loss of methotrexate from cell culture fluids during drug exposures, was two-threefold greater in sparsely populated than in densely populated cultures. Although the concentration of methotrexate in culture fluids of crowded cultures declined during exposures of 48 hr, the amount of extracellular drug remaining at 48 hr was well above the threshold for induction of the differentiative response. When culture population was held constant and population density was manipulated by varying the substratum available to cells, methotrexate-induced cell enlargement was inversely related to population density. Expression of placental alkaline phosphatase, salvage of exogenous hypoxanthine, and synthesis of RNA were also reduced at high population densities. These results indicate that expression of markers of methotrexate-induced differentiation of BeWo cells was inhibited in a density-dependent manner that may have been related to reduced cellular uptake of the inducing agent and of exogenous nutrients (purines) from culture fluids.  相似文献   

16.
Li J  Chai S  Tang C  Du J 《Life sciences》2003,74(4):451-461
Aortic calcification was demonstrated in experimental animal models of hyperhomocysteinemia. Mild hyperhomocysteinemia was associated with aortic calcification, suggesting a relationship between homocysteine (HCY) and the pathogenesis of aortic calcification. In the present study, the effect of HCY on vascular calcification was examined in calcifying and non-calcifying vascular smooth muscle cells (VSMCs). Cell calcification was induced by incubation of VSMCs with beta-glycerophosphate. Proliferation of VSMCs was studied by cell counting, 3H-thymidine (3H-TdR) and 3H-leucine (3H-Leu) incorporation. 45Ca accumulation, cell calcium content, and alkaline phosphatase (ALP) activity were measured as indices of calcification. The results showed that the proliferation of calcifying VSMCs, which was indicated by cell counting, 3H-TdR and 3H-Leu incorporation in calcifying VSMCs, was enhanced as compared with that of non-calcifying VSMCs. HCY promoted increases in cell number, 3H-TdR and 3H-Leu incorporation in both calcifying and non-calcifying VSMCs, but with more prominent effect in calcifying VSMCs. The stimulating effects of HCY on the three parameters in calcifying VSMCs were antagonized by PD98059, a specific inhibitor of mitogen activated protein kinase kinase (MAPKK). The ALP activity, 45Ca uptake, and calcium deposition in the calcifying VSMCs were greater than those in non-calcifying VSMCs. PD98059 had no effect on ALP activity, 45Ca uptake, and calcium deposition in calcifying VSMCs. HCY caused marked increases in 45Ca uptake and calcium deposition both in calcifying and non-calcifying VSMCs. HCY, however, enhanced ALP activity in the calcified VSMCs but not in the non-calcifying VSMCs. The non-calcifying VSMCs treated with HCY showed the same low ALP activity, as did the control VSMCs. In calcifying VSMCs, the HCY-induced increases in 45Ca uptake, calcium deposition, and ALP activity were also attenuated by PD98059. The results demonstrated that HCY potentiated VSMC calcification probably through the mechanisms by which HCY promotes atherosclerosis.  相似文献   

17.
Summary Elevated tissue and serum concentrations of homocysteine (HCY) are associated with neuropsychiatric disorders as well as with premature occlusive vascular disease, as seen in homocystinuria. In order to study dietary-related modifications in plasma HCY, total HCY was assayed in the fasted state and 2 hr after meals in 12 depressed female patients aged 54 to 81 yr and in 12 female controls aged 50 to 85 yr. Fasting HCY was also studied in 4 patients with dementia. Postprandial HCY varied only slightly in the controls compared with their fasting values, whereas a significant increase was noted in the depressives. To study the influence of normal and low protein diets on this abnormality, fasting and postprandial HCY were investigated in 4 of the depressives after one week of a normal diet, after a week on a diet without meat, fish or eggs, and then again after return to a normal diet for one week. Persistence of the abnormal increase in postprandial HCY in 2 of these 4 patients while on the low-protein diet may have been due to an inherited defect in HCY metabolism. Folate deficiency can also cause hyperhomocysteinemia, and as folate supplements constantly lower HCY concentrations, nutritional counseling and folate therapy might prove helpful in the treatment of depression.  相似文献   

18.
Peginesatide (OMONTYS®) is an erythropoiesis-stimulating agent that was indicated in the United States for the treatment of anemia due to chronic kidney disease in adult patients on dialysis prior to its recent marketing withdrawal by the manufacturer. The objective of this analysis was to develop a population pharmacokinetic and pharmacodynamic model to characterize the time-course of peginesatide plasma and hemoglobin concentrations following intravenous and subcutaneous administration. Plasma samples (n = 2,665) from 672 patients with chronic kidney disease (on or not on dialysis) and hemoglobin samples (n = 18,857) from 517 hemodialysis patients (subset of the 672 patients), were used for pharmacokinetic-pharmacodynamic model development in NONMEM VI. The pharmacokinetic profile of peginesatide was best described by a two-compartment model with first-order absorption and saturable elimination. The relationship between peginesatide and hemoglobin plasma concentrations was best characterized by a modified precursor-dependent lifespan indirect response model. The estimate of maximal stimulatory effect of peginesatide on the endogenous production rate of progenitor cells (Emax) was 0.54. The estimate of peginesatide drug concentration required for 50% of maximal response (EC50) estimates was 0.4 µg/mL. Several significant (P<0.005) covariates affected simulated peginesatide exposure by ≤36%. Based upon ≤0.2 g/dL effects on simulated hemoglobin levels, none were considered clinically relevant.  相似文献   

19.
We describe the isolation and characterization of a Pediococcus cerevisiae thymidine-requiring mutant and its thymidine-independent revertant. The mutant strain lacked thymidylate synthetase activity and had an absolute requirement for low concentrations (2 micrograms/ml) of thymidine in addition to a requirement for N-5-formyl tetrahydrofolic acid (folinate). Even at high concentrations (up to 500 micrograms/ml), thymine could not replace thymidine. In contrast to its wild-type parent, which grows only on folinate, the thymidine-requiring mutant (Thy- Fol+) was able to take up and grow on picogram quantities of unreduced folic acid. When both strains were grown on folinate, the Thy- Fol+ strain was at least 10(3)-fold more resistant to the folic acid analogs aminopterin and methotrexate than the wild-type strain. On the other hand, when grown on folic acid, the Thy- Fol+ strain was as sensitive to the folic acid analogs as the Thy+ Fol+ strain and was 10(2)-fold more sensitive than the wild-type strain grown on folinate. The thymidine-independent revertant (Thy+ Fol+) regained the wild-type level of thymidylate synthetase activity, but maintained the ability to take up and grow on unreduced folic acid like its Thy- Fol+ parent.  相似文献   

20.
《MABS-AUSTIN》2013,5(5):829-837
QBP359 is an IgG1 human monoclonal antibody that binds with high affinity to human CCL21, a chemokine hypothesized to play a role in inflammatory disease conditions through activation of resident CCR7-expressing fibroblasts/myofibroblasts. The pharmacokinetics (PK) and pharmacodynamics (PD) of QBP359 in non-human primates were characterized through an integrated approach, combining PK, PD, immunogenicity, immunohistochemistry (IHC) and tissue profiling data from single- and multiple-dose experiments in cynomolgus monkeys. When compared with regular immunoglobulin typical kinetics, faster drug clearance was observed in serum following intravenous administration of 10 mg/kg and 50 mg/kg of QBP359. We have shown by means of PK/PD modeling that clearance of mAb-ligand complex is the most likely explanation for the rapid clearance of QBP359 in cynomolgus monkey. IHC and liquid chromatography mass spectrometry data suggested a high turnover and synthesis rate of CCL21 in tissues. Although lymphoid tissue was expected to accumulate drug due to the high levels of CCL21 present, bioavailability following subcutaneous administration in monkeys was 52%. In human disease states, where CCL21 expression is believed to be expressed at 10-fold higher concentrations compared with cynomolgus monkeys, the PK/PD model of QBP359 and its binding to CCL21 suggested that very large doses requiring frequent administration of mAb would be required to maintain suppression of CCL21 in the clinical setting. This highlights the difficulty in targeting soluble proteins with high synthesis rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号