首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current ecological theory predicts an allometric relation between the number of species with restricted range size (endemics) and area (the endemics–area relation EAR), a pattern similar to the common species–area relation (SAR). Using SARs and EARs we can estimate species loss after habitat loss. A comparison of the predictive power of both approaches (using a patch occupancy model and data from European butterflies) revealed that the EAR approach is less reliable than the SAR. Contrary to current theory it appeared that EARs are relations in their own right that describe spatial distributions of endemic species. They do not simply follow from the underlying SAR. The implications of these results for the applicability of SARs and EARs in biodiversity forecasting are discussed.  相似文献   

2.
3.
JM Kneitel 《PloS one》2012,7(7):e41809
Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure.  相似文献   

4.
S. B. Jones 《Brittonia》1967,19(2):161-164
Vernonia georgiana Bartlett was demonstrated to be of hybrid origin by means of hybridization experiments and comparisons of the artificial F1 hybrids with herbarium specimens ofV. georgiana. The two parental species areV. angustifolia Michx. andV. acaulis (Walt.) Gleason.  相似文献   

5.
In systematics, the importance of a species’ name is obvious and very considerable — it may even affect the names of other taxa (genera and families). Here, I argue that in some specific circumstances the name of a species may also indirectly play some role in the public understanding of the theory of evolution and creationism — or at least, has the potential to play such a role.  相似文献   

6.
Although the predatory and competitive impacts of biological invasions are well documented, facilitation of native species by non-indigenous species is frequently overlooked. A search through recent ecological literature found that facilitative interactions between invasive and native species occur in a wide range of habitats, can have cascading effects across trophic levels, can re-structure communities, and can lead to evolutionary changes. These are critical findings that, until now, have been mostly absent from analyses of ecological impacts of biological invasions. Here I present evidence for several mechanisms that exemplify how exotic species can facilitate native species. These mechanisms include habitat modification, trophic subsidy, pollination, competitive release, and predatory release. Habitat modification is the most frequently documented mechanism, reflecting the drastic changes generated by the invasion of functionally novel habitat engineers. Further, I predict that facilitative impacts on native species will be most likely when invasive species provide a limiting resource, increase habitat complexity, functionally replace a native species, or ameliorate predation or competition. Finally, three types of facilitation (novel, substitutive, and indirect) define why exotic species can lead to facilitation of native species. It is evident that understanding biological invasions at the community and ecosystem levels will be more accurate if we integrate facilitative interactions into future ecological research. Since facilitative impacts of biological invasions can occur with native endangered species, and can have wide-ranging impacts, these results also have important implications for management, eradication, and restoration.Contribution Number 2293, Bodega Marine Laboratory, University of California at Davis.  相似文献   

7.
Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.  相似文献   

8.
Two species of crayfish were tested in the laboratory to evaluate the hypothesis that successful invaders use a broader range of chemical information than do displaced native species. The invasive species Orconectes rusticus reduced responses to food odors just as strongly when heterospecific (O. propinquus, O. virilis) alarm odors were introduced with food odors as they did when conspecific alarm odors were introduced at the same time as food odors. Individuals of the displaced native species, O. propinquus, did not reduce feeding responses as strongly when O. virilis alarm odor was introduced as with conspecific alarm odor or O. rusticus alarm odor. These results are consistent with the hypothesis that successful invaders use a wider range of information about their environment than do displaced native species.  相似文献   

9.
Evolution and life phenomena can be understood as results of history, i.e., as outcomes of cohabitation and collective memory of populations of autonomous entities (individuals) across many generations and vast extent of time. Hence, evolution of distinct lineages of life can be considered as isomorphic with that of cultures. I argue here that cultures and culture-like systems – human culture, natural languages, and life forms – always draw from history, memory, experience, internal dynamics, etc., transforming themselves creatively into new patterns, never foreseen before. This is possible thanks to the fact that all forms of life are descendants of life. Ontogeny and speciation in various lineages draw from continuous re-interpretation of conservative genetic/generic “texts”, as well as from changes of the interpretative process itself. The result is continuous appearances of new lineages-cultures and/or communities-cultures, in a semiotic process of re-interpretation and inventing new ways of living. The topic is developed here on the backgrounds of ideas presented by R. A. Rappaport in “Ritual and religion in the making of humanity” and J. Flegr in “Frozen evolution”.  相似文献   

10.
Species abundance distributions (SAD) are probably ecology’s most well-known empirical pattern, and over the last decades many models have been proposed to explain their shape. There is no consensus over which model is correct, because the degree to which different processes can be discerned from SAD patterns has not yet been rigorously quantified. We present a power calculation to quantify our ability to detect deviations from neutrality using species abundance data. We study non-neutral stochastic community models, and show that the presence of non-neutral processes is detectable if sample size is large enough and/or the amplitude of the effect is strong enough. Our framework can be used for any candidate community model that can be simulated on a computer, and determines both the sampling effort required to distinguish between alternative processes, and a range for the strength of non-neutral processes in communities whose patterns are statistically consistent with neutral theory. We find that even data sets of the scale of the 50 Ha forest plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect deviations from neutrality caused by competitive interactions alone, though the presence of multiple non-neutral processes with contrasting effects on abundance distributions may be detectable.  相似文献   

11.
12.
13.
Although species play a number of unique and necessary roles in biology, none are more important than as the elements of phylogeny, nomenclature, and biodiversity study. Species are not divisible into any smaller units among which shared derived characters can be recognized with fidelity. Biodiversity inventory, assessment, and conservation are dependent upon a uniformly applicable species concept. Species are the fundamental units in formal Linnaean classification and zoological nomenclature. The Biological Species Concept, long given nominal support by most zoologists, forced an essentialy taxonomic problem (what are species?) into a population genetics framework (why are there species?). Early efforts at a phylogenetic species concept focused on correcting problems in the Biological Species Concept associated with ancestral populations, then applying phylogenetic logic to species themselves. Subsequently, Eldredge and Cracraft, and Nelson and Platnick, each proposed essentially identical and truly phylogenetic species concepts that permitted the rigorous recognition of species prior to and for the purposes of phylogenetic analysis, yet maintained the integrity of the Phylogenetic Species Concept outside of cladistic analysis. Such phylogenetic elements have many benefits, including giving to biology a unit species concept applicable across all kinds of living things including sexual and asexual forms. This is possible because the Phylogenetic Species Concept is based on patterns of character distributions and is therefore consistent with the full range of possible evolutionary processes that contribute to species formation, including both biotic and abiotic (even random) factors.  相似文献   

14.
While the isolated responses of marine phytoplankton to climate warming and to ocean acidification have been studied intensively, studies on the combined effect of both aspects of Global Change are still scarce. Therefore, we performed a mesocosm experiment with a factorial combination of temperature (9 and 15°C) and pCO2 (means: 439 ppm and 1040 ppm) with a natural autumn plankton community from the western Baltic Sea. Temporal trajectories of total biomass and of the biomass of the most important higher taxa followed similar patterns in all treatments. When averaging over the entire time course, phytoplankton biomass decreased with warming and increased with CO2 under warm conditions. The contribution of the two dominant higher phytoplankton taxa (diatoms and cryptophytes) and of the 4 most important species (3 diatoms, 1 cryptophyte) did not respond to the experimental treatments. Taxonomic composition of phytoplankton showed only responses at the level of subdominant and rare species. Phytoplankton cell sizes increased with CO2 addition and decreased with warming. Both effects were stronger for larger species. Warming effects were stronger than CO2 effects and tended to counteract each other. Phytoplankton communities without calcifying species and exposed to short-term variation of CO2 seem to be rather resistant to ocean acidification.  相似文献   

15.
Positive Interactions of Nonindigenous Species: Invasional Meltdown?   总被引:10,自引:0,他引:10  
Study of interactions between pairs or larger groups of nonindigenous species has been subordinated in the literature to study of interactions between nonindigenous and native species. To the extent that interactions among introduced species are depicted at all, the emphasis has been on negative interactions, primarily resource competition and interference. However, a literature search reveals that introduced species frequently interact with one another and that facilitative interactions are at least as common as detrimental ones. The population significance of these interactions has rarely been determined, but a great variety of types of direct and indirect interactions among individuals of different nonindigenous species is observed, and many are plausibly believed to have consequences at the population level. In particular, mutualisms between plants and the animals that disperse and/or pollinate them and modification of habitat by both animals and plants seem common and often important in facilitating invasions. There is little evidence that interference among introduced species at levels currently observed significantly impedes further invasions, and synergistic interactions among invaders may well lead to accelerated impacts on native ecosystems – an invasional meltdown process.  相似文献   

16.
17.
Two new species of Podogaster Brullé, Podogaster brunneus n. sp. and Podogaster lagartensis n. sp., are described. The material was collected with Malaise traps operated for a year in the Ría Lagartos Biosphere Reserve, a dry tropical area of Southeast Mexico. Podogaster rosteri Gauld & Bradshaw is synonymized with Podogaster mexicanus (Cresson). A key to the Mexican species is also provided.  相似文献   

18.
19.
Asexual Evolution: Can Species Exist without Sex?   总被引:3,自引:0,他引:3  
Hillis DM 《Current biology : CB》2007,17(14):R543-R544
Most explanations for the existence of species involve a role for sex. A new study of a group of asexual rotifers supports the idea that selection for a common ecological niche can produce a pattern that mimics sexual species, even in the absence of sex.  相似文献   

20.
Monogamy is a relatively rare social system in mammals, occurring only in about 3% of mammalian species. Monogamous species are characterized by the formation of pair‐bonds, biparental care, and a very low level of sexual dimorphism. Whereas in most polygynous species males engage in more rough‐and‐tumble play than females, we predicted that males and females of monogamous species would have similar, or monomorphic, play behavior. In this study, we focused on two monogamous species: coppery titi monkeys (Callicebus cupreus) and prairie voles (Microtus ochrogaster). We documented the development of play behavior in both species, and quantified different types of play behavior. We did not find any sex differences in either species in the frequencies and types of play. However, we did find sex differences in the choice of play partner in titi monkeys: female offspring spent a higher proportion of time playing with their father, while male offspring played equally with their mother and father. It is possible that rough‐and‐tumble play behavior is monomorphic in many monogamous mammals, perhaps reflecting differences from polygynous species in the effects of exposure to early androgens or in the estrogen receptor distribution. However, more subtle differences in monomorphic play behavior, such as choice of partner, may still exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号