首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Concurrent naive and memory CD8(+) T cell responses to an influenza A virus   总被引:3,自引:0,他引:3  
Memory Thy-1(+)CD8(+) T cells specific for the influenza A virus nucleoprotein (NP(366-374)) peptide were sorted after staining with the D(b)NP(366) tetramer, labeled with CFSE, and transferred into normal Thy-1.2(+) recipients. The donor D(b)NP(366)(+) T cells recovered 2 days later from the spleens of the Thy-1.2(+) hosts showed the CD62L(low)CD44(high)CD69(low) phenotype, characteristic of the population analyzed before transfer, and were present at frequencies equivalent to those detected previously in mice primed once by a single exposure to an influenza A virus. Analysis of CFSE-staining profiles established that resting tetramer(+) T cells divided slowly over the next 30 days, while the numbers in the spleen decreased about 3-fold. Intranasal infection shortly after cell transfer with a noncross-reactive influenza B virus induced some of the donor D(b)NP(366)(+) T cells to cycle, but there was no increase in the total number of transferred cells. By contrast, comparable challenge with an influenza A virus caused substantial clonal expansion, and loss of the CFSE label. Unexpectedly, the recruitment of naive Thy-1.2(+)CD8(+)D(b)NP(366)(+) host D(b)NP(366)(+) T cells following influenza A challenge was not obviously diminished by the presence of the memory Thy-1.1(+)CD8(+)D(b)NP(366)(+) donor D(b)NP(366)(+) set. Furthermore, the splenic response to an epitope (D(b)PA(224)) derived from the influenza acid polymerase (PA(224-233)) was significantly enhanced in the mice given the donor D(b)NP(366)(+) memory population. These experiments indicate that an apparent recall response may be comprised of both naive and memory CD8(+) T cells.  相似文献   

2.
Influenza A virus infection of C57BL/6 (B6) mice is characterized by prominent CD8(+) T cell responses to H2D(b) complexed with peptides from the viral nucleoprotein (NP(366), ASNENMETM) and acid polymerase (PA(224), SSLENFRAYV). An in vivo cytotoxicity assay that depends on the adoptive transfer of peptide-pulsed, syngeneic targets was used in this study to quantitate the cytotoxic potential of D(b)NP(366)- and D(b)PA(224)-specific acute and memory CD8(+) T cells following primary or secondary virus challenge. Both T cell populations displayed equivalent levels of in vivo effector function when comparable numbers were transferred into naive B6 hosts. Cytotoxic activity following primary infection clearly correlated with the frequency of tetramer-stained CD8(+) T cells. This relationship looked, however, to be less direct following secondary exposure, partly because the numbers of CD8(+)D(b)NP(366)(+) T cells were greatly in excess. However, calculating the in vivo E:T ratios indicated that in vivo lysis, like many other biological functions, is threshold dependent. Furthermore, the capacity to eliminate peptide-pulsed targets was independent of the differentiation state (i.e., primary or secondary effectors) and was comparable for the two T cell specificities that were analyzed. These experiments provide insights that may be of value for adoptive immunotherapy, where careful consideration of both the activation state and the number of effector cells is required.  相似文献   

3.
Because little is known about lymphocyte responses in the nasal mucosa, lymphocyte accumulation in the nasal mucosa, nasal-associated lymphoid tissue (NALT), and cervical lymph nodes (CLN) were determined after primary and heterosubtypic intranasal influenza challenge of mice. T cell accumulation peaked in the nasal mucosa on day 7, but peaked slightly earlier in the CLN (day 5) and later (day 10) in the NALT. Tetrameric staining of nasal mucosal cells revealed a peak accumulation of CD8 T cells specific for either the H-2D(b) influenza nucleoprotein epitope 366-374 (D(b)NP(366)) or the H-2D(b) polymerase 2 protein epitope 224-233 (D(b)PA(224)) at 7 days. By day 13, D(b)PA(224)-specific CD8 T cells were undetectable in the mucosa, whereas D(b)NP(366)-specific CD8 T cells persisted for at least 35 days in the mucosa and spleen. After heterosubtypic virus challenge, the accumulation of CD8 T cells in the nasal mucosa was quicker, more intense, and predominantly D(b)NP(366) specific relative to the primary inoculation. The kinetics and specificity of the CD8 T cell response were similar to those in the CLN, but the responses in the NALT and spleen were again slower and more protracted. These results indicate that similar to what was reported in the lung, D(b)NP(366)-specific CD8 T cells persist in the nasal mucosa after primary influenza infection and predominate in an intensified nasal mucosal response to heterosubtypic challenge. In addition, differences in the kinetics of the CD8 T cell responses in the CLN, NALT, and spleen suggest different roles of these lymphoid tissues in the mucosal response.  相似文献   

4.
The mechanisms underlying epitope selection and the potential impact of immunodominance hierarchies on peptide-based vaccines are not well understood. Recently, we have shown that two immunodominant MHC class I-restricted epitopes, NP(366-374)/D(b) (nucleoprotein (NP)) and PA(224-233)/D(b) (acidic polymerase (PA)), which drive the CD8(+) T cell response to influenza virus infection in C57BL/6 mice, are differentially expressed on infected cells. Whereas NP appears to be strongly expressed on all infected cells, PA appears to be strongly expressed on dendritic cells but only weakly expressed on nondendritic cells. Thus, the immune response to influenza virus may involve T cells specific for epitopes, such as PA, that are poorly expressed at the site of infection. To examine the consequences of differential Ag presentation on peptide vaccination, we compared the kinetics of the T cell response and influenza virus clearance in mice vaccinated with the NP or PA peptide. Vaccination with either the NP or PA peptide resulted in accelerated and enhanced Ag-specific T cell responses at the site of infection following influenza virus challenge. These T cells were fully functional in terms of their ability to produce IFN-gamma and TNF-alpha and to mediate cytolytic activity. Despite this enhancement of the Ag-specific T cell response, PA vaccination had a detrimental effect on the clearance of influenza virus compared with unvaccinated or NP-vaccinated mice. These data suggest that differential Ag presentation impacts the efficacy of T cell responses to specific epitopes and that this needs to be considered for the development of peptide-based vaccination strategies.  相似文献   

5.
Genetic mutation and reassortment of influenza virus gene segments, in particular those of hemagglutinin (HA) and neuraminidase (NA), that lead to antigenic drift and shift are the major strategies for influenza virus to escape preexisting immunity. The most recent example of such phenomena is the first pandemic of H1N1 influenza of the 21st century, which started in 2009. Cross-reactive antibodies raised against H1N1 viruses circulating before 1930 show protective activity against the 2009 pandemic virus. Cross-reactive T-cell responses can also contribute to protection, but in vivo support of this view is lacking. To explore the protection mechanisms in vivo, we primed mice with H1 and H3 influenza virus isolates and rechallenged them with a virus derived from the 2009 H1N1 A/CA/04/09 virus, named CA/E3/09. We found that priming with influenza viruses of both H1 and H3 homo- and heterosubtypes protected against lethal CA/E3/09 virus challenge. Convalescent-phase sera from these primed mice conferred no neutralization activity in vitro and no protection in vivo. However, T-cell depletion studies suggested that both CD4 and CD8 T cells contributed to the protection. Taken together, these results indicate that cross-reactive T cells established after initial priming with distally related viruses can be a vital component for prevention of disease and control of pandemic H1N1 influenza virus infection. Our results highlight the importance of establishing cross-reactive T-cell responses for protecting against existing or newly emerging pandemic influenza viruses.  相似文献   

6.
Respiratory challenge of H-2(b) mice with an H3N2 influenza A virus causes an acute, transient pneumonitis characterized by the massive infiltration of CD8(+) T lymphocytes. The inflammatory process monitored by quantitative analysis of lymphocyte populations recovered by bronchoalveolar lavage is greatly enhanced by prior exposure to an H1N1 virus, with the recall of cross-reactive CD8(+)-T-cell memory leading to more rapid clearance of the infection from the lungs. The predominant epitope recognized by the influenza virus-specific CD8(+) set has long been thought to be a nucleoprotein (NP(366-374)) presented by H-2D(b) (D(b)NP(366)). This continues to be true for the secondary H3N2-->H1N1 challenge but can no longer be considered the case for the primary response to either virus. Quantitative analysis based on intracellular staining for gamma interferon has shown that the polymerase 2 protein (PA(224-233)) provides a previously undetected epitope (D(b)PA(224)) that is at least as prominent as D(b)NP(366) during the first 10 days following primary exposure to either the H3N2 or H1N1 virus. The response to D(b)NP(366) seems to continue for longer, even when infectious virus can no longer be detected, but there is no obvious difference in the prevalence of memory T cells specific for D(b)NP(366) and D(b)PA(224). The generalization that the magnitude of the functional memory T-cell pool is a direct consequence of the clonal burst size during the primary response may no longer be useful. Previous CD8(+)-T-cell immunodominance heirarchies defined largely by cytotoxic T-lymphocyte assays may need to be revised.  相似文献   

7.
Handel A  Antia R 《Journal of virology》2008,82(16):7768-7772
Understanding immunodominance, the phenomenon of epitope-specific T cells expanding in an often distinctly hierarchical fashion, is important for the design of T-cell-based intervention strategies. Several recent studies have investigated immunodominance of H-2D(b)-restricted CD8(+) T cells specific for the nucleoprotein NP366 and acid polymerase PA224 epitopes during influenza A virus infection of C57BL/6 mice. CD8(+) T cells specific for these two epitopes are codominant during primary infection; NP366 dominates during secondary infection. While a number of explanations for this observation have been proposed, none of them can fully account for all the observed data. In this article, we use a simple mathematical model to explain the seemingly inconsistent data. We show that the dynamic interactions between CD8(+) T cells and antigen presentation lead to a situation where CD8(+) T cells are limiting during the initial response whereas antigen is limiting in the secondary response. This "numbers game" between antigen and CD8(+) T cells can reproduce the observed immunodominance of the NP336- and PA224-specific CD8(+) T cells, thereby explaining the reported experimental data.  相似文献   

8.
The H-2Db-restricted CD8 T cell immune response to influenza A is directed at two well-described epitopes, nucleoprotein 366 (NP366) and acid polymerase 224 (PA224). The responses to the two epitopes are very different. The epitope NP366-specific response is dominated by TCR clonotypes that are public (shared by most mice), whereas the epitope PA224-specific response is private (unique within each infected animal). In addition to being public, the NP366-specific response is dominated by a few clonotypes, when T cell clonotypes expressing the Vbeta8.3 element are analyzed. Herein, we show that this response is similarly public when the NP366+Vbeta4+ CD8 T cell response is analyzed. Furthermore, to determine whether these features resulted in differences in total TCR diversity in the NP366+ and PA224+ responses, we quantified the number of different CD8 T clonotypes responding to each epitope. We calculated that 50-550 clonotypes recognized each epitope in individual mice. Thus, although the character of the response to the two epitopes appeared to be different (private and diverse vs public and dominated by a few clonotypes), similar numbers of precursor cells responded to both epitopes and this number was of similar magnitude to that previously reported for other viral CD8 T cell epitopes. Therefore, even in CD8 T cell responses that appear to be oligoclonotypic, the total response is highly diverse.  相似文献   

9.
Virus-immune CD8(+) TCR repertoires specific for particular peptide-MHC class I complexes may be substantially shared between (public), or unique to, individuals (private). Because public TCRs can show reduced TdT-mediated N-region additions, we analyzed how TdT shapes the heavily public (to D(b)NP(366)) and essentially private (to D(b)PA(224)) CTL repertoires generated following influenza A virus infection of C57BL/6 (B6, H2(b)) mice. The D(b)NP(366)-specific CTL response was virtually clonal in TdT(-/-) B6 animals, with one of the three public clonotypes prominent in the wild-type (wt) response consistently dominating the TdT(-/-) set. Furthermore, this massive narrowing of TCR selection for D(b)NP(366) reduced the magnitude of D(b)NP(366)-specific CTL response in the virus-infected lung. Conversely, the D(b)PA(224)-specific responses remained comparable in both magnitude and TCR diversity within individual TdT(-/-) and wt mice. However, the extent of TCR diversity across the total population was significantly reduced, with the consequence that the normally private wt D(b)PA(224)-specific repertoire was now substantially public across the TdT(-/-) mouse population. The key finding is thus that the role of TdT in ensuring enhanced diversity and the selection of private TCR repertoires promotes optimal CD8(+) T cell immunity, both within individuals and across the species as a whole.  相似文献   

10.
Influenza A virus-specific CD8+ T cell responses in H2(b) mice are characterized by reproducible hierarchies. Compensation by the D(b)PB1-F2(62) epitope is apparent following infection with a variant H3N2 virus engineered to disrupt the prominent D(b)NP(366) and D(b)PA(224) epitopes (a double knockout or DKO). Analysis with a "triple" knockout (TKO) virus, which also compromises D(b)PB1-F2(62), did not reveal further compensation to the known residual, minor, and predicted epitopes. However, infection with this deletion mutant apparently switched protective immunity to an alternative Ab-mediated pathway. As expected, TKO virus clearance was significantly delayed in Ab-deficient MHC class II(-/-) and Ig(-/-) mice, which were much more susceptible following primary, intranasal infection with the TKO, but not DKO, virus. CD8+ T cell compensation was detected in DKO, but not TKO, infection of Ig-deficient mice, suggestive of cooperation among CD8+ T cell responses. However, after priming with a TKO H1N1 mutant, MHC II(-/-) mice survived secondary intranasal exposure to the comparable H3N2 TKO virus. Such prime/challenge experiments with the DKO and TKO viruses allowed the emergence of two previously unknown epitopes. The contrast between the absence of compensatory effect following primary exposure and the substantial clonal expansion after secondary challenge suggests that the key factor limiting the visibility of these "hidden" epitopes may be very low naive T cell precursor frequencies. Overall, these findings suggest that vaccine approaches using virus vectors to deliver an Ag may be optimized by disrupting key peptides in the normal CD8+ T cell response associated with common HLA types.  相似文献   

11.
Influenza infection stimulates protective host immune responses but paradoxically enhances lung indoleamine 2,3 dioxygenase (IDO) activity, an enzyme that suppresses helper/effector T cells and activates Foxp3-lineage regulatory CD4 T cells (Tregs). Influenza A/PR/8/34 (PR8) infection stimulated rapid elevation of IDO activity in lungs and lung-draining mediastinal lymph nodes (msLNs). Mice lacking intact IDO1 genes (IDO1-KO mice) exhibited significantly lower morbidity after sub-lethal PR8 infection, and genetic or pharmacologic IDO ablation led to much faster recovery after virus clearance. More robust influenza-specific effector CD8 T cell responses manifested in lungs of PR8-infected IDO1-KO mice, though virus clearance rates were unaffected by IDO ablation. Similar outcomes manifested in mice infected with a less virulent influenza A strain (X31). IDO induction in X31-infected lungs was dependent on IFN type II (IFNγ) signaling and was restricted to non-hematopoietic cells, while redundant IFN type 1 or type II signaling induced IDO exclusively in hematopoietic cells from msLNs. Memory T cells generated in X31-primed IDO1-KO mice protected mice from subsequent challenge with lethal doses of PR8 (100×LD50). However recall T cell responses were less robust in lung interstitial tissues, and classic dominance of TCR Vβ8.3 chain usage amongst memory CD8+ T cells specific for influenza nucleoprotein (NP366) did not manifest in IDO1-KO mice. Thus, influenza induced IDO activity in lungs enhanced morbidity, slowed recovery, restrained effector T cell responses in lungs and shaped memory T cell repertoire generation, but did not attenuate virus clearance during primary influenza A infection.  相似文献   

12.
In this report, we demonstrate that CD28(-/-) mice are severely impaired in the initial expansion of D(b)/NP366-374-specific CD8 T cells in response to influenza virus infection, whereas 4-1BB ligand (4-1BBL)(-/-) mice show no defect in primary T cell expansion to influenza virus. In contrast, 4-1BBL(-/-) mice show a decrease in D(b)/NP366-374-specific T cells late in the primary response. Upon secondary challenge with influenza virus, 4-1BBL(-/-) mice show a decrease in the number of D(b)/NP366-374-specific T cells compared to wild-type mice such that the level of the CD8 T cell expansion during the in vivo secondary response is reduced to the level of a primary response, with concomitant reduction of CTL effector function. In contrast, Ab responses, as well as secondary CD4 T cell responses, to influenza are unaffected by 4-1BBL deficiency. Thus, CD28 is critical for initial T cell expansion, whereas 4-1BB/4-1BBL signaling affects T cell numbers much later in the response and is essential for the survival and/or responsiveness of the memory CD8 T cell pool.  相似文献   

13.
Cytotoxic T lymphocyte (CTL) responses against influenza A virus in C57BL/6 mice are dominated by a small number of viral peptides among many that are capable of binding to major histocompatibility complex (MHC) class I molecules. The basis of this limited immune recognition is unknown. Here, we present X-ray structures of MHC class I molecules in complex with two immunodominant epitopes (PA(224-233)/D(b) and PB1(703-711)/K(b)) and one non-immunogenic epitope (HA(468-477)/D(b)) of the influenza A virus. The immunodominant peptides are each characterized by a bulge at the C terminus, lifting P6 and P7 residues out of the MHC groove, presenting featured structural elements to T-cell receptors (TCRs). Immune recognition of PA(224-233)/D(b) will focus largely on the exposed P7 arginine residue. In contrast, the non-immunogenic HA(468-477) peptide lacks prominent features in this C-terminal bulge. In the K(b)-bound PB1(703-711) epitope, the bulge results from a non-canonical binding motif, such that the mode of presentation of this peptide strongly resembles that of D(b)-bound peptides. Given that PA(224-233)/D(b), PB1(703-711)/K(b) and the previously defined NP(366-374)/D(b) epitopes dominate the primary response to influenza A virus in C57BL/6 mice, our findings indicate that residues of the C-terminal bulge are important in selection of the immunodominant CTL repertoire.  相似文献   

14.
Earlier studies of influenza-specific CD8(+) T cell immunodominance hierarchies indicated that expression of the H2K(k) MHC class I allele greatly diminishes responses to the H2D(b)-restriced D(b)PA(224) epitope (acid polymerase, residues 224-233 complexed with H2D(b)). The results suggested that the presence of H2K(k) during thymic differentiation led to the deletion of a prominent Vβ7(+) subset of D(b)PA(224)-specific TCRs. The more recent definition of D(b)PA(224)-specific TCR CDR3β repertoires in H2(b) mice provides a new baseline for looking again at this possible H2K(k) effect on D(b)PA(224)-specific TCR selection. We found that immune responses to several H2D(b)- and H2K(b)-restricted influenza epitopes were indeed diminished in H2(bxk) F(1) versus homozygous mice. In the case of D(b)PA(224), lower numbers of naive precursors were part of the explanation, though a similar decrease in those specific for the D(b)NP(366) epitope did not affect response magnitude. Changes in precursor frequency were not associated with any major loss of TCR diversity and could not fully account for the diminished D(b)PA(224)-specific response. Further functional and phenotypic characterization of influenza-specific CD8(+) T cells suggested that the expansion and differentiation of the D(b)PA(224)-specific set is impaired in the H2(bxk) F(1) environment. Thus, the D(b)PA(224) response in H2(bxk) F(1) mice is modulated by factors that affect the generation of naive epitope-specific precursors and the expansion and differentiation of these T cells during infection, rather than clonal deletion of a prominent Vβ7(+) subset. Such findings illustrate the difficulties of predicting and defining the effects of MHC class I diversification on epitope-specific responses.  相似文献   

15.
Influenza A virus pandemics and emerging anti-viral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and lung inflammation. We investigated whether the primary enzymatic source of inflammatory cell ROS (reactive oxygen species), Nox2-containing NADPH oxidase, is a novel pharmacological target against the lung inflammation caused by influenza A viruses. Male WT (C57BL/6) and Nox2(-/y) mice were infected intranasally with low pathogenicity (X-31, H3N2) or higher pathogenicity (PR8, H1N1) influenza A virus. Viral titer, airways inflammation, superoxide and peroxynitrite production, lung histopathology, pro-inflammatory (MCP-1) and antiviral (IL-1β) cytokines/chemokines, CD8(+) T cell effector function and alveolar epithelial cell apoptosis were assessed. Infection of Nox2(-/y) mice with X-31 virus resulted in a significant reduction in viral titers, BALF macrophages, peri-bronchial inflammation, BALF inflammatory cell superoxide and lung tissue peroxynitrite production, MCP-1 levels and alveolar epithelial cell apoptosis when compared to WT control mice. Lung levels of IL-1β were ~3-fold higher in Nox2(-/y) mice. The numbers of influenza-specific CD8+D(b)NP(366)+ and D(b)PA(224)+ T cells in the BALF and spleen were comparable in WT and Nox2(-/y) mice. In vivo administration of the Nox2 inhibitor apocynin significantly suppressed viral titer, airways inflammation and inflammatory cell superoxide production following infection with X-31 or PR8. In conclusion, these findings indicate that Nox2 inhibitors have therapeutic potential for control of lung inflammation and damage in an influenza strain-independent manner.  相似文献   

16.
The emergence of the novel reassortant A(H1N1)-2009 influenza virus highlighted the threat to the global population posed by an influenza pandemic. Pre-existing CD8(+) T-cell immunity targeting conserved epitopes provides immune protection against newly emerging strains of influenza virus, when minimal antibody immunity exists. However, the occurrence of mutations within T-cell antigenic peptides that enable the virus to evade T-cell recognition constitutes a substantial issue for virus control and vaccine design. Recent evidence suggests that it might be feasible to elicit CD8(+) T-cell memory pools to common virus mutants by pre-emptive vaccination. However, there is a need for a greater understanding of CD8(+) T-cell immunity towards commonly emerging mutants. The present analysis focuses on novel and immunodominant, although of low pMHC-I avidity, CD8(+) T-cell responses directed at the mutant influenza D(b)NP(366) epitope, D(b)NPM6A, following different routes of infection. We used a C57BL/6J model of influenza to dissect the effectiveness of the natural intranasal (i.n.) versus intraperitoneal (i.p.) priming for generating functional CD8(+) T cells towards the D(b)NPM6A epitope. In contrast to comparable CD8(+) T-cell responses directed at the wild-type epitopes, D(b)NP(366) and D(b)PA(224), we found that the priming route greatly affected the numbers, cytokine profiles and TCR repertoire of the responding CD8(+) T cells directed at the D(b)NPM6A viral mutant. As the magnitude, polyfunctionality, and T-cell repertoire diversity are potential determinants of the protective efficacy of CD8(+) T-cell responses, our data have implications for the development of vaccines to combat virus mutants.  相似文献   

17.
Immunodominance is a central feature of CD8+ T cell (TCD8+) responses to pathogens, transplants, and tumors. Determinants occupy a stable position in an immunodominance hierarchy (alpha-, beta-, etc.) defined by the frequencies of responding TCD8+. In this paper, we study the mechanistic basis for place-swapping between alpha- (acid polymerase (PA)(224-233)) and beta-determinants (nuclear protein 366-374) in primary vs secondary anti-influenza A virus (IAV) responses in mice. This phenomena was recently correlated with the inability of IAV-infected nondendritic cells (DCs) to generate PA(224-233), and it was proposed that secondary TCD8+ are principally activated by IAV-infected epithelial cells, while primary TCD8+ are activated by IAV-infected DCs. In this study, we show that the inability of non-DCs to generate PA(224-232) is relative rather than absolute, and that the preferential use of cross-priming in secondary anti-IAV responses can also account for the revised hierarchy. We further show that immunodomination of PA(224-233)-specific TCD8+ by nucleoprotein 366-374-specific TCD8+ plays a critical role in the phenomena, and that this is unlikely to be mediated by TCD8+ lysis of APCs or other cells.  相似文献   

18.
The development and resolution phases of influenza-specific CD8(+) T cell cytokine responses to epitopes derived from the viral nucleoprotein (D(b)NP(366)) and acid polymerase (D(b)PA(224)) were characterized in C57BL/6J mice for a range of anatomical compartments in the virus-infected lung and lymphoid tissue. Lymphocyte numbers were measured by IFN-gamma expression following stimulation with peptide, while the quality of the response was determined by the intensity of staining and the distribution of CD8(+) T cells producing TNF-alpha and IL-2. Both the levels of expression and the prevalence of TNF-alpha(+) and IL-2(+) cells reflected the likely Ag load, with clear differences being identified for populations from the alveolar space vs the lung parenchyma. Irrespective of the site or time of T cell recovery, IL-2(+) cells were consistently found to be a subset of the TNF-alpha(+) population which was, in turn, contained within the IFN-gamma(+) set. The capacity to produce IL-2 may thus be considered to reflect maximum functional differentiation. The hierarchy in cytokine expression throughout the acute phase of the primary and secondary response tended to be D(b)PA(224) > D(b)NP(366). Both elution studies with the cognate tetramers and experiments measuring CD8 beta coreceptor dependence for peptide stimulation demonstrated the same D(b)PA(224) > D(b)NP(366) profile for TCR avidity. Overall, the quality of any virus-specific CD8(+) T cell response appears variously determined by the avidity of the TCR-pMHC interaction, the duration and intensity of Ag stimulation characteristic of the particular tissue environment, and the availability of CD4(+) T help.  相似文献   

19.

Background

The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model.

Methodology/Principal Findings

For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus - a safe poxviral live vector – resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-γ-secreting (IFN-γ) CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus.

Conclusions/Significance

The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza.  相似文献   

20.
Human CD4 T cell recall responses to influenza virus are strongly biased towards Type 1 cytokines, producing IFNγ, IL-2 and TNFα. We have now examined the effector phenotypes of CD4 T cells in more detail, particularly focusing on differences between recent versus long-term, multiply-boosted responses. Peptides spanning the proteome of temporally distinct influenza viruses were distributed into pools enriched for cross-reactivity to different influenza strains, and used to stimulate antigen-specific CD4 T cells representing recent or long-term memory. In the general population, peptides unique to the long-circulating influenza A/New Caledonia/20/99 (H1N1) induced Th1-like responses biased toward the expression of IFNγ+TNFα+ CD4 T cells. In contrast, peptide pools enriched for non-cross-reactive peptides of the pandemic influenza A/California/04/09 (H1N1) induced more IFNγIL-2+TNFα+ T cells, similar to the IFNγIL-2+ non-polarized, primed precursor T cells (Thpp) that are a predominant response to protein vaccination. These results were confirmed in a second study that compared samples taken before the 2009 pandemic to samples taken one month after PCR-confirmed A/California/04/09 infection. There were striking increases in influenza-specific TNFα+, IFNγ+, and IL-2+ cells in the post-infection samples. Importantly, peptides enriched for non-cross-reactive A/California/04/09 specificities induced a higher proportion of Thpp-like IFNγIL-2+TNFα+ CD4 T cells than peptide pools cross-reactive with previous influenza strains, which induced more Th1 (IFNγ+TNFα+) responses. These IFNγIL-2+TNFα+ CD4 T cells may be an important target population for vaccination regimens, as these cells are induced upon infection, may have high proliferative potential, and may play a role in providing future effector cells during subsequent infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号