首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioluminescence imaging (BLI) has shown its appeal as a sensitive technique for in vivo whole body optical imaging. However, the development of injectable tumor-specific near-infrared fluorescent (NIRF) probes makes fluorescence imaging (FLI) a promising alternative to BLI in situations where BLI cannot be used or is unwanted (e.g., spontaneous transgenic tumor models, or syngeneic mice to study immune effects).In this study, we addressed the questions whether it is possible to detect tumor progression using FLI with appropriate sensitivity and how FLI correlates with BLI measurements. In addition, we explored the possibility to simultaneously detect multiple tumor characteristics by dual-wavelength FLI (~700 and ~800 nm) in combination with spectral unmixing. Using a luciferase-expressing 4T1-luc2 mouse breast cancer model and combinations of activatable and targeting NIRF probes, we showed that the activatable NIRF probes (ProSense680 and MMPSense680) and the targeting NIRF probes (IRDye 800CW 2-DG and IRDye 800CW EGF) were either activated by or bound to 4T1-luc2 cells. In vivo, we implanted 4T1-luc2 cells orthotopically in nude mice and were able to follow tumor progression longitudinally both by BLI and dual-wavelength FLI. We were able to reveal different probe signals within the tumor, which co-localized with immuno-staining. Moreover, we observed a linear correlation between the internal BLI signals and the FLI signals obtained from the NIRF probes. Finally, we could detect pulmonary metastases both by BLI and FLI and confirmed their presence histologically.Taken together, these data suggest that dual-wavelength FLI is a feasible approach to simultaneously detect different features of one tumor and to follow tumor progression with appropriate specificity and sensitivity. This study may open up new perspectives for the detection of tumors and metastases in various experimental models and could also have clinical applications, such as image-guided surgery.  相似文献   

2.
In this study, the blood volume and oxygen saturation of tumors were measured after photoacoustic imaging (PAI) under conditions of pre-photodynamic therapy (PDT), post-PDT, and 4 hrs, and 24 hrs post-PDT. PDTs with aminolevulinic acid (ALA) and low and high doses of benzoporphyrin derivative (BPD) were conducted to observe oxygen saturation changes, and the rapid oxygen consumption in the blood detected due to the action of BPD at the vascular level resulted in the recovery of PDT completion. Likewise, blood volume changes followed by ALA-PDT and BPD-PDT at low and high doses depicted a fast expansion of the blood volume after treatment. The tumor subjected to a high dose of ALA-PDT showed a partial alteration of Hb-pO2 in the first 24 hrs, as did the tumors treated with two ALA- and BPD-mediated PDTs. The Hb-pO2 started reducing immediately post-PDT and was less than 30% after 4 hrs until 24 hrs post-PDT. Reduced vascular demand was possibly due to tumor necrosis, as shown by the permanent damage in the cancer cells' bioluminescence signal. The ALA-mediated PDT-subjected tumor showed a 50% drop in BV at 24 hrs post-PDT, which is suggestive of vascular pruning. The studied data of blood volume against BLI showed the blood volume and oxygenation variations validating the cells' metabolic activity, including cell death.  相似文献   

3.
Multimodal bioluminescence (BLI) and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging were investigated as means to monitor somatostatin receptor subtype 2 (SST2)-positive neuroendocrine tumors as both a subcutaneously implanted and a liver metastasis animal model in mice and rats. Ultimately, such a model will be of use for studying SST2-targeted peptide receptor radionuclide therapy (PRRT). CA20948 cells were transfected with a green fluorescent protein/luciferase plasmid construct. Cells were inoculated subcutaneously in the shoulder of nude mice: nontransfected cells in the left shoulder and transfected cells in the right shoulder. BLI, SPECT/CT imaging, biodistribution analysis, and ex vivo autoradiography of the tumors were performed. BLI and SPECT/CT imaging were also performed on an intrahepatic tumor model in the rat. Caliper volume measurement of transfected tumors could be correlated with BLI measurements (R2 = .76). SPECT/CT imaging showed high levels of accumulation of 111In-DTPA-octreotide in control and transfected tumors, which was confirmed by biodistribution analysis and autoradiography. Subcapsular inoculation of transfected cells in rat liver resulted in an intrahepatic tumor, which could be visualized by both SPECT/CT and BLI. Transfection of CA20948 tumor cells did not alter the growth properties of the cell line or the expression of SST2. Transfected tumors could be clearly visualized by BLI and SPECT/CT imaging. The transfected SST2-positive tumor cell line could represent a novel preclinical model for tumor monitoring in studies that aim at further optimizing PRRT for neuroendocrine tumors.  相似文献   

4.
It has been accepted that bone marrow cells infiltrate the brain and play important roles in neuroinflammation. However, there is no good tool for the visualization of these cells in living animals. In this study, we generated mice that were transplanted with GFP- or luciferase-expressing bone marrow cells, and performed in vivo fluorescence imaging (FLI) and in vivo bioluminescence imaging (BLI) to visualize the infiltrated cells. Brain inflammation was induced by intrahippocampal injection of lipopolysaccharide (LPS). Immunohistochemical investigation demonstrated an increase in the infiltration of bone marrow cells into the hippocampus because of the LPS injection and differentiation of the infiltrated cells into microglia, but not into neurons or astrocytes. BLI, but not FLI, successfully detected an increase in signal intensity with the LPS injection, and the increase of BLI coincided with that of luciferase activity in hippocampus. BLI could quantitatively and continuously monitor bone marrow-derived cells in vivo.  相似文献   

5.
PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS: Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS: We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.  相似文献   

6.
Genetically modified adipose tissue derived mesenchymal stromal cells (hAMSCs) with tumor homing capacity have been proposed for localized therapy of chemo- and radiotherapy resistant glioblastomas. We demonstrate an effective procedure to optimize glioblastoma therapy based on the use of genetically modified hAMSCs and in vivo non invasive monitoring of tumor and therapeutic cells. Glioblastoma U87 cells expressing Photinus pyralis luciferase (Pluc) were implanted in combination with hAMSCs expressing a trifunctional Renilla reniformis luciferase-red fluorescent protein-thymidine kinase reporter in the brains of SCID mice that were subsequently treated with ganciclovir (GCV). The resulting optimized therapy was effective and monitoring of tumor cells by bioluminescence imaging (BLI) showed that after 49 days GCV treatment reduced significantly the hAMSC treated tumors; by a factor of 10(4) relative to controls. Using a Pluc reporter regulated by an endothelial specific promoter and in vivo BLI to image hAMSC differentiation we gained insight on the therapeutic mechanism. Implanted hAMSCs homed to tumor vessels, where they differentiated to endothelial cells. We propose that the tumor killing efficiency of genetically modified hAMSCs results from their association with the tumor vascular system and should be useful vehicles to deliver localized therapy to glioblastoma surgical borders following tumor resection.  相似文献   

7.
The mechanism of action of arsenic trioxide (ATO) has been shown to be complex, influencing numerous signal transduction pathways and resulting in a vast range of cellular effects. Among these mechanisms of action, ATO has been shown to cause acute vascular shutdown and massive tumor necrosis in a murine solid tumor model like vascular disrupting agent (VDA). However, relatively little is understood about this VDA-like property and its potential utility in developing clinical regimens. We focused on this VDA-like action of ATO. On the basis of the endothelial cell cytotoxicity assay and tubulin polymerization assay, we observed that higher concentrations and longer treatment with ATO reduced the level of α- and β-tubulin and inhibited the polymerization of tubulin. The antitumor action and quantitative tumor perfusion studies were carried out with locally advanced murine CT26 colon carcinoma grown in female BALB/c mice. A single injection of ATO intraperitoneally displayed central necrosis of the tumor tissue by 24 hours. T1-weighted dynamic contrast-enhanced magnetic resonance image revealed a significant decrease in tumor enhancement in the ATO-treated group. Similar to other VDAs, ATO treatment alone did not delay the progression of tumor growth; however, ATO treatment after injection of other cytotoxic agent (irinotecan) showed significant additive antitumor effect compared to control and irinotecan alone therapy. In summary, our data demonstrated that ATO acts as a VDA by means of microtubule depolymerization. It exhibits significant vascular shutdown activity in CT26 allograft model and enhances antitumor activity when used in combination with another cytotoxic chemotherapeutic agent.  相似文献   

8.
Preclinical studies of cranial radiation therapy (RT) using animal brain tumor models have been hampered by technical limitations in the delivery of clinically relevant RT. We established a bioimageable mouse model of glioblastoma multiforme (GBM) and an image-guided radiation delivery system that facilitated precise tumor localization and treatment and which closely resembled clinical RT. Our novel radiation system makes use of magnetic resonance imaging (MRI) and bioluminescent imaging (BLI) to define tumor volumes, computed tomographic (CT) imaging for accurate treatment planning, a novel mouse immobilization system, and precise treatments delivered with the Small Animal Radiation Research Platform. We demonstrated that, in vivo, BLI correlated well with MRI for defining tumor volumes. Our novel restraint system enhanced setup reproducibility and precision, was atraumatic, and minimized artifacts on CT imaging used for treatment planning. We confirmed precise radiation delivery through immunofluorescent analysis of the phosphorylation of histone H2AX in irradiated brains and brain tumors. Assays with an intravenous near-infrared fluorescent probe confirmed that radiation of orthografts increased disruption of the tumor blood-brain barrier (BBB). This integrated model system, which facilitated delivery of precise, reproducible, stereotactic cranial RT in mice and confirmed RT's resultant histologic and BBB changes, may aid future brain tumor research.  相似文献   

9.
Ma X  Liu Z  Yang X  Gao Q  Zhu S  Qin C  Liu K  Zhang B  Han D  Wang F  Tian J 《Molecular imaging》2011,10(4):278-283
The purpose of this study was to noninvasively monitor the therapeutic efficacy of cyclophosphamide (CTX) in a mouse model by dual-modality molecular imaging: positron emission tomography (PET) and bioluminescence imaging (BLI). Firefly luciferase (fLuc) transfected HCC-LM3-fLuc human hepatocellular carcinoma cells were injected subcutaneously into BALB/c nude mice to establish the experimental tumor model. Two groups of HCC-LM3-fLuc tumor-bearing mice (n = 7 per group) were treated with saline or CTX (100 mg/kg on days 0, 2, 5, and 7). BLI and (18)F-fluorodeoxyglucose ((18)F-FDG) PET scans were done to evaluate the treatment efficacy. CTX induced a 25.25 ± 13.13% and 35.91 ± 25.85% tumor growth inhibition rate on days 9 and 12 posttreatment, respectively, as determined by BLI. A good linear correlation was found between the tumor sizes measured by caliper and the BLI signals determined by optical imaging (R(2) = .9216). (18)F-FDG imaging revealed a significant uptake reduction in the tumors of the CTX-treated group compared to that in the saline control group (5.30 ± 1.97 vs 3.00 ± 2.11% ID/g) on day 16 after CTX treatment. Dual-modality molecular imaging using BLI and small-animal PET can play important roles in the process of chemotherapy and will provide noninvasive and reliable monitoring of the therapeutic response.  相似文献   

10.
Wang Y  Sun Z  Peng J  Zhan L 《Biotechnology letters》2007,29(11):1665-1670
A non-invasive orthotopic hepatocellular carcinoma (HCC) model was created with human HCC cells (HepG-Luc) constitutively expressing luciferase (Luc) in nude mice. Development of tumor growth and response to anti-tumor therapy combined with 5-fluorouracil and cisplatin was monitored by whole-body bioluminescent imaging (BLI). Luciferase activity in the tumor, determined by BLI, correlated with the tumor volume and weight. The anti-tumor therapy proved effective by BLI monitoring. In conclusion, BLI by luciferase provides a non-invasive method of monitoring tumor activities that can prove useful for therapeutic intervention studies.  相似文献   

11.
Bioluminescence imaging (BLI) is a highly sensitive tool for visualizing tumors, neoplastic development, metastatic spread, and response to therapy. Although BLI has engendered much excitement due to its apparent simplicity and ease of implementation, few rigorous studies have been presented to validate the measurements. Here, we characterize the nature of bioluminescence output from mice bearing subcutaneous luciferase-expressing tumors over a 4-week period. Following intraperitoneal or direct intratumoral administration of luciferin substrate, there was a highly dynamic kinetic profile of light emission. Although bioluminescence was subject to variability, strong correlations (r >.8, p <.001) between caliper measured tumor volumes and peak light signal, area under light signal curve and light emission at specific time points were determined. Moreover, the profile of tumor growth, as monitored with bioluminescence, closely resembled that for caliper measurements. The study shows that despite the dynamic and variable nature of bioluminescence, where appropriate experimental precautions are taken, single time point BLI may be useful for noninvasive, high-throughput, quantitative assessment of tumor burden.  相似文献   

12.
Phosphatidylserine (PS) is normally intracellular but becomes exposed on the luminal surface of vascular endothelial cells in tumors. It also becomes exposed on tumors cells responding to therapy. In the present study, we optically imaged exposed PS in vivo using PGN635, a novel monoclonal antibody that binds PS. The F(ab')(2) fragment of PGN635 was labeled with the near-infrared (NIR) dye, IRDye800CW. In vivo dynamic NIR imaging was performed after injection of 800CW-PGN635 into mice bearing radiation-treated or untreated U87 glioma xenografts growing subcutaneously or orthotopically. NIR optical imaging revealed a clear tumor contrast in nonirradiated subcutaneous U87 gliomas after injection of 800CW-PGN635. The tumor contrast was visible as early as 4 hours later and was maximal 24 hours later (tumor-to-normal tissue ratio [TNR] = 2.8 ± 0.7). Irradiation enhanced the tumor contrast at 24 hours (TNR = 4.0 ± 0.3). Similar results were observed for orthotopic gliomas. Localization of 800CW-PGN635 to tumors was antigen specific because 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and preadministration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive vascular endothelial cells in nonirradiated gliomas. Irradiation of the gliomas increased PS exposure on both tumor vascular endothelial cells and tumor cells and gave rise to an increase in tumor contrast with 800CW-PGN635 that was predictive of the reduction in tumor growth. 800CW-PGN635 may be a useful new imaging probe for detection of exposed PS in tumors responding to therapy.  相似文献   

13.
Gaussia luciferase (Gluc) is a secreted reporter, and its expression in living animals can be assessed by in vivo bioluminescence imaging (BLI) or blood assays. We characterized Gluc as an in vivo reporter in comparison with firefly luciferase (Fluc). Mice were inoculated subcutaneously with tumor cells expressing both Fluc and Gluc and underwent Fluc BLI, Gluc BLI, blood assays of Gluc activity, and caliper measurement. In Gluc BLI, the signal from the tumor peaked immediately and then decreased rapidly. In the longitudinal monitoring, all measures indicated an increase in tumor burden early after cell inoculation. However, the increase reached plateaus in Gluc BLI and Fluc BLI despite a continuous increase in the caliper measurement and Gluc blood assay. Significant correlations were found between the measures, and the correlation between the blood signal and caliper volume was especially high. Gluc allows tumor monitoring in mice and should be applicable to dual-reporter assessment in combination with Fluc. The Gluc blood assay appears to provide a reliable indicator of viable tumor burden, and the combination of a blood assay and in vivo BLI using Gluc should be promising for quantifying and localizing the tumors.  相似文献   

14.
Fourier-transform infrared (FT-IR) spectral imaging was used for analyzing biochemical changes in tumor cells. Metabolic parameters of human lung A549/8 adenocarcinoma and U87 glioma cells were compared under stress conditions in culture along with tumor progression after cell implantation onto the chick embryo chorio-allantoic membrane. In cell culture, glucose consumption and lactic acid release were higher in U87 cells. A549/8 cells were less sensitive to oxidative stress as observed through changes in fatty acyl chains. In vivo biochemical mapping of highly (U87) vs. poorly (A549/8) angiogenic tumors provided results comparable to culture models. Therefore, FT-IR imaging allows detecting subtle chemical changes in tumors, which might be useful for diagnosis.  相似文献   

15.
Arsenic trioxide (ATO) at low doses induces leukemia cells to undergo apoptosis and at higher doses causes blood flow to solid tumors to shut down. To determine whether a potential synergistic interaction exists between ATO at the non-toxic dose level in the rat and radiation, the present study was carried out with orthotopic 9L malignant gliomas growing in the brains of rats. Animals died within 50 days of treatment when 12-day-old 9L gliomas growing in the brain of Fischer rats were treated with either the drug alone (8 mg/kg) or radiation alone (25 Gy). In contrast, the overall tumor cure rate exceeded 50% at a follow-up time of 120 days after the combined treatment with radiation and ATO. Long-term surviving animals showed no clinical or disproportionately enhanced histopathological changes in the brain parenchyma. Early changes in tumor physiology showed that the vascular leakage of FITC-dextran conjugates was apparent within 8 h of drug administration. Last, the use of diffusion magnetic resonance imaging as an early surrogate marker of therapeutic efficacy corroborated the effects of drug with and without radiation on brain histology and animal survival.  相似文献   

16.
This video describes the use of whole body bioluminesce imaging (BLI) for the study of bacterial trafficking in live mice, with an emphasis on the use of bacteria in gene and cell therapy for cancer. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumors following systemic administration. Bacteria engineered to express the lux gene cassette permit BLI detection of the bacteria and concurrently tumor sites. The location and levels of bacteria within tumors over time can be readily examined, visualized in two or three dimensions. The method is applicable to a wide range of bacterial species and tumor xenograft types. This article describes the protocol for analysis of bioluminescent bacteria within subcutaneous tumor bearing mice. Visualization of commensal bacteria in the Gastrointestinal tract (GIT) by BLI is also described. This powerful, and cheap, real-time imaging strategy represents an ideal method for the study of bacteria in vivo in the context of cancer research, in particular gene therapy, and infectious disease. This video outlines the procedure for studying lux-tagged E. coli in live mice, demonstrating the spatial and temporal readout achievable utilizing BLI with the IVIS system.  相似文献   

17.
18.

Background

Currently, only few techniques are available for quantifying systemic metastases in preclinical model. Thus techniques that can sensitively detect metastatic colonization and assess treatment response in real-time are urgently needed. To this end, we engineered tumor cells to express a naturally secreted Gaussia luciferase (Gluc), and investigated its use as a circulating biomarker for monitoring viable metastatic or primary tumor growth and their treatment responses.

Methodology/Principal Findings

We first developed orthotopic primary and metastatic breast tumors with derivative of MDA-MB-231 cells expressing Gluc. We then correlated tumor burden with Gluc activity in the blood and urine along with bioluminescent imaging (BLI). Second, we utilized blood Gluc assay to monitor treatment response to lapatinib in an experimental model of systemic metastasis. We observed good correlation between the primary tumor volume and Gluc concentration in blood (R2 = 0.84) and urine (R2 = 0.55) in the breast tumor model. The correlation deviated as a primary tumor grew due to a reduction in viable tumor fraction. This was also supported by our mathematical models for tumor growth to compare the total and viable tumor burden in our model. In the experimental metastasis model, we found numerous brain metastases as well as systemic metastases including bone and lungs. Importantly, blood Gluc assay revealed early growth of metastatic tumors before BLI could visualize their presence. Using secreted Gluc, we localized systemic metastases by BLI and quantitatively monitored the total viable metastatic tumor burden by blood Gluc assay during the course of treatment with lapatinib, a dual tyrosine kinase inhibitor of EGFR and HER2.

Conclusion/Significance

We demonstrated secreted Gluc assay accurately reflects the amount of viable cancer cells in primary and metastatic tumors. Blood Gluc activity not only tracks metastatic tumor progression but also serves as a longitudinal biomarker for tumor response to treatments.  相似文献   

19.
Molecular imaging enables non-invasive monitoring of tumor growth, progression, and drug treatment response, and it has become an important tool to promote biological studies in recent years. In this study, we comprehensively evaluated the in vivo anti-angiogenic and anti-neoplastic effects of Endostar on liver cancer based on the optical molecular imaging systems including micro-computer tomography (Micro-CT), bioluminescence molecular imaging (BLI) and fluorescence molecular tomography (FMT). Firefly luciferase (fLuc) and green fluorescent protein (GFP) dual labeled human hepatocellular carcinoma cells (HCC-LM3-fLuc-GFP cells) were used to establish the subcutaneous and orthotopic liver tumor model. After the tumor cells were implanted 14∼18 days, Endostar (5 mg/kg/day) was administered through an intravenous tail vein injection for continuous 14 days. The computer tomography angiography (CTA) and BLI were carried out for the subcutaneous tumor model. FMT was executed for the orthotopic tumor model. The CTA data showed that tumor vessel formation and the peritumoral vasculature of subcutaneous tumor in the Endostar treatment group was significantly inhibited compared to the control group. The BLI data exhibited the obvious tumor inhibition day 8 post-treatment. The FMT detected the tumor suppression effects of Endostar as early as day 4 post-treatment and measured the tumor location. The above data confirmed the effects of Endostar on anti-angiogenesis and tumor suppression on liver cancer. Our system combined CTA, BLI, and FMT to offer more comprehensive information about the effects of Endostar on the suppression of vessel and tumor formation. Optical molecular imaging system enabled the non-invasive and reliable assessment of anti-tumor drug efficacy on liver cancer.  相似文献   

20.
Liver cancer is a complex multistep process requiring genetic alterations in multiple proto-oncogenes and tumor suppressor genes. Although hundreds of genes are known to play roles in hepatocarcinogenesis, oncogenic collaboration among these genes is still largely unknown. Here, we report a simple methodology by which oncogenic cooperation between cancer-related genes can be efficiently investigated in the liver. We developed various non-germline transgenic mouse models using hydrodynamics-based transfection which express HrasG12V, SmoM2, and a short-hairpin RNA down-regulating p53 (shp53) individually or in combination in the liver. In this transgenic system, firefly luciferase was co-expressed with the oncogenes as a reporter, allowing tumor growth in the liver to be monitored over time without an invasive procedure. Very strong bioluminescence imaging (BLI) signals were observed at 4 weeks post-hydrodynamic injection (PHI) in mice co-expressing HrasG12V and shp53, while only background signals were detected in other double or single transgenic groups until 30 weeks PHI. Consistent with the BLI data, tumors were observed in the HrasG12V plus shp53 group at 4 weeks PHI, while other transgenic groups failed to exhibit a hyperplastic nodule at 30 weeks PHI. In the HrasG12V plus shp53 transgenic group, BLI signals were well-correlated with actual tumor growth in the liver, confirming the versatility of BLI-based monitoring of tumor growth in this organ. The methodology described here is expected to accelerate and facilitate in vivo studies of the hepatocarcinogenic potential of cancer-related genes by means of oncogenic cooperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号