首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteins secreted by the type V secretion system (T5SS), known as autotransporters, are large extracellular virulence proteins localized to the bacterial poles. In this study, we characterized two novel autotransporter proteins of ‘ Candidatus Liberibacter asiaticus’ (Las), and redesignated them as LasAI and LasAII in lieu of the previous names HyvI and HyvII. As a phloem-limited, intracellular bacterial pathogen, Las has a significantly reduced genome and causes huanglongbing (HLB), a devastating disease of citrus worldwide. Bioinformatic analyses revealed that LasAI and LasAII share the structural features of an autotransporter family containing large repeats of a passenger domain and a unique C-terminal translocator domain. When fused to the GFP gene and expressed in E. coli, the LasAI C-terminus and the full length LasAII were localized to the bacterial poles, similar to other members of autotransporter family. Despite the absence of a typical signal peptide, LasAI was found to localize at the cell surface by immuno-dot blot using a monoclonal antibody against the partial LasAI protein. Its surface localization was also confirmed by the removal of the LasAI antigen using a proteinase K treatment of the intact bacterial cells. When co-inoculated with a P19 gene silencing suppressor and transiently expressed in tobacco leaves, the GFP-LasAI translocator targeted to the mitochondria. This is the first report that Las encodes novel autotransporters that target to mitochondria when expressed in the plants. These findings may lead to a better understanding of the pathogenesis of this intracellular bacterium.  相似文献   

2.
Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus’ (Las) Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB), a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and disease development.  相似文献   

3.
ATP/ADP translocases transport ATP across a lipid bilayer, which is normally impermeable to this molecule due to its size and charge. These transport proteins appear to be unique to mitochondria, plant plastids, and obligate intracellular bacteria. All bacterial ATP/ADP translocases characterized thus far have been found in endosymbionts of protozoa or pathogens of higher-order animals, including humans. A putative ATP/ADP translocase was uncovered during the genomic sequencing of the intracellular plant pathogen “Candidatus Liberibacter asiaticus,” the causal agent of citrus huanglongbing. Bioinformatic analysis of the protein revealed 12 transmembrane helices and predicted an isoelectric point of 9.4, both of which are characteristic of this family of proteins. The “Ca. Liberibacter asiaticus” gene (nttA) encoding the translocase was subsequently expressed in Escherichia coli and shown to enable E. coli to import ATP directly into the cell. Competition assays with the heterologous E. coli system demonstrated that the translocase was highly specific for ATP and ADP but that other nucleotides, if present in high concentrations, could also be taken up and/or block the ability of the translocase to import ATP. In addition, a protein homologous to NttA was identified in “Ca. Liberibacter solanacearum,” the bacterium associated with potato zebra chip disease. This is the first reported characterization of an ATP translocase from “Ca. Liberibacter asiaticus,” indicating that some intracellular bacteria of plants also have the potential to import ATP directly from their environment.Citrus huanglongbing (HLB), also known as citrus greening, is a disease of citrus that was first reported in China in the early 20th century (33) and identified in the United States in August 2005 in South Florida (22). As it spread rapidly across Florida, HLB has caused substantial economic losses to the citrus industry, and now other citrus-producing states may be in danger as well. The effects of this disease range from mild to severe and include symptoms such as yellow shoots, blotchy mottles on leaves, vein yellowing and corking, lopsided fruit with aborted seeds, early fruit dropping, and limb dieback, which can ultimately lead to the total loss of the infected tree. The disease has been associated with three species of bacteria known as “Candidatus Liberibacter” species. Each of the three “Ca. Liberibacter” species was discovered and named based on its presumptive origin, with “Ca. Liberibacter asiaticus” being found in Asia, “Ca. Liberibacter africanus” in Africa (13), and “Ca. Liberibacter americanus” in South America (24). A fourth species, known as “Ca. Liberibacter solanacearum,” is genetically related, although it is not naturally associated with HLB in citrus plants (16). “Ca. Liberibacter solanacearum” is associated with the emerging zebra chip disease of potatoes and tomatoes (15). “Ca. Liberibacter” species are Gram-negative, fastidious alphaproteobacteria (13) that reside in the sieve tube elements of infected plants (23). The same bacteria found in citrus plants have also been found in two phloem-feeding insects, the Asian citrus psyllid (Diaphorina citri) and the African citrus psyllid (Trioza erytreae), which act as vectors for the disease (for recent reviews, see references 3 and 9). Since insects that carry the pathogen do not have a shortened life span or other adverse effects (12), “Ca. Liberibacter” is thought to act more as an endosymbiont than as a pathogen in insects. There is no known cure for HLB, and current management strategies include elimination of infected trees and methods aimed at vector control. Because of the rapid spread and devastating consequences of infection with “Ca. Liberibacter,” understanding this obligate intracellular pathogen will be critical for the survival of the citrus industry.Recently, the complete genome sequence of “Ca. Liberibacter asiaticus” was obtained via metagenomics (5). Within this “Ca. Liberibacter asiaticus” genome, an open reading frame encoding a putative ATP/ADP translocase was found. Translocases are enzymes that aid in the transport of molecules, in this case adenosine phosphate, across a cell membrane. These adenylate transporters can be placed into one of three groups based upon where they reside. The first group was discovered in mitochondria and is involved in transporting the ATP synthesized in the mitochondrial matrix to the cytosol of the cell (28). The second type of transporter is found in plant plastids (19, 21, 31). In contrast to the mitochondrial transporters, which transport ATP to the cytosol, this set of transporters import ATP from the cytosol. Their function is to provide the stroma with a supply of cytosolic ATP in order to facilitate many of the anabolic reactions that take place there. The third set of transporters was originally discovered in the obligate intracellular bacterium Rickettsia prowazekii (30). Similar to their plastid counterparts, these transporters import ATP from the host cell''s cytosol and translocate it into the bacterial cell. Bacteria that posses this enzyme can act as “energy parasites” and import ATP directly from their hosts.Since its discovery in Rickettsia, the ATP/ADP translocase has been identified in other obligate intracellular parasites of animals, such as Chlamydia psittaci and Lawsonia intracellularis (11, 20), in addition to some protist endosymbionts, such as Caedibacter caryophilus and “Protochlamydia amoebophila” (4, 10). Analyses of the translocase proteins in these bacteria have demonstrated that certain translocase homologs can be used by the cell to import nucleotides other than ATP (2, 4, 10, 26), and thus, the family of proteins has come to be known more generally as nucleotide transporters. In spite of all of the previous research in this area, an ATP/ADP translocase from a bacterial plant pathogen has yet to be characterized. Here, we present the first characterization of a nucleotide transport protein (NttA) from the obligate intracellular plant pathogen “Ca. Liberibacter asiaticus.”  相似文献   

4.
Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. ‘Candidatus Liberibacter asiaticus’ (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.  相似文献   

5.
6.
Citrus greening (huanglongbing) is the most destructive disease of citrus worldwide. It is spread by citrus psyllids and is associated with phloem-limited bacteria of three species of α-Proteobacteria, namely, ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. americanus’, and ‘Ca. L. africanus’. Recent findings suggested that some Japanese strains lack the bacteriophage-type DNA polymerase region (DNA pol), in contrast to the Floridian psy62 strain. The whole genome sequence of the pol-negative ‘Ca. L. asiaticus’ Japanese isolate Ishi-1 was determined by metagenomic analysis of DNA extracted from ‘Ca. L. asiaticus’-infected psyllids and leaf midribs. The 1.19-Mb genome has an average 36.32% GC content. Annotation revealed 13 operons encoding rRNA and 44 tRNA genes, but no typical bacterial pathogenesis-related genes were located within the genome, similar to the Floridian psy62 and Chinese gxpsy. In contrast to other ‘Ca. L. asiaticus’ strains, the genome of the Japanese Ishi-1 strain lacks a prophage-related region.  相似文献   

7.
The bacterial microbiomes of citrus plants were characterized in response to ‘Candidatus Liberibacter asiaticus’ (Las)-infection and treatments with ampicillin (Amp) and gentamicin (Gm) by Phylochip-based metagenomics. The results revealed that 7,407 of over 50,000 known Operational Taxonomic Units (OTUs) in 53 phyla were detected in citrus leaf midribs using the PhyloChip™ G3 array, of which five phyla were dominant, Proteobacteria (38.7%), Firmicutes (29.0%), Actinobacteria (16.1%), Bacteroidetes (6.2%) and Cyanobacteria (2.3%). The OTU62806, representing ‘Candidatus Liberibacter’, was present with a high titer in the plants graft-inoculated with Las-infected scions treated with Gm at 100 mg/L and in the water-treated control (CK1). However, the Las bacterium was not detected in the plants graft-inoculated with Las-infected scions treated with Amp at 1.0 g/L or in plants graft-inoculated with Las-free scions (CK2). The PhyloChip array demonstrated that more OTUs, at a higher abundance, were detected in the Gm-treated plants than in the other treatment and the controls. Pairwise comparisons indicated that 23 OTUs from the Achromobacter spp. and 12 OTUs from the Methylobacterium spp. were more abundant in CK2 and CK1, respectively. Ten abundant OTUs from the Stenotrophomonas spp. were detected only in the Amp-treatment. These results provide new insights into microbial communities that may be associated with the progression of citrus huanglongbing (HLB) and the potential effects of antibiotics on the disease and microbial ecology.  相似文献   

8.
9.
Candidatus Liberibacter asiaticus’ is a fastidious bacterium and a putative agent of citrus greening disease (a.k.a., huanglongbing, HLB), a significant agricultural disease that affects citrus fruit quality and tree health. In citrus, ‘Ca. L. asiaticus’ is phloem limited. Lack of culture tools to study ‘Ca. L. asiaticus’ complicates analysis of this important organism. To improve understanding of ‘Ca. L. asiaticus’–host interactions including parameters that affect ‘Ca. L. asiaticus’ replication, methods suitable for screening pathogen responses to physicochemical and nutritional variables are needed. We describe a leaf disc-based culture assay that allows highly selective measurement of changes in ‘Ca. L. asiaticus’ DNA within plant tissue incubated under specific physicochemical and nutritional conditions. qPCR analysis targeting the hypothetical gene CD16-00155 (strain A4) allowed selective quantification of ‘Ca. L. asiaticus’ DNA content within infected tissue. ‘Ca. L. asiaticus’ DNA replication was observed in response to glucose exclusively under microaerobic conditions, and the antibiotic amikacin further enhanced ‘Ca. L. asiaticus’ DNA replication. Metabolite profiling revealed a moderate impact of ‘Ca. L. asiaticus’ on the ability of leaf tissue to metabolize and respond to glucose.  相似文献   

10.
A phloem-limited bacterium, ‘Candidatus Liberibacter asiaticus’ (Las) is a major pathogen of citrus greening (huanglongbing), one of the most destructive citrus diseases worldwide. The rapid identification and culling of infected trees and budwoods in quarantine are the most important control measures. DNA amplification including conventional polymerase chain reaction (PCR) has commonly been used for rapid detection and identification. However, long and laborious procedures for DNA extraction have greatly reduced the applicability of this method. In this study, we found that the Las bacterial cells in the midribs of infected leaves were extracted rapidly and easily by pulverization and centrifugation with mini homogenization tubes. We also found that the Las bacterial cells in the midrib extract were suitable for highly sensitive direct PCR. The performance of direct PCR using this extraction method was not inferior to that of conventional PCR. Thus, the direct PCR method described herein is characterized by its simplicity, sensitivity, and robustness, and is applicable to quarantine testing.  相似文献   

11.
Citrus greening (huanglongbing) is the most destructive citrus disease worldwide. The disease is associated with three species of ‘Candidatus Liberibacter’ among which ‘Ca. Liberibacter asiaticus’ has the widest distribution. ‘Ca. L. asiaticus’ is commonly transmitted by a phloem-feeding insect vector, the Asian citrus psyllid Diaphorina citri. A previous study showed that isolates of ‘Ca. L. asiaticus’ were clearly differentiated by variable number of tandem repeat (VNTR) profiles at four loci in the genome. In this study, the VNTR analysis was further validated by assessing the stability of these repeats after multiplication of the pathogen upon host-to-host transmission using a ‘Ca. L. asiaticus’ strain from Japan. The results showed that some tandem repeats showed detectable changes after insect transmission. To our knowledge, this is the first report to demonstrate that the repeat numbers VNTR 002 and 077 of ‘Ca. L. asiaticus’ change through psyllid transmission. VNTRs in the recipient plant were apparently unrelated to the growing phase of the vector. In contrast, changes in the number of tandem repeats increased with longer acquisition and inoculation access periods, whereas changes were not observed through psyllid transmission after relatively short acquisition and inoculation access periods, up to 20 and 19 days, respectively.  相似文献   

12.
Huanglongbing, or citrus greening, is a devastating disease of citrus plants recently spreading worldwide, which is caused by an uncultivable bacterial pathogen, “Candidatus Liberibacter asiaticus,” and vectored by a phloem-sucking insect, Diaphorina citri. We investigated the infection density dynamics of “Ca. Liberibacter asiaticus” in field populations of D. citri with experiments using field-collected insects to address how “Ca. Liberibacter asiaticus” infection density in the vector insect is relevant to pathogen transmission to citrus plants. Of 500 insects continuously collected from “Ca. Liberibacter asiaticus”-infected citrus trees with pathological symptoms in the spring and autumn of 2009, 497 (99.4%) were “Ca. Liberibacter asiaticus” positive. The infections were systemic across head-thorax and abdomen, ranging from 103 to 107 bacteria per insect. In spring, the infection densities were low in March, at ∼103 bacteria per insect, increasing up to 106 to 107 bacteria per insect in April and May, and decreasing to 105 to 106 bacteria per insect in late May, whereas the infection densities were constantly ∼106 to 107 bacteria per insect in autumn. Statistical analysis suggested that several factors, such as insect sex, host trees, and collection dates, may be correlated with “Ca. Liberibacter asiaticus” infection densities in field D. citri populations. Inoculation experiments with citrus seedlings using field-collected “Ca. Liberibacter asiaticus”-infected insects suggested that (i) “Ca. Liberibacter asiaticus”-transmitting insects tend to exhibit higher infection densities than do nontransmitting insects, (ii) a threshold level (∼106 bacteria per insect) of “Ca. Liberibacter asiaticus” density in D. citri is required for successful transmission to citrus plants, and (iii) D. citri attaining the threshold infection level transmits “Ca. Liberibacter asiaticus” to citrus plants in a stochastic manner. These findings provide valuable insights into understanding, predicting, and controlling this notorious citrus pathogen.  相似文献   

13.
Huanglongbing (yellow dragon disease) is a destructive disease of citrus. The etiological agent is a noncultured, phloem-restricted alpha-proteobacterium, “Candidatus Liberibacter africanus” in Africa and “Candidatus Liberibacter asiaticus” in Asia. In this study, we used an omp-based PCR-restriction fragment length polymorphism (RFLP) approach to analyze the genetic variability of “Ca. Liberibacter asiaticus” isolates. By using five different enzymes, each the 10 isolates tested could be associated with a specific combination of restriction profiles. The results indicate that the species “Ca. Liberibacter asiaticus,” even within a given region, may comprise several different variants. Thus, omp-based PCR-RFLP analysis is a simple method for detecting and differentiating “Ca. Liberibacter asiaticus” isolates.  相似文献   

14.
Citrus greening (Huanglongbing, HLB) is one of the most destructive diseases of citrus worldwide. In South Asia HLB has been known for more than a century, while in Americas the disease was found relatively recently. HLB is associated with three species of ‘Candidatus Liberibacter’ among which ‘Ca. Liberibacter asiaticus’ (CLas) has most wide distribution. Recently, a number of studies identified different regions in the CLas genome with variable number of tandem repeats (VNTRs) that could be used for examination of CLas diversity. One of the objectives of the work presented here was to further validate the VNTR analysis-based approach by assessing the stability of these repeats upon multiplication of the pathogen in a host over an extended period of time and upon its passaging from a host to a host using CLas populations from Florida. Our results showed that the numbers of tandem repeats in the four loci tested display very distinguishable “signature profiles” for the two Florida-type CLas haplotype groups. Remarkably, the profiles do not change upon passage of the pathogen in citrus and psyllid hosts as well as after its presence within a host over a period of five years, suggesting that VNTR analysis-based approach represents a valid methodology for examination of the pathogen populations in various geographical regions. Interestingly, an extended analysis of CLas populations in different locations throughout Florida and in several countries in the Caribbean and Central America regions and in Mexico where the pathogen has been introduced recently demonstrated the dispersion of the same haplotypes of CLas. On the other hand, these CLas populations appeared to differ significantly from those obtained from locations where the disease has been present for a much longer time.  相似文献   

15.
Citrus huanglongbing (HLB) is a highly destructive disease of citrus presumably caused by ‘ Candidatus Liberibacter asiaticus ’ (Las), a gram-negative, insect-transmitted, phloem-limited α-proteobacterium. Although almost all citrus plants are susceptible to HLB, reports have shown reduced susceptibility to Las infection in lemon ( Citrus limon ) plants. The aim of this study is to identify intra-species specific molecular mechanisms associated with Las-induced responses in lemon plants. To achieve this, comparative 2-DE and mass spectrometry, in addition to Inductively Coupled Plasma Spectroscopy (ICPS) analyses, were applied to investigate differences in protein accumulation and the concentrations of cationic elements in leaves of healthy and Las-infected lemon plants. Results showed a differential accumulation of 27 proteins, including an increase in accumulation of starch synthase but decrease in the production of photosynthesis-related proteins in Las-infected lemon plants compared to healthy plants. Furthermore, there was a 6% increase (P > 0.05) in K concentration in leaves of lemon plants upon Las infection, which support results from previous studies and might represent a common response pattern of citrus plants to Las infection. Interestingly, contrary to reports from prior studies, this study showed a general reduction in the production of defense-related pathogen-response proteins but a 128% increase in Zn concentration in lemon plants in response to Las infection. Taken together, this study sheds light on general and intra-species specific responses associated with the response of citrus plants to Las.  相似文献   

16.
‘Candidatus Liberibacter asiaticus’ (Las) is the primary causal agent of huanglongbing (HLB), the most devastating disease of citrus worldwide. There are three known insect vectors of the HLB-associated bacteria, and all are members of the Hemiptera: Diaphorina citri (Psyllidae), Trioza erytreae (Triozidae), and Cacopsylla (Psylla) citrisuga (Psyllidae). In this study, we found that another hemipteran, the striped mealybug Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae), was able to acquire and retain Las bacteria. The bacterial titers were positively correlated with the feeding acquisition time on Las-infected leaf discs, with a two-weeks feeding period resulting in Ct values ranging from 23.1 to 36.1 (8.24×107 to 1.07×104 Las cells per mealybug). We further discovered that the prophage/phage populations of Las in the mealybugs were different from those of Las in psyllids based on Las prophage-specific molecular markers: infected psyllids harbored the Las populations with prophage/phage FP1 and FP2, while infected mealybugs carried the Las populations with the iFP3 being the dominant prophage/phage. As in the psyllids, Las bacteria were shown to move through the insect gut wall to the salivary glands after being ingested by the mealybug based on a time-course quantitative polymerase chain reaction (qPCR) assay of the dissected digestive systems. However, Las populations transmitted by the mealybugs did not cause disease in host plants. This is the first evidence of genetic difference among Las populations harbored by different insect vectors and difference among Las populations with respect to whether or not they cause disease in host plants.  相似文献   

17.
Halorhodospira halophila, one of the most-xerophilic halophiles, inhabits biophysically stressful and energetically expensive, salt-saturated alkaline brines. Here, we report an additional stress factor that is biotic: a diminutive Candidate-Phyla-Radiation bacterium, that we named ‘Ca. Absconditicoccus praedator’ M39-6, which predates H. halophila M39-5, an obligately photosynthetic, anaerobic purple-sulfur bacterium. We cultivated this association (isolated from the hypersaline alkaline Lake Hotontyn Nur, Mongolia) and characterized their biology. ‘Ca. Absconditicoccus praedator’ is the first stably cultivated species from the candidate class-level lineage Gracilibacteria (order-level lineage Absconditabacterales). Its closed-and-curated genome lacks genes for the glycolytic, pentose phosphate- and Entner–Doudoroff pathways which would generate energy/reducing equivalents and produce central carbon currencies. Therefore, ‘Ca. Absconditicoccus praedator’ is dependent on host-derived building blocks for nucleic acid-, protein-, and peptidoglycan synthesis. It shares traits with (the uncultured) ‘Ca. Vampirococcus lugosii’, which is also of the Gracilibacteria lineage. These are obligate parasitic lifestyle, feeding on photosynthetic anoxygenic Gammaproteobacteria, and absorption of host cytoplasm. Commonalities in their genomic composition and structure suggest that the entire Absconditabacterales lineage consists of predatory species which act to cull the populations of their respective host bacteria. Cultivation of vampire : host associations can shed light on unresolved aspects of their metabolism and ecosystem dynamics at life-limiting extremes.  相似文献   

18.
19.
Oxidation of nitrite to nitrate is an important process in the global nitrogen cycle. Recent molecular biology-based studies have revealed that the widespread nitrite-oxidizing bacteria (NOB) belonging to the genus ‘Candidatus Nitrotoga’ may be highly important for the environment. However, the insufficient availability of pure Nitrotoga cultures has limited our understanding of their physiological and genomic characteristics. Here, we isolated the ‘Ca. Nitrotoga’ sp. strain AM1P, from a previously enriched Nitrotoga culture, using an improved isolation strategy. Although ‘Ca. Nitrotoga’ have been recognized as cold-adapted NOB, the strain AM1P had a slightly higher optimum growth temperature at 23°C. Strain AM1P showed a pH optimum of 8.3 and was not inhibited even at high nitrite concentrations (20 mM). We obtained the complete genome of the strain and compared the genome profile to five previously sequenced ‘Ca. Nitrotoga’ strains. Comparative genomics suggested that lactate dehydrogenase may be only encoded in the strain AM1P and closely related genomes. While the growth yield of AM1P did not change, we observed faster growth in the presence of lactate in comparison to purely chemolithoautotrophic growth. The characterization of the new strain AM1P sheds light on the physiological adaptation of this environmentally important, but understudied genus ‘Ca. Nitrotoga’.  相似文献   

20.
Phytoplasma infected acid lime plants in India develop characteristic symptoms like small chlorotic leaves, multiple sprouting and shortened internodes. Leaves drop prematurely and infected branches have distorted twigs resembling witches’ broom appearance which eventually show die-back symptoms. During its first report in 1999, witches’ broom disease identification was made on the basis of symptomatology and electron microscopy. However, molecular techniques have proved to be more accurate and reliable for phytoplasma detection than the conventional methods. During survey in the year 2010 six samples were collected from infected acid lime plants showing typical field symptoms from Vidarbha region of Maharastra. Initially, phytoplasma bodies were observed in phloem tissues of all six symptomatic samples under JEM 100S transmission electron microscope and all these six samples were subsequently screened using different set of phytoplasma specific universal primers by nested PCR, a widely recommended molecular technique for phytoplasma detection. In the present study P1/P7 “universal” phytoplasma-primer set was used for first round of PCR and amplified products were processed separately for nested PCR with three different nested primer pairs viz. R16F2n/R16R2, R16mF2/R16mR1 and fU5/rU3. The presence of phytoplasma was confirmed in all six suspected samples and one representative ~1.2 kb size amplicon was sequenced and deposited in GenBank as Candidatus Phytoplasma species AL-M (JQ808143). This is the first report of PCR based molecular detection of phytoplasma-induced witches’ broom disease of acid lime (WBDL) in India. Further molecular evaluation to determine the identity to the species level is in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号