首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Latexin, the only known mammalian carboxypeptidase inhibitor, has no detectable sequence similarity with plant and parasite inhibitors, but it is related to a human putative tumor suppressor protein, TIG1. Latexin is expressed in the developing brain, and we find that it plays a role in inflammation, as it is expressed at high levels and is inducible in macrophages in concert with other protease inhibitors and potential protease targets. The crystal structure of mouse latexin, solved at 1.83 A resolution, shows no structural relationship with other carboxypeptidase inhibitors. Furthermore, despite a lack of detectable sequence duplication, the structure incorporates two topologically analogous domains related by pseudo two-fold symmetry. Surprisingly, these domains share a cystatin fold architecture found in proteins that inhibit cysteine proteases, suggesting an evolutionary and possibly functional relationship. The structure of the tumor suppressor protein TIG1 was modeled, revealing its putative membrane binding surface.  相似文献   

2.
Latexin is the only known carboxypeptidase A inhibitor in mammals and shares structural similarity with cystatin C, suggesting that latexin regulates the abundance of as yet unidentified target proteins. A forward genetic approach revealed that latexin is involved in homeostasis of hematopoietic stem cells (HSCs) in mice; however, little is known about the mechanisms by which latexin negatively affects the numbers of HSCs. In this study, we found that latexin is preferentially expressed in hematopoietic stem/progenitor cells, and is co-localized with the molecules responsible for the interaction of HSCs with a bone marrow niche, such as N-cadherin, Tie2, and Roundabout 4. Latexin-knockout young female mice showed an increase in the numbers of KSL (c-Kit(+)/Sca-1(+)/linegae marker-negative) cells, which may be attributable to enhanced self-renewal because latexin-deficient KSL cells formed more colonies than their wild-type counterparts in methylcellulose culture. Proteomic analysis of Sca-1(+) bone marrow cells demonstrated that latexin ablation reduced the abundance of multiple cellular proteins, including N-cadherin, Tie2, and Roundabout 4. Finally, we found that latexin expression was lost or greatly reduced in approximately 50% of human leukemia/lymphoma cell lines. These results imply that latexin inhibits the self-renewal of HSCs by facilitating the lodgment of HSCs within a bone marrow niche to maintain HSC homeostasis.  相似文献   

3.
Interaction of cancer cells with their microenvironment generated by stromal cells is essential for tumor cell survival and influences the localization of tumor growth. Here we demonstrate that hedgehog ligands secreted by bone-marrow, nodal and splenic stromal cells function as survival factors for malignant lymphoma and plasmacytoma cells derived from transgenic Emu-Myc mice or isolated from humans with these malignancies. Hedgehog pathway inhibition in lymphomas induced apoptosis through downregulation of Bcl2, but was independent of p53 or Bmi1 expression. Blockage of hedgehog signaling in vivo inhibited expansion of mouse lymphoma cells in a syngeneic mouse model and reduced tumor mass in mice with fully developed disease. Our data indicate that stromally induced hedgehog signaling may provide an important survival signal for B- and plasma-cell malignancies in vitro and in vivo. Disruption of this interaction by hedgehog pathway inhibition could provide a new strategy in lymphoma and multiple myeloma therapy.  相似文献   

4.

Background

Identification of tumor suppressor genes (TSGs) silenced by CpG methylation uncovers the molecular mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common in multiple tumors including nasopharyngeal carcinoma (NPC). OPCML, located at 11q25, is one of the downregulated genes we identified through digital expression subtraction.

Methodology/Principal Findings

Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast, cervix, prostate), lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma) and primary tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression of OPCML led to significant inhibition of both anchorage-dependent and -independent growth of carcinoma cells with endogenous silencing.

Conclusions/Significance

Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies.  相似文献   

5.
6.
B cell malignancies comprise a diverse group of cancers that proliferate in lymph nodes, bone marrow, and peripheral blood. SIRT3 (sirtuin 3) is the major deacetylase within the mitochondrial matrix that promotes aerobic metabolism and controls reactive oxygen species (ROS) by deacetylating and activating isocitrate dehydrogenase 2 (IDH2) and superoxide dismutase 2 (SOD2). There is controversy as to whether SIRT3 acts as an oncogene or a tumor suppressor, and here we investigated its role in B cell malignancies. In mantle cell lymphoma patient samples, we found that lower SIRT3 protein expression was associated with worse overall survival. Further, SIRT3 protein expression was reduced in chronic lymphocytic leukemia primary samples and malignant B cell lines compared to primary B cells from healthy donors. This lower level of expression correlated with hyperacetylation of IDH2 and SOD2 mitochondrial proteins, lowered enzymatic activities, and higher ROS levels. Overexpression of SIRT3 decreased proliferation and diminished the Warburg-like phenotype in SIRT3-deficient cell lines, and this effect is largely dependent on deacetylation of IDH2 and SOD2. Lastly, depletion of SIRT3 from malignant B cell lines resulted in greater susceptibility to treatment with an ROS scavenger but did not result in greater sensitivity to inhibition of the hypoxia-inducible factor-1α pathway, suggesting that loss of SIRT3 increases proliferation via ROS-dependent but hypoxia-inducible factor-1α-independent mechanisms. Our study suggests that SIRT3 acts as a tumor suppressor in B cell malignancies, and activating the SIRT3 pathway might represent a novel therapeutic approach for treating B cell malignancies.  相似文献   

7.
SDF-1 and CXCR4 are a chemokine and chemokine receptor pair playing critical roles in tumorigenesis. Overexpression of CXCR4 is a hallmark of many hematological malignancies including acute myeloid leukemia, chronic lymphocytic leukemia and non-Hodgkin’s lymphoma, and generally correlates with a poor prognosis. In this study, we developed a humanized anti-CXCR4 monoclonal antibody, LY2624587 as a potent CXCR4 antagonist that was advanced into clinical study for cancer. LY2624587 blocked SDF-1 binding to CXCR4 with an IC50 of 0.26 nM, and inhibited SDF-1-induced GTP binding with a Kb of 0.66 nM. In human lymphoma U937 and leukemia CCRF-CEM cells expressing endogenous CXCR4, LY2624587 inhibited SDF-1-induced cell migration with IC50 values of 3.7 and 0.26 nM, respectively. This antibody also inhibited CXCR4 and SDF-1 mediated cell signaling including activation of MAPK and AKT in tumor cells expressing CXCR4. Bifocal microscopic and flow cytometry analyses revealed that LY2624587 mediated receptor internalization and caused CXCR4 down-regulation on the cell surface. In human hematologic cancer cells, LY2624587 caused dose dependent apoptosis in vitro and in vivo. In mouse xenograft models developed with human leukemia and lymphoma cells expressing high levels of CXCR4, LY2624587 exhibited dose-dependent tumor growth inhibition and provided significant survival benefit in a disseminated lymphoma model. Collectively, we have demonstrated that CXCR4 inhibition by LY2624587 has the potential for the treatment of human hematological malignancies.  相似文献   

8.
Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC   总被引:2,自引:0,他引:2  
Tumor cells have a dysregulated cell cycle that may render their proliferation especially sensitive to the inhibition of cyclin-dependent kinases (CDKs), important regulators of cell cycle progression. We examined the effects of CDK1 inhibition in the context of different oncogenic signals. Cells transformed with MYC, but not cells transformed by a panel of other activated oncogenes, rapidly underwent apoptosis when treated with small-molecule CDK1 inhibitors. The inhibitor of apoptosis protein BIRC5 (survivin), a known CDK1 target, is required for the survival of cells overexpressing MYC. Inhibition of CDK1 rapidly downregulates survivin expression and induces MYC-dependent apoptosis. CDK1 inhibitor treatment of MYC-dependent mouse lymphoma and hepatoblastoma tumors decreased tumor growth and prolonged their survival. As there are no effective small-molecule inhibitors that selectively target the MYC pathway, we propose that CDK1 inhibition might therefore be useful in the treatment of human malignancies that overexpress MYC.  相似文献   

9.
Lin CH  Chung MY  Chen WB  Chien CH 《The FEBS journal》2007,274(11):2946-2956
The mammalian nitrilase (Nit) protein is a member of the nitrilase superfamily whose function remains to be characterized. We now show that the nitrilase family member 2 gene (NIT2) is ubiquitously expressed in multiple tissues and encodes protein mainly distributed in the cytosol. Ectopic expression of Nit2 in HeLa cells was found to inhibit cell growth through G(2) arrest rather than by apoptosis. Consistent with this, proteomic and RT-PCR analyses showed that Nit2 up-regulated the protein and mRNA levels of 14-3-3sigma, an inhibitor of both G(2)/M progression and protein kinase B (Akt)-activated cell growth, and down-regulated 14-3-3beta, a potential oncogenic protein. Genotype analysis in four types of primary tumor tissues showed 12.5-38.5% allelic imbalance surrounding the NIT2 locus. The results demonstrated that NIT2 plays an important role in cell growth inhibition and links to human malignancies, suggesting that Nit2 may be a potential tumor suppressor candidate.  相似文献   

10.
1'-Acetoxychavicol acetate (ACA), extracted from rhizomes of tropical ginger, possesses antitumor properties against a wide variety of malignancies. MicroRNAs have been found to act as oncogenes and as tumor suppressor genes in the development of cancer. The purpose of this study was to investigate the miRNA involved in the molecular mechanisms of ACA action on tumor inhibition. It was found that ACA significantly inhibited the growth of human head and neck squamous cell carcinoma cell line HN4 and induced cell apoptosis. Further studies indicated that ACA downregulated the expression of miR-23a in HN4 cells. Transfection with anti-miR-23a inhibited the proliferation of HN4 cells and induced cell apoptosis. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was confirmed to be the target of miR-23a. Taken together, our findings suggest that ACA might have anticancer effects against human head and neck cancer through downregulation of miR-23a, which can repress tumor suppressor PTEN.  相似文献   

11.
Enzastaurin is an investigational PKCβ inhibitor that has growth inhibitory and pro-apoptotic effects in both B and T-cell lymphomas. We investigated the cytotoxicity and mechanisms of cell death of the combination of enzastaurin and low concentrations of histone deacetylase (HDAC) inhibitors in B-cell and T-cell lymphoma cell lines and primary lymphoma/leukemia cells. Combined enzastaurin/suberoylanilide hydroxamic acid treatment synergistically induced apoptosis in diffuse large B-cell lymphoma and T-cell lymphoma cell lines, and primary lymphoma/leukemia samples. Similarly, combined treatment of B-cell-like lymphoma cells with enzastaurin and two different HDAC inhibitors, valproic acid and (2E,4E)-6-(4-chlorophenylsulfanyl)-2,4-hexadienoic acid hydroxyamide synergistically induced apoptosis, suggesting the synergy is generalizable to other HDAC inhibitors. Our data indicate that enzastaurin/HDAC inhibitors therapy can synergistically inhibit growth and induce apoptosis in lymphoid malignancies and may be an effective therapeutic strategy. Potential mechanisms including enzastaurin mediated inhibition of HDAC inhibitor-induced compensatory survival pathways are discussed.  相似文献   

12.
Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.  相似文献   

13.
14.
15.

Background

We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL). In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4′, 5-trihydroxystilbene), a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL) cells in causing inhibition of cell viability and inducing apoptosis.

Methodology/Principal Findings

We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS). Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect.

Conclusion/Significance

Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.  相似文献   

16.
According to the somatic mutation theory (SMT), cancer begins with a genetic change in a single cell that passes it on to its progeny, thereby generating a clone of malignant cells. It is strongly supported by observations of leukemias that bear specific chromosome translocations, such as Burkitt's lymphoma, in which a translocation activates the c-myc gene, and chronic myeloid leukemia (CML), in which the Philadelphia chromosome causes production of the BCR-ABL oncoprotein. Although the SMT has been modified and extended to encompass tumor suppressor genes, epigenetic inheritance, and tumor progression through accumulation of further mutations, perhaps the strongest validation comes from the successful treatment of certain malignancies with drugs that directly target the product of the mutant gene.  相似文献   

17.
Hepatocyte growth factor (HGF) induces growth stimulation of a variety of cell types, but it also induces growth inhibition of several types of tumor cell lines. The molecular mechanism of the HGF-induced growth inhibition of tumor cells remains obscure. We have investigated the intracellular signaling pathway involved in the antiproliferative effect of HGF on the human hepatocellular carcinoma cell line HepG2. HGF induced strong activation of ERK in HepG2 cells. Although the serum-dependent proliferation of HepG2 cells was inhibited by the MEK inhibitor PD98059 in a dose-dependent manner, 10 microM PD98059 reduced the HGF-induced strong activation of ERK to a weak activation; and as a result, the proliferation inhibited by HGF was completely restored. Above or below this specific concentration, the restoration was incomplete. Expression of constitutively activated Ha-Ras, which induces strong activation of ERK, led to the proliferation inhibition of HepG2 cells, as was observed in HGF-treated HepG2 cells. This inhibition was suppressed by the MEK inhibitor. Furthermore, HGF treatment and expression of constitutively activated Ha-Ras changed the hyperphosphorylated form of the retinoblastoma tumor suppressor gene product pRb to the hypophosphorylated form. This change was inhibited by the same concentration of MEK inhibitor needed to suppress the proliferation inhibition. These results suggest that ERK activity is required for both the stimulation and inhibition of proliferation of HepG2 cells; that the level of ERK activity determines the opposing proliferation responses; and that HGF-induced proliferation inhibition is caused by cell cycle arrest, which results from pRb being maintained in its active hypophosphorylated form via a high-intensity ERK signal in HepG2 cells.  相似文献   

18.
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an adhesion molecule of the immunoglobulin superfamily, has been characterized as a putative tumor suppressor because it is frequently down-regulated in aggressive types of cancer cells. Recently, however, several studies have shown that CEACAM1 actively contributes to malignant progression or migration in some types of tumor cells, suggesting that the role of CEACAM1 might be diverse among different types of cancer cells. To investigate the functional consequences of CEACAM1 expression in hepatocellular carcinoma, we analyzed the status of CEACAM1 in hepatoma cell lines HLF, PLC/PRF/5, HepG2 and KYN-2. We found that CEACAM1 was only expressed in HepG2 cells, which show a unique property for enhanced anchorage-independent growth. When HepG2 cells were treated with small interfering RNA targeted against CEACAM1, the growth rate in monolayer culture was increased. In contrast, when HepG2 cells were cultured in suspension, inhibition of CEACAM1 expression significantly decreased the growth rate, and the speed of cell-cell attachment was repressed. Hyaluronidase treatment attenuated the growth rate of HepG2 cells in suspension culture, indicating that cell-cell attachment is a requisite for anchorage-independent growth. Our data may reveal the dual role of CEACAM1 on hepatocarcinogenesis, by showing that CEACAM1 acts as a tumor suppressor in HepG2 cells in anchorage-dependent growth conditions, while in anchorage-independent growth conditions, it augments cell proliferation by potentiating the cell-cell attachment.  相似文献   

19.
Cytomegalovirus (CMV) poses a threat to the therapy of hematopoietic malignancies by hematopoietic stem cell transplantation, but efficient reconstitution of antiviral immunity prevents CMV organ disease. Tumor relapse originating from a minimal residual leukemia poses another threat. Although a combination of risk factors was supposed to enhance the incidence and severity of transplantation-associated disease, a murine model of a liver-adapted B-cell lymphoma has previously shown a survival benefit and tumor growth inhibition by nonlethal subcutaneous infection with murine CMV. Here we have investigated the underlying antitumoral mechanism. Virus replication proved to be required, since inactivated virions or the highly attenuated enhancerless mutant mCMV-DeltaMIEenh did not impact the lymphoma in the liver. Surprisingly, the dissemination-deficient mutant mCMV-DeltaM36 inhibited tumor growth, even though this virus fails to infect the liver. On the other hand, various strains of herpes simplex viruses consistently failed to control the lymphoma, even though they infect the liver. A quantitative analysis of the tumor growth kinetics identified a transient tumor remission by apoptosis as the antitumoral effector mechanism. Tumor cell colonies with cells surviving the CMV-induced "apoptotic crisis" lead to tumor relapse even in the presence of full-blown tissue infection. Serial transfer of surviving tumor cells did not indicate a selection of apoptosis-resistant genetic variants. NK cell activity of CD49b-expressing cells failed to control the lymphoma upon adoptive transfer. We propose the existence of an innate antitumoral mechanism that is triggered by CMV infection and involves an apoptotic signal effective at a distant site of tumor growth.  相似文献   

20.
Epstein-Barr virus (EBV) infection of primary human B cells drives their indefinite proliferation into lymphoblastoid cell lines (LCLs). B cell immortalization depends on expression of viral latency genes, as well as the regulation of host genes. Given the important role of microRNAs (miRNAs) in regulating fundamental cellular processes, in this study, we assayed changes in host miRNA expression during primary B cell infection by EBV. We observed and validated dynamic changes in several miRNAs from early proliferation through immortalization; oncogenic miRNAs were induced, and tumor suppressor miRNAs were largely repressed. However, one miRNA described as a p53-targeted tumor suppressor, miR-34a, was strongly induced by EBV infection and expressed in many EBV and Kaposi's sarcoma-associated herpesvirus (KSHV)-infected lymphoma cell lines. EBV latent membrane protein 1 (LMP1) was sufficient to induce miR-34a requiring downstream NF-κB activation but independent of functional p53. Furthermore, overexpression of miR-34a was not toxic in several B lymphoma cell lines, and inhibition of miR-34a impaired the growth of EBV-transformed cells. This study identifies a progrowth role for a tumor-suppressive miRNA in oncogenic-virus-mediated transformation, highlighting the importance of studying miRNA function in different cellular contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号