首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The aim of this study was to investigate the effect of glycyrrhizin on LPS-induced endotoxemia in mice and clarify the possible mechanism.

Methods

An LPS-induced endotoxemia mouse model was used to confirm the anti-inflammatory activity of glycyrrhizin in vivo. In vitro, RAW264.7 cells were stimulated with LPS in the presence or absence of glycyrrhizin. The expression of cytokines was determined by ELISA. Toll-like receptor 4 (TLR4) was determined by Western blot analysis. Nuclear factor-kB (NF-κB) and Interferon regulatory factor 3 (IRF3) activation were detected by Western blotting and luciferase assay. Lipid raft staining was detected by immunocytochemistry.

Results

In vivo, the results showed that glycyrrhizin can improve survival during lethal endotoxemia. In vitro, glycyrrhizin dose-dependently inhibited the expression of TNF-α, IL-6, IL-1β and RANTES in LPS-stimulated RAW264.7 cells. Western blot analysis showed that glycyrrhizin suppressed LPS-induced NF-κB and IRF3 activation. However, glycyrrhizin did not inhibit NF-κB and IRF3 activation induced by MyD88-dependent (MyD88, IKKβ) or TRIF-dependent (TRIF, TBK1) downstream signaling components. Moreover, glycyrrhizin did not affect the expression of TLR4 and CD14 induced by LPS. Significantly, we found that glycyrrhizin decreased the levels of cholesterol of lipid rafts and inhibited translocation of TLR4 to lipid rafts. Moreover, glycyrrhizin activated ABCA1, which could induce cholesterol efflux from lipid rafts.

Conclusion

Glycyrrhizin exerts an anti-inflammatory property by disrupting lipid rafts and inhibiting translocation of TLR4 to lipid rafts, thereby attenuating LPS-mediated inflammatory response.

General significance

Learning the anti-inflammatory mechanism of glycyrrhizin is crucial for the anti-inflammatory drug development.  相似文献   

2.
The presence of adhesion molecules on airway epithelial cells may be important in recruiting leukocytes to the epithelium. The study aimed at investigating the effects of interleukin (IL)-4, IL-8, IL-13 and interferon-gamma (IFN-gamma) on cell viability and intracellular adhesion molecule (ICAM)-1 and zonula occludens protein (ZO)-1 expression on cultured human basal and columnar airway epithelial cells. Cycloheximide (CHX) induced cell death in both cell lines. The cytokines IL-4, IL-8, IL-13 and IFN-gamma had only minor effects on cell proliferation in the columnar 16HBE14o-cells, and inhibited the effects of CHX on cell death. IFN-gamma increased ICAM-1 expression in both cell lines. Western blot analysis showed that CHX inhibited both ICAM-1 and ZO-1 expression in the basal cell line. A combination of IL-4 and IFN-gamma appeared to break the tight junctions. IL-4 and IL-13 potentiated CHX-induced apoptosis in basal cells but not in columnar cells, possibly due to low levels of the IL-4 receptor. It is concluded that cytokines produced by airway epithelium may have a role in regulating sequestering of leukocytes to the airways during airway inflammation.  相似文献   

3.
We have previously found that bronchial epithelial cells express CCR3 whose signaling elicits mitogen-activated protein (MAP) kinase activation and cytokine production. Several investigators have focused on the signaling crosstalk between G protein-coupled receptors (GPCRs) and epidermal growth factor receptor (EGFR) in cancer cells. In this study, we investigated the role of EGFR in CCR3 signaling in the bronchial epithelial cell line NCI-H292. Eotaxin (1-100 nM) induced dose-dependent tyrosine phosphorylation of EGFR in NCI-H292 cells. Pretreatment of the cells with the EGFR inhibitor (AG1478) significantly inhibited the MAP kinase phosphorylation induced by eotaxin. Eotaxin stimulated IL-8 production, which was inhibited by AG1478. The transactivation of EGFR through CCR3 is a critical pathway that elicits MAP kinase activation and cytokine production in bronchial epithelial cells. The delineation of the signaling pathway of chemokines will help to develop a new therapeutic strategy to allergic diseases including bronchial asthma.  相似文献   

4.

Background

Human rhinovirus (HRV) triggers exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Cigarette smoking is the leading risk factor for the development of COPD and 25% of asthmatics smoke. Smoking asthmatics have worse symptoms and more frequent hospitalizations compared to non-smoking asthmatics. The degree of neutrophil recruitment to the airways correlates with disease severity in COPD and during viral exacerbations of asthma. We have previously shown that HRV and cigarette smoke, in the form of cigarette smoke extract (CSE), each induce expression of the neutrophil chemoattractant and activator, CXCL8, in human airway epithelial cells. Additionally, we demonstrated that the combination of HRV and CSE induces expression of levels of CXCL8 that are at least additive relative to induction by each stimulus alone, and that enhancement of CXCL8 expression by HRV+CSE is regulated, at least in part, via mRNA stabilization. Here we further investigate the mechanisms by which HRV+CSE enhances CXCL8 expression.

Methods

Primary human bronchial epithelial cells were cultured and treated with CSE alone, HRV alone or the combination of the two stimuli. Stabilizing/destabilizing proteins adenine/uridine-rich factor-1 (AUF-1), KH-type splicing regulatory protein (KHSRP) and human antigen R (HuR) were measured in cell lysates to determine expression levels following treatment. siRNA knockdown of each protein was used to assess their contribution to the induction of CXCL8 expression following treatment of cells with HRV and CSE.

Results

We show that total expression of stabilizing/de-stabilizing proteins linked to CXCL8 regulation, including AUF-1, KHSRP and HuR, are not altered by CSE, HRV or the combination of the two stimuli. Importantly, however, siRNA-mediated knock-down of HuR, but not AUF-1 or KHSRP, abolishes the enhancement of CXCL8 by HRV+CSE. Data were analyzed using one-way ANOVA with student Newman-Keuls post hoc analysis and values of p≤ 0.05 were considered significant.

Conclusions

Induction of CXCL8 by the combination of HRV and CSE is regulated by mRNA stabilization involving HuR. Thus, targeting the HuR pathway may be an effective method of dampening CXCL8 production during HRV-induced exacerbations of lower airway disease, particularly in COPD patients and asthmatic patients who smoke.  相似文献   

5.
Interleukin (IL)-8 is a potent neutrophil chemotactic factor and a crucial mediator in neutrophil-dependent inflammation.Various cell types produce IL-8, either in response to external stimuli such as cytokines or bacterial infection, or after malignant transformation. Anti-IL-8 strategies have been considered for anti-inflammatory therapy. In this paper we demonstrate that the RNA interference technique can be used to efficiently down-regulate IL-8 protein expression in airway epithelial cells. We used a helper-dependent adenoviral vector to express a small hairpin (sh)RNA targeting human IL-8 in cultured airway epithelial cells (IB3-1, Cftr; C38, Cftr-corrected) stimulated with TNF-α, IL-1β or heat-inactivated Burkholderia cenocepacia. Stimulated IL-8 expression in IB3-1 and C38 cells was significantly reduced by shRNA expression. The shRNA targeting IL-8 had no effect on the activation of NF-κB, or on the protein levels of IκB or IL-6, suggesting that this anti-IL-8 strategy was highly specific, and therefore may offer potential for the treatment of inflammatory diseases.  相似文献   

6.
Tumor necrosis factor-alpha (TNF-alpha) is a potent multifunctional cytokine that plays a central role in the pathogenesis of many inflammatory diseases. Interleukin-8 (IL-8) is a principle neutrophil chemoattractant and activator in humans. The alveolar macrophage-derived TNF-alpha initiates lung inflammation through its ability to stimulate IL-8 synthesis in airway epithelial cells. Since recent studies demonstrated that the stimulation of epidermal growth factor receptor (EGFR) could induce IL-8 secretion, the involvement of EGFR in TNF-alpha-induced IL-8 secretion in airway epithelium-like NCI-H292 cells was investigated in this study. TNF-alpha and epidermal growth factor (EGF) stimulated IL-8 secretion in a time- and concentration-dependent manner. Inhibition of the EGFR by either an anti-EGFR neutralizing antibody or by its specific inhibitor AG1478 (1 microM) blocked TNF-alpha-induced IL-8 secretion. In addition, TNF-alpha stimulated tyrosine phosphorylation of the EGFR within 5 min after stimulation. Further, TNF-alpha-induced IL-8 secretion was completely inhibited by the neutralizing antibody against amphiregulin (AR), an EGFR ligand, suggesting that TNF-alpha-induced IL-8 secretion was mediated by the AR-EGFR pathway. Furthermore, TNF-alpha stimulated the release of AR in a concentration-dependent manner. Finally, both AR and IL-8 release-induced by TNF-alpha were eliminated by pretreatment with either GM6001, a broad-spectrum inhibitor for metalloprotease, or TAPI-1, relatively selective inhibitor for TNF-alpha converting enzyme (TACE). These findings indicate that metalloprotease-mediated AR shedding and subsequent activation of EGFR play a critical role in TNF-alpha-induced IL-8 secretion from the human airway epithelium-like NCI-H292 cells, and that TACE is one of the most possible candidates for metalloprotease responsible for TNF-alpha-induced AR shedding.  相似文献   

7.
Proteinase-activated receptor-2 (PAR2) plays pro-inflammatory roles in many organs including the gastrointestinal (GI) tract. To clarify the downstream pro-inflammatory signaling of PAR2 in the GI tract, we examined interleukin-8 (IL-8) release and the underlying cellular signaling following PAR2 stimulation in human colorectal cancer-derived HCT-15 cells and human gastric adenocarcinoma-derived MKN-45 cells. A PAR2-activating peptide, but not a PAR2-inactive scrambled peptide or a PAR1- activating peptide, caused IL-8 release in these GI epithelial cells. The PAR2-triggered IL-8 release was suppressed by inhibitors of MEK (U0126) or PI3-kinase (LY294002), and PAR2 stimulation indeed activated the downstream kinases, ERK and Akt. U0126 blocked the phosphorylation of ERK, but not Akt, and LY294002 blocked the phosphorylation of Akt, but not ERK. Together, PAR2 triggers IL-8 release via two independent signaling pathways, MEK/ERK and PI3-kinase/Akt, suggesting a role of PAR2 as a pro-inflammatory receptor in the GI tract.  相似文献   

8.
We recently reported that glucosamine reversed the decrease in proteoglycan synthesis and in UDP-glucuronosyltransferase I mRNA expression induced by interleukin-1β (IL-1β) [Arthritis Rheum. 44 (2001) 351–360]. In the present work, we show that glucosamine does not exert the same effects when chondrocytes were stimulated with reactive oxygen species (ROS). In order to better understand its mechanism of action, we determined if glucosamine could prevent the binding of IL-1β to its cellular receptors or could interfere with its signaling pathway at a post-receptor level. Addition of glucosamine to rat chondrocytes treated with IL-1β or with ROS decreased the activation of the nuclear factor κB, but not the activator protein-1. After treatment with IL-1β, glucosamine increased the expression of mRNA encoding the type II IL-1β receptor. These results emphasize the potential role of two regulating proteins of the IL-1β signaling pathway that could account for the beneficial effect of glucosamine in osteoarthritis.  相似文献   

9.

Background  

Toll-like receptor-3 (TLR-3) is a critical component of innate immune system against dsRNA viruses and is expressed in the central nervous system. However, it remains unknown whether TLR3 may serve as a therapeutic target in human neuroblastoma (NB).  相似文献   

10.
Oxidative stress is a key mechanism underlying ozone-induced lung injury. Mitochondria can release mitochondrial reactive oxidative species (mtROS), which may lead to the activation of NLRP3 inflammasome. The goal of this study was to examine the roles of mtROS and NLRP3 inflammasome in acute ozone-induced airway inflammation and bronchial hyperresponsiveness (BHR). C57/BL6 mice (n?=?8/group) were intraperitoneally treated with vehicle (phosphate buffered saline, PBS) or mitoTEMPO (mtROS inhibitor, 20?mg/kg), or orally treated with VX-765 (caspse-1 inhibitor, 100?mg/kg) 1?h before the ozone exposure (2.5?ppm, 3?h). Compared to the PBS-treated ozone-exposed mice, mitoTEMPO reduced the level of total malondialdehyde in bronchoalveolar lavage (BAL) fluid and increased the expression of mitochondrial complexes II and IV in the lung 24?h after single ozone exposure. VX-765 inhibited ozone-induced BHR, BAL total cells including neutrophils and eosinophils, and BAL inflammatory cytokines including IL-1α, IL-1β, KC, and IL-6. Both mitoTEMPO and VX-765 reduced ozone-induced mtROS and inhibited capase-1 activity in lung tissue whilst VX-765 further inhibited DRP1 and MFF expression, increased MFN2 expression, and down-regulated caspase-1 expression in the lung tissue. These results indicate that acute ozone exposure induces mitochondrial dysfunction and NLRP3 inflammasome activation, while the latter has a critical role in the pathogenesis of ozone-induced airway inflammation and BHR.  相似文献   

11.
Bacterial inflammation in mucosa is accompanied by morphological and proliferative changes in goblet cells and mucin hypersecretion. Main stimulators of bacterial inflammation are bacterial lipopolysaccharides (LPS). In vitro investigation of the LPS effect on the molecular processes in goblet cells, using the human mucin-secreting goblet cell line HT29-MTX, showed the following results. LPS up-regulated mucin and cytokine mRNA expression and secretion in goblet cells in a concentration and time-dependent manner, with a maximum output at an LPS concentration of 100 ng/ml. LPS (100 ng/ml) increased mRNA expression of MUC5AC (2.4x), MUC5B (2.1x), and IL-8 (2.3x) and stimulated secretion of mucins (MUC5AC up to 39%, MUC5B up to 31%) and the inflammatory cytokine IL-8 (up to 10x). A significant correlation was found between the LPS-induced IL-8 secretion and secretion of mucins. These results suggest: (1) goblet cells, responding to the direct stimulation of bacterial LPS by two inflammatory-related processes such as production and secretion of the gel-forming mucins and the inflammatory cytokine IL-8, can be considered as an important part of mucosal immunity and (2) LPS- induced goblet cell mucin secretion can occur partly via IL-8-dependent pathway.  相似文献   

12.
Nontypeable Haemophilus influenzae (NTHi) is the etiological agent most frequently associated with bacterial exacerbations of chronic obstructive pulmonary disease (COPD). The present work shows that NTHi strains induced in primary normal human bronchial epithelial cells (NHBE) a cytokine/chemokine response in which CCL-5 and CXCL-10 were predominant. Production of both cytokines was inhibited by an anti-TLR3 monoclonal antibody (mAb) in a dose-dependent manner, but not by control human IgG4 antibodies, thus suggesting a TLR3-dependency of the NTHi stimulation. BEAS-2B, an immortalized human bronchial epithelial cell line, also showed a similar NTHi-induced response that was inhibited by the anti-TLR3 mAb. A BEAS-2B cell line stably expressing TLR3 siRNA showed significantly reduced cytokine/chemokine responses to NTHi stimulation, confirming the role of TLR3 in the response. These results indicate that TLR3 is a key component in the response of human bronchial epithelial cells to NTHi, and suggest that cognate neutralizing mAbs might be a useful therapeutic tool to regulate the inflammatory response.  相似文献   

13.
14.
Lipopolysaccharide (LPS) and inflammatory cytokines cause activation of sphingomyelinases (SMases) and subsequent hydrolysis of sphingomyelin (SM) to produce a lipid messenger ceramide. The use of SMase inhibitors may offer new therapies for the treatment of the LPS- and cytokines-related inflammatory bowel disease (IBD). We synthesized a series of difluoromethylene analogues of SM (SMAs). Here, we show that LPS efficiently increases the release of IL-8 from HT-29 intestinal epithelial cells by activating both neutral SMase and nuclear factor (NF)-kappaB in the cells. The addition of SMA-7 suppressed neutral SMase-catalyzed ceramide production, NF-kappaB activation, and IL-8 release from HT-29 cells caused by LPS. The results suggest that activation of neutral SMase is an underlying mechanism of LPS-induced release of IL-8 from the intestinal epithelial cells. Ceramide production following LPS-induced SM hydrolysis may trigger the activation of NF-kappaB in nuclei. Oral administration of SMA-7 (60 mg/kg) to mice with 2% dextran sulfate sodium (DSS) in their drinking water, for 21 consecutive days, reduced significantly the severity of colonic injury. This finding suggests a central role for SMase/ceramide signaling in the pathology of DSS-induced colitis in mice. The therapeutic effect of SMA-7 observed in mice may involve the suppression of IL-8 production from intestinal epithelial cells by LPS or other inflammatory cytokines.  相似文献   

15.
The airway epithelium is exposed to a range of irritants in the environment that are known to trigger inflammatory response such as asthma. Transient receptor potential vanilloid 1 (TRPV1) is a Ca2+-permeable cation channel critical for detecting noxious stimuli by sensory neurons. Recently increasing evidence suggests TRPV1 is also crucially involved in the pathophysiology of asthma on airway epithelium in human. Here we report that in airway epithelial cells TRPV1 activation potently induces allergic cytokine thymic stromal lymphopoietin (TSLP) release. TSLP induction by protease-activated receptor (PAR)-2 activation is also partially mediated by TRPV1 channels.  相似文献   

16.
We investigated whether fenoterol was able to enhance contractile responsiveness to neurokinin A (NKA) on the guinea-pig isolated trachea. We then studied the effects of two inhibitors of nuclear factor kappa B (NFkappaB), gliotoxin and pyrrolidine dithiocarbamate, and of the tachykinin NK(1), NK(2) and NK(3) receptor antagonists, SR 140333, SR 48968 and SR 142801 and determined whether tachykinin receptor gene expression was up-regulated in the trachea after exposure to fenoterol. Fenoterol (0.1 microM, 15 h, 21 degrees C) induced an increased contractile response to NKA (mean of difference in maximal tension between control and fenoterol +/- S.E.M; +0.47 +/- 0.14 g, n = 26, P < 0.01). This hyperresponsiveness was strongly reduced by co-incubation with gliotoxin (0.1 microg/ml) or pyrrolidine dithiocarbamate (0.1 mM) and abolished by SR 140333 (0.1 microM) and SR 142801 (0.1 microM). SR 48968 (0.1 microM) diminished the tracheal contractility to NKA but failed to reduce the hyperreactivity induced by fenoterol. Tachykinin NK(1) receptor (NK(1)R), NK(2) receptor (NK(2)R) and NK(3) receptor (NK(3)R) gene expression was analyzed by semiquantitative RT-PCR. Compared to control tissues, NK(1)R and NK(2)R mRNA expression was increased by about 1.6-fold and 1.4-fold, respectively, in tissues treated with fenoterol. We were unable to detect the presence of NK(3)R mRNA in the guinea-pig trachea. In conclusion, fenoterol induces tracheal hyperresponsiveness to NKA and an up-regulation of NK(1)R and NK(2)R gene expression. The hyperresponsiveness implicates the NFkappaB pathway and is abolished by tachykinin NK(1) (SR 140333) and NK(3) (SR 142801) receptor antagonists.  相似文献   

17.
Aldehyde dehydrogenase 3A1 (ALDH3A1), an ALDH superfamily member, catalyzes the oxidation of reactive aldehydes, highly toxic components of cigarette smoke (CS). Even so, the role of ALDH3A1 in CS-induced cytotoxicity and DNA damage has not been examined. Among all of the ALDH superfamily members, ALDH3A1 mRNA levels showed the greatest induction in response to CS extract (CSE) exposure of primary human bronchial epithelial cells (HBECs). ALDH3A1 protein accumulation was accompanied by increased ALDH enzymatic activity in CSE-exposed immortalized HBECs. The effects of overexpression or suppression of ALDH3A1 on CSE-induced cytotoxicity and DNA damage (γH2AX) were evaluated in cultured immortalized HBECs. Enforced expression of ALDH3A1 attenuated cytotoxicity and downregulated γH2AX. SiRNA-mediated suppression of ALDH3A1 blocked ALDH enzymatic activity and augmented cytotoxicity in CSE-exposed cells. Our results suggest that the availability of ALDH3A1 is important for cell survival against CSE in HBECs.  相似文献   

18.
目的:通过研究高浓度藏红花溶液引起肝损伤大鼠肝功能、肝组织病理及肝组织中半胱氨酸蛋白酶-3(caspase-3),bcl-2,NF-kB表达,探讨半胱氨酸蛋白酶-3(caspase-3),bcl-2,NF-kB在高浓度藏红花溶液导致的肝损伤中的作用及机制。方法:清洁级雄性大鼠45只,随机分为3组,每组15只,分别标记为A组(藏红花组);B组(酒精组,阳性对照);C组(生理盐水组,阴性对照)。分别给予藏红花高浓度水煎浓缩溶液、60%酒精、生理盐水灌胃共6周。第6周末,心腔取血测定ALT、AST。肝组织HE染色,免疫组化方法检测细胞凋亡相关蛋白Caspase-3及调控基因Bcl-2、NF-kB的表达。结果:藏红花组大鼠肝功能ALT、AST升高,肝组织正常结构消失,肝细胞肿胀坏死,部分碎裂,凋亡蛋白caspase-3,bcl-2,NF-kB表达增加(69.6%±16.7%vs 5.3%±1.6%;55.4%±14.5%vs4.5%±2.8%;44.1%±12.6%vs2.5%±1.9%;P〈0.05)。结论:高浓度藏红花溶液可以引起大鼠肝损伤,肝组织caspase-3,bcl-2,NF-kB表达增加,细胞凋亡机制参与了藏红花肝损伤过程。  相似文献   

19.

Background

CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.

Methods

Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.

Results

Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.

Conclusions

We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号