首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are receptors for several Neisseria and Haemophilus spp. In this investigation, we demonstrate that a major outer membrane protein of Moraxella catarrhalis (Mx) strains, belonging to the ubiquitous surface protein (Usp) family, also interacts with the receptor. The interaction was demonstrated in Western blot overlay of SDS-PAGE-separated bacterial proteins using soluble receptor constructs as well as by co-precipitation experiments. The identity of the bacterial ligand was further ascertained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). It was shown to belong to the UspA1 subfamily. In general, antibodies raised against synthetic UspA1, but not UspA2, peptides bound to the Mx ligand. CEACAM1-Fc-binding property could be demonstrated in all the clinical isolates examined but varied between strains. A single colony derivative of an Mx isolate was also demonstrated to bind to transfected Chinese hamster ovary and some human respiratory epithelial cells in a CEACAM-dependent manner. Thus, we have identified the third respiratory pathogen with the capacity to target the CEACAM family of receptors. The Mx ligand is structurally unrelated to those of Neisseria and Haemophilus.  相似文献   

2.
Carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) is an immunoglobulin-related receptor expressed on human granulocytes. CEACAM3 functions as a single chain phagocytotic receptor recognizing gram-negative bacteria such as Neisseria gonorrhoeae, which possess CEACAM-binding adhesins on their surface. The cytoplasmic domain of CEACAM3 contains an immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is phosphorylated upon receptor engagement. Here we show that the SH2 domains of the regulatory subunit of phosphatidylinositol 3'-kinase (PI3K) bind to tyrosine residue 230 of CEACAM3 in a phosphorylation-dependent manner. PI3K is rapidly recruited and directly associates with CEACAM3 upon bacterial binding as shown by FRET analysis. Although PI3K activity is not required for efficient uptake of the bacteria by CEACAM3-transfected cells or primary human granulocytes, it is critical for the stimulated production of reactive oxygen species by infected phagocytes and the intracellular degradation of CEACAM-binding bacteria. Together, our results highlight the ability of CEACAM3 to coordinate signaling events that not only mediate bacterial uptake, but also trigger the killing of internalized pathogens.  相似文献   

3.
Several gram-negative human pathogens recognize members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family. Pathogenic Neisseriae employ distinct isoforms of the colony opacity-associated proteins (Opa(CEA) proteins) to bind to the amino-terminal domains of CEACAMs. Here we present a novel approach to rapidly determine the CEACAM-binding properties of single bacteria. Expression of the isolated amino-terminal domains of various CEACAMs in eukaryotic cells yields soluble probes that selectively recognize Opa(CEA)-expressing bacteria in a pull-down assay format. Furthermore, by expressing soluble CEACAMs as fusions to green-fluorescent protein (CEACAM-N-GFP), CEACAM-binding bacteria can be decorated with a fluorescent label and analysed by flow cytometry allowing the specific detection of receptor binding events on the level of single bacteria. Besides its potential for rapid and quantitative analysis of pathogen-receptor interactions, this novel approach allows the detection of receptor recognition in heterogeneous bacterial populations and might represent a valuable tool for profiling the host binding capabilities of various microorganisms.  相似文献   

4.

Background

CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake.

Principal Findings

In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria.

Conclusions

Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.  相似文献   

5.
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) belong to the immunoglobulin superfamily and contribute to cell-cell adhesion and signal modulation in various tissues. In humans, several CEACAMs are targeted by pathogenic bacteria. One peculiar member of this family, CEACAM3, is exclusively expressed by human granulocytes and functions as an opsonin-independent phagocytic receptor for CEACAM-binding bacteria. Here, we will discuss CEACAM3-dependent processes by summarizing recent insight into the phosphotyrosine-based signaling complex formed upon CEACAM3 engagement. Compared to different well-studied phagocytic receptors, such as Fcγ receptors and Dectin-1, CEACAM3 appears as an example of a hemITAM-containing innate immune receptor, which promotes rapid internalization and intracellular destruction of a diverse group of CEACAM-binding bacteria. The particular efficiency of CEACAM3 arises from the direct coupling of upstream activators and downstream effectors of the small GTPase Rac by the cytoplasmic domain of CEACAM3, which co-ordinates actin cytoskeleton re-arrangements and bactericidal effector mechanisms of granulocytes.  相似文献   

6.
The human-restricted pathogens Neisseria gonorrhoeae, Neisseria meningitidis, Haemophilus influenzae and Moraxella catarrhalis colonize host tissues via carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). One such receptor, CEACAM3, acts in a host-protective manner by orchestrating the capture and engulfment of invasive bacteria by human neutrophils. Herein, we show that bacterial binding to CEACAM3 causes recruitment of the cytoplasmic tyrosine kinase Syk, resulting in the phosphorylation of both CEACAM3 and Syk. This interaction is specific for the immunoreceptor tyrosine-based activation motif (ITAM) in the CEACAM3 cytoplasmic domain. While dispensable for the phagocytic uptake of single bacteria by CEACAM3, Syk is necessary for internalization when cargo size increases or when the density of CEACAM-binding ligand on the cargo surface is below a critical threshold. Moreover, Syk engagement is required for an effective bacterial killing response, including the neutrophil oxidative burst and degranulation functions in response to N. gonorrhoeae. These data reveal CEACAM3 as a specific innate immune receptor that mediates the opsonin-independent clearance of CEACAM-binding bacteria via Syk, a molecular trigger for functional immunoreceptor responses of both the adaptive (TCR, BCR, FcR) and innate (Dectin-1, CEACAM3) immune systems.  相似文献   

7.
Moraxella catarrhalis is a ubiquitous human-specific bacterium commonly associated with upper and lower respiratory tract infections, including otitis media, sinusitis and chronic obstructive pulmonary disease. The bacterium uses an autotransporter protein UspA1 to target an important human cellular receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Using X-ray crystallography, we show that the CEACAM1 receptor-binding region of UspA1 unusually consists of an extended, rod-like left-handed trimeric coiled-coil. Mutagenesis and binding studies of UspA1 and the N-domain of CEACAM1 have been used to delineate the interacting surfaces between ligand and receptor and guide assembly of the complex. However, solution scattering, molecular modelling and electron microscopy analyses all indicate that significant bending of the UspA1 coiled-coil stalk also occurs. This explains how UspA1 can engage CEACAM1 at a site far distant from its head group, permitting closer proximity of the respective cell surfaces during infection.  相似文献   

8.
Moraxella catarrhalis ubiquitous surface proteins A1 and A2 (UspA1/A2) interfere with the classical pathway of the complement system by binding C4b-binding protein. In this study we demonstrate that M. catarrhalis UspA1 and A2 noncovalently and in a dose-dependent manner bind both the third component of complement (C3) from EDTA-treated serum and methylamine-treated C3. In contrast, related Moraxella subspecies (n = 13) or other human pathogenic bacteria (n = 13) do not bind C3 or methylamine-treated C3. Experiments with recombinant proteins and M. catarrhalis mutants devoid of UspA1/A2 revealed that UspA1/A2 exert their actions by absorbing and neutralizing C3 from serum and restrain complement activation. UspA2 was responsible for most of the effect, and the Moraxella mutant lacking UspA2 was more sensitive to the lytic effect of human serum compared with the wild type. Interestingly, among the large number of bacteria analyzed, only M. catarrhalis has this unique ability to interfere with the innate immune system of complement by binding C3.  相似文献   

9.
The opacity (Opa) proteins of pathogenic Neisseria spp. are adhesins, which play an important role in adhesion and invasion of host cells. Most members of this highly variable family of outer membrane proteins can bind to the human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). Several studies have identified the Opa-binding region on the CEACAM receptors; however, not much is known about the binding sites on the Opa proteins for the corresponding CEACAM-receptors. The high degree of sequence variation in the surface-exposed loops of Opa proteins raises the question how the binding sites for the CEACAM receptors are conserved. Neisseria meningitidis strain H44/76 possesses four different Opa proteins, of which OpaA and OpaJ bind to CEACAM1, while OpaB and OpaD bind to CEACAM1 and CEA. A sequence motif involved in binding to CEACAM1 was identified by alanine scanning mutagenesis of those amino acid residues conserved within the hypervariable (HV) regions of all four Opa proteins. Hybrid Opa variants with different combinations of HV-1 and HV-2 derived from OpaB and OpaJ showed a reduced binding to CEACAM1 and CEA, indicating that particular combinations of HV-1 and HV-2 are required for the Opa binding capacity. Homologue scanning mutagenesis was used to generate more refined hybrids containing novel combinations of OpaB and OpaJ sequences within HV-1 and HV-2. They could be used to identify residues determining the specificity for CEA binding. The combined results obtained with mutants and hybrids strongly suggest the existence of a conserved binding site for CEACAM receptors by the interaction of HV-1 and HV-2 regions.  相似文献   

10.
11.
Neisseria meningitidis (Nme) asymptomatically colonizes the human nasopharynx, yet can initiate rapidly-progressing sepsis and meningitis in rare instances. Understanding the meningococcal lifestyle within the nasopharyngeal mucosa, a phase of infection that is prerequisite for disease, has been hampered by the lack of animal models. Herein, we compare mice expressing the four different human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) that can bind the neisserial Opa protein adhesins, and find that expression of human CEACAM1 is necessary and sufficient to establish intranasal colonization. During infection, in vivo selection for phase variants expressing CEACAM1-specific Opa proteins occurs, allowing mucosal attachment and entry into the subepithelial space. Consistent with an essential role for Opa proteins in this process, Opa-deficient meningococci were unable to colonize the CEACAM1-humanized mice. While simple Opa-mediated attachment triggered an innate response regardless of meningococcal viability within the inoculum, persistence of viable Opa-expressing bacteria within the CEACAM1-humanized mice was required for a protective memory response to be achieved. Parenteral immunization with a capsule-based conjugate vaccine led to the accumulation of protective levels of Nme-specific IgG within the nasal mucus, yet the sterilizing immunity afforded by natural colonization was instead conferred by Nme-specific IgA without detectable IgG. Considered together, this study establishes that the availability of CEACAM1 helps define the exquisite host specificity of this human-restricted pathogen, displays a striking example of in vivo selection for the expression of desirable Opa variants, and provides a novel model in which to consider meningococcal infection and immunity within the nasopharyngeal mucosa.  相似文献   

12.
The carcinoembryonic antigen (CEA) gene family members, CEACAM1, CEACAM3, CEACAM5 and CEACAM6, are bound by the Opa outer membrane proteins of pathogenic Neisseria spp., whereas CEACAM8 is not. In this study, we demonstrate that the closely related CEACAM4 and CEACAM7, which are also members of the CEA family, are not Opa receptors. We exploited the high conservation between CEACAM6 and CEACAM8 to generate an extensive set of chimeric receptors in order to delineate the sequences necessary for Opa binding. Using a transfection-based infection system, we showed that binding of Opa52 involves residues 27–42, which are predicted to form β-strand C and short loops adjacent to it, and residues lying between amino acids 60 and 108 in the amino-terminal domain. The replacement of residues 27–29 in CEACAM6 with the CEACAM1 or CEACAM5 sequences generated recombinant CEACAM6 receptors that are bound by CEACAM1/CEACAM5-specific Opa variants. Together, our data demonstrate that Opa proteins bind to residues exposed on the GFCC' face of the N-terminal domain of CEACAM receptors, and identify an amino acid triplet sequence that is responsible for the differential binding of Opa proteins to CEACAM1, CEACAM5 and CEACAM6.  相似文献   

13.
14.
Kuespert K  Roth A  Hauck CR 《PloS one》2011,6(1):e14609

Background

Several human-restricted Gram-negative bacteria exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) for host colonization. For example, Neisseria meningitidis engages these human receptors via outer membrane proteins of the colony opacity-associated (Opa) protein family triggering internalization into non-phagocytic cells.

Principal Findings

We report that a non-opaque strain of N. meningitidis selectively interacts with CEACAM1, but not other CEACAM family members. Using functional assays of bacterial adhesion and internalisation, microscopic analysis, and a panel of CEACAM1 deletion mutants we demonstrate that the engagement of CEACAM1 by non-opaque meningococci occurs in a manner distinct from Opa protein-mediated association. In particular, the amino-terminal domain of CEACAM1 is necessary, but not sufficient for Opa protein-independent binding, which requires multiple extracellular domains of the human receptor in a cellular context. Knock-down of CEACAM1 interferes with binding to lung epithelial cells, whereas chemical or pharmacological disruption of host protein glycosylation does not abrogate CEACAM1 recognition by non-opaque meningococci. The previously characterized meningococcal invasins NadA or Opc do not operate in a CEACAM1-dependent manner.

Conclusions

The results demonstrate a mechanistically distinct, Opa protein-independent interaction between N. meningitidis and human CEACAM1. Our functional investigations suggest the presence of a second CEACAM1-binding invasin on the meningococcal surface that associates with the protein backbone and not the carbohydrate structures of CEACAM1. The redundancy in meningococcal CEACAM1-binding factors further highlights the important role of CEACAM recognition in the biology of this human-adapted pathogen.  相似文献   

15.
BACKGROUND: The universal stress protein UspA is a small cytoplasmic bacterial protein whose expression is enhanced several-fold when cellular viability is challenged with heat shock, nutrient starvation, stress agents which arrest cell growth, or DNA-damaging agents. UspA enhances the rate of cell survival during prolonged exposure to such conditions, suggesting that it asserts a general "stress endurance" activity. However, neither the structure of UspA nor the biochemical mechanism by which it protects cells from the broad spectrum of stress agents is known. RESULTS: The crystal structure of Haemophilus influenzae UspA reveals an asymmetric dimer with a tertiary alpha/beta fold similar to that of the Methanococcus jannaschi MJ0577 protein, a protein whose crystal structure revealed a novel ATP binding motif. UspA differs significantly from the MJ0577 structure in several details, including the triphosphate binding loop of the ATP binding motif; UspA shows no ATP binding activity. CONCLUSIONS: Within the universal stress protein family that is delineated by sequence similarity, UspA is the only member which has been correlated with a cellular activity, and MJ0577 is the only member which has been assigned a biochemical activity, i.e., ATP binding. UspA has a similar fold to the MJ0577 protein but does not bind ATP. This suggests that members of this protein family will segregate into two groups, based on whether or not they bind ATP. By implication, one subset of the universal stress proteins presumably has an ATP-dependent function, while another subset functions in ATP-independent activities.  相似文献   

16.
Opa adhesins of pathogenic Neisseria species target four members of the human carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. CEACAM receptors mediate opsonization-independent phagocytosis of Neisseria gonorrhoeae by human granulocytes and each receptor individually can mediate gonococcal invasion of epithelial cells. We show here that gonococcal internalization occurs by distinct mechanisms depending on the CEACAM receptor expressed. For the invasion of epithelial cell lines via CEACAM1 and CEACAM6, a pathogen-directed reorganization of the actin cytoskeleton is not required. In marked contrast, ligation of CEACAM3 triggers a dramatic but localized reorganization of the host cell surface leading to highly efficient engulfment of bacteria in a process regulated by the small GTPases Rac1 and Cdc42, but not Rho. Two tyrosine residues of a cytoplasmic immune receptor tyrosine-based activating motif of CEACAM3 are essential for the induction of phagocytic actin structures and subsequent gonococcal internalization. The granulocyte-specific CEACAM3 receptor has properties of a single chain phagocytic receptor and may thus contribute to innate immunity by the elimination of Neisseria and other CEACAM-binding pathogens that colonize human mucosal surfaces.  相似文献   

17.

Background

Human CEACAM1 is a cell-cell adhesion molecule with multiple functions including insulin clearance in the liver, vasculogenesis in endothelial cells, lumen formation in the mammary gland, and binding of certain human pathogens.

Principal Findings

Three genomic BAC clones containing the human CEACAM1 gene were microinjected into pronuclei of fertilized FVB mouse oocytes. The embryos were implanted in the oviducts of pseudopregnant females and allowed to develop to term. DNA from newborn mice was evaluated by PCR for the presence of the human CEACAM1 gene. Feces of the PCR positive offspring screened for expression of human CEACAM1. Using this assay, one out of five PCR positive lines was positive for human CEACAM1 expression and showed stable transmission to the F1 generation with the expected transmission frequency (0.5) for heterozygotes. Liver, lung, intestine, kidney, mammary gland, and prostate were strongly positive for the dual expression of both murine and human CEACAM1 and mimic that seen in human tissue. Peripheral blood and bone marrow granulocytes stained strongly for human CEACAM1 and bound Neisseria Opa proteins similar to that in human neutrophils.

Conclusion

These transgenic animals may serve as a model for the binding of human pathogens to human CEACAM1.  相似文献   

18.
The nasopharyngeal pathogen Moraxella catarrhalis recruits vitronectin to subvert complement-mediated killing. Ubiquitous surface protein (UspA) 2 and its hybrid form UspA2H bind vitronectin at the highly diverse N-terminal head domain. Here we characterized the sequence diversity of the head domain in multiple M. catarrhalis clinical isolates (n = 51) with focus on binding of vitronectin. The head domain of the uspA2 genes from 40 isolates were clustered according to an N-terminal sequence motif of UspA2 (NTER2), i.e., NTER2A (55% of uspA2 variants), NTER2B (32.5%), NTER2C (5%), and finally a group without an NTER2 (7.5%). Isolates harbouring the uspA2H gene (n = 11) contained N-terminal GGG repeats. Vitronectin binding to isolates having UspA2 did not correlate to variation in the NTER2 motifs but occurred in UspA2H containing 6 or ≥11 of GGG repeats. Analyses of recombinant UspA2/UspA2H head domains of multiple variants showed UspA2-dependent binding to the C-terminal of vitronectin. Furthermore, polyclonal anti-UspA2 antibodies revealed that the head domain of the majority of Moraxella UspA2/2H was antigenically unrelated, whereas the full length molecules were recognized. In conclusion, the head domains of UspA2/2H have extensive sequence polymorphism without losing vitronectin-binding capacity promoting a general evasion of the host immune system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号