共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
染色质重塑复合物相关基因在癌症中频繁突变,这种现象逐渐引起研究者的重视。然而,染色质重塑活动如何引起癌症发生,对此机理研究甚少。ARID1A是SWl/SNF(BRG1相关因子)染色质重塑复合物中的一个亚基,具有DNA结合活性,可以与富含AT的DNA序列特异性结合。近来基因组测序发现,ARID1A在卵巢癌、肝癌、胃癌、乳腺癌等肿瘤中频繁发生突变,这些突变导致ARID1A在肿瘤中表达降低,表明ARID1A是个潜在的抑癌基因。该文将针对ARID1A在各种癌症中的缺失及失活机制、ARID1A的生物学功能和潜在抑癌机理以及与,临床预后之间关系等方面做一综述,以期为肿瘤诊断、治疗提供新思路。 相似文献
3.
4.
5.
Loginov V. I. Malyukova A. V. Seryogin Y. A. Hodyrev D. S. Kazubskaya T. P. Ermilova V. D. Garkavtseva R. F. Kisselev L. L. Zabarovsky E. R. Braga E. A. 《Molecular Biology》2004,38(4):549-560
The methylation of the promoter CpG island of the RASSF1A tumor suppressor gene in primary tumors of 172 Muscovites with renal cell carcinoma (RCC), breast cancer (BC), or ovarian epithelial tumors (OET) was assayed by means of methylation-specific PCR (MSP) and PCR-based methylation-sensitive restriction enzyme analysis (MSRA). The MSP, MSRA, and previous bisulfite sequencing data correlated significantly with each other (P 10–6 for Spearman's rank correlation coefficients). By MSP and MSRA, the respective methylation frequencies of the RASSF1A promoter were 86% (25/29) and 94% (50/53) in RCC, 64% (18/28) and 78% (32/41) in BC, and 59% (17/29) and 73% (33/45) in OET. Methylation-sensitive restriction enzymes (HpaII, HhaI, Bsh1236I, AciI) increased the analysis sensitivity and made it possible to establish the methylation status for 18 CpG dinucleotides of the RASSF1A promoter region. With the MSRA data, the density of methylation of the CpG island was estimated at 72% in RCC, 63% in BC, and 58% in OET (the product of the number of CpG dinucleotides and the number of specimens with RASSF1A methylation was taken as 100%). Methylation of the RASSF1A promoter region was observed in 11–35% of the DNA specimens from the histologically normal tissue adjacent to the tumor but not in the peripheral blood DNA of 15 healthy subjects. The RASSF1A methylation frequency showed no significant correlation with the stage, grade, and metastatic potential of the tumor. On the other hand, epigenetic modification of RASSF1A was considerably more frequent than hemizygous or homozygous deletions from the RASSF1A region. These results testify that methylation of the RASSF1A promoter region takes place early in carcinogenesis and is a major mechanism inactivating RASSF1A in epithelial tumors. 相似文献
6.
7.
The Cysteine Dioxygenase Homologue from Pseudomonas aeruginosa Is a 3-Mercaptopropionate Dioxygenase
Egor P. Tchesnokov Matthias Fellner Eleni Siakkou Torsten Kleffmann Lois W. Martin Sekotilani Aloi Iain L. Lamont Sigurd M. Wilbanks Guy N. L. Jameson 《The Journal of biological chemistry》2015,290(40):24424-24437
Thiol dioxygenation is the initial oxidation step that commits a thiol to important catabolic or biosynthetic pathways. The reaction is catalyzed by a family of specific non-heme mononuclear iron proteins each of which is reported to react efficiently with only one substrate. This family of enzymes includes cysteine dioxygenase, cysteamine dioxygenase, mercaptosuccinate dioxygenase, and 3-mercaptopropionate dioxygenase. Using sequence alignment to infer cysteine dioxygenase activity, a cysteine dioxygenase homologue from Pseudomonas aeruginosa (p3MDO) has been identified. Mass spectrometry of P. aeruginosa under standard growth conditions showed that p3MDO is expressed in low levels, suggesting that this metabolic pathway is available to the organism. Purified recombinant p3MDO is able to oxidize both cysteine and 3-mercaptopropionic acid in vitro, with a marked preference for 3-mercaptopropionic acid. We therefore describe this enzyme as a 3-mercaptopropionate dioxygenase. Mössbauer spectroscopy suggests that substrate binding to the ferrous iron is through the thiol but indicates that each substrate could adopt different coordination geometries. Crystallographic comparison with mammalian cysteine dioxygenase shows that the overall active site geometry is conserved but suggests that the different substrate specificity can be related to replacement of an arginine by a glutamine in the active site. 相似文献
8.
Vitaly I. Loginov Alexey A. Dmitriev Vera N. Senchenko Irina V. Pronina Dmitry S. Khodyrev Anna V. Kudryavtseva George S. Krasnov Ganna V. Gerashchenko Larisa I. Chashchina Tatiana P. Kazubskaya Tatiana T. Kondratieva Michael I. Lerman Debora Angeloni Eleonora A. Braga Vladimir I. Kashuba 《PloS one》2015,10(5)
The SEMA3B gene is located in the 3p21.3 LUCA region, which is frequently affected in different types of cancer. The objective of our study was to expand our knowledge of the SEMA3B gene as a tumor suppressor and the mechanisms of its inactivation. In this study, several experimental approaches were used: tumor growth analyses and apoptosis assays in vitro and in SCID mice, expression and methylation assays and other. With the use of the small cell lung cancer cell line U2020 we confirmed the function of SEMA3B as a tumor suppressor, and showed that the suppression can be realized through the induction of apoptosis and, possibly, associated with the inhibition of angiogenesis. In addition, for the first time, high methylation frequencies have been observed in both intronic (32-39%) and promoter (44-52%) CpG-islands in 38 non-small cell lung carcinomas, including 16 squamous cell carcinomas (SCC) and 22 adenocarcinomas (ADC), and in 83 clear cell renal cell carcinomas (ccRCC). Correlations between the methylation frequencies of the promoter and the intronic CpG-islands of SEMA3B with tumor stage and grade have been revealed for SCC, ADC and ccRCC. The association between the decrease of the SEMA3B mRNA level and hypermethylation of the promoter and the intronic CpG-islands has been estimated in renal primary tumors (P < 0.01). Using qPCR, we observed on the average 10- and 14-fold decrease of the SEMA3B mRNA level in SCC and ADC, respectively, and a 4-fold decrease in ccRCC. The frequency of this effect was high in both lung (92-95%) and renal (84%) tumor samples. Moreover, we showed a clear difference (P < 0.05) of the SEMA3B relative mRNA levels in ADC with and without lymph node metastases. We conclude that aberrant expression and methylation of SEMA3B could be suggested as markers of lung and renal cancer progression. 相似文献
9.
Liang Han Dehua Liu Zhaohui Li Nan Tian Ziwu Han Guang Wang Yao Fu Zhigang Guo Zifeng Zhu Chao Du Yu Tian 《PloS one》2015,10(11)
The HOXB1 gene plays a critical role as an oncogene in diverse tumors. However, the functional role of HOXB1 and the mechanism regulating HOXB1 expression in glioma are not fully understood. A preliminary bioinformatics analysis showed that HOXB1 is ectopically expressed in glioma, and that HOXB1 is a possible target of miR-3175. In this study, we investigated the function of HOXB1 and the relationship between HOXB1 and miR-3175 in glioma. We show that HOXB1 expression is significantly downregulated in glioma tissues and cell lines, and that its expression may be closely associated with the degree of malignancy. Reduced HOXB1 expression promoted the proliferation and invasion of glioma cells, and inhibited their apoptosis in vitro, and the downregulation of HOXB1 was also associated with worse survival in glioma patients. More importantly, HOXB1 was shown experimentally to be a direct target of miR-3175 in this study. The downregulated expression of miR-3175 inhibited cell proliferation and invasion, and promoted apoptosis in glioma. The oncogenicity induced by low HOXB1 expression was prevented by an miR-3175 inhibitor in glioma cells. Our results suggest that HOXB1 functions as a tumor suppressor, regulated by miR-3175 in glioma. These results clarify the pathogenesis of glioma and offer a potential target for its treatment. 相似文献
10.
Malyukova A. V. Loginov W. I. Hodyrev D. S. Kadyrova E. L. Pronina I. V. Ivanova T. A. Kisseljov F. L. Zabarovsky E. R. Kisseljova N. P. Braga E. A. 《Molecular Biology》2004,38(6):857-864
Methylation-sensitive restriction endonuclease analysis (MSRA) followed by polymerase chain reaction (PCR) have been used to estimate the methylation level of 13 CpG dinucleotides in the promoter region of the putative suppressor gene RASSF1A (3p21.31) in squamous cell carcinomas of the uterine cervix (SCCs) carrying human papillomavirus (HPV) types 16, 18, and related types. Methylation of 3 to 13 CpG pairs has been found in 64% (25 out of 39) tumor DNA samples, 22% (2 out of 9) DNA samples from morphologically normal tissues adjacent to the tumor (P = 0.0306), and two out of three DNA samples from peripheral blood leukocytes of carcinoma patients. These CpG pairs are not methylated in the DNA of leukocytes of healthy donors (0 out of 10). The methylation level of the RASSF1A promoter region studied in tumors of the patients with regional lymph node metastases is significantly higher than in tumors of the patient that have no metastases (P = 8.5 × 10–12). The methylation frequency of gene RASSF1A is two times higher than the frequency of hemi- and homozygous deletions in the chromosome 3 region where the gene is located. The data obtained indicate that methylation is one of the main mechanisms of the RASSF1A gene inactivation in HPV-positive human cervical tumors. The methylation of this gene may be an early event in the genesis of cervical tumors, the methylation level increasing with tumor progression. 相似文献
11.
12.
13.
14.
Victoria Gonzalo Juan José Lozano Jenifer Mu?oz Francesc Balaguer Maria Pellisé Cristina Rodríguez de Miguel Montserrat Andreu Rodrigo Jover Xavier Llor M. Dolores Giráldez Teresa Oca?a Anna Serradesanferm Virginia Alonso-Espinaco Mireya Jimeno Miriam Cuatrecasas Oriol Sendino Sergi Castellví-Bel Antoni Castells for the Gastrointestinal Oncology Group of the Spanish Gastroenterological Association 《PloS one》2010,5(1)
Background
Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect.Methodology/Principal Findings
We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals) and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2), RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008) and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047) as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006). Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17), SFRP1 (r = 0.83, 0.06), HPP1 (r = 0.64, p = 0.17), 3OST2 (r = 0.83, p = 0.06) and GATA4 (r = 0.6, p = 0.24). Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant difference in any evaluated gene.Conclusions
These results provide a proof-of-concept that gene promoter methylation is associated with tumor multiplicity. This underlying epigenetic defect may have noteworthy implications in the prevention of patients with sporadic CRC. 相似文献15.
Fernanda Wisnieski Mariana Ferreira Leal Danielle Queiroz Calcagno Leonardo Caires Santos Carolina Oliveira Gigek Elizabeth Suchi Chen Ricardo Artigiani Sâmia Demachki Paulo Pimentel Assumpção Laércio Gomes Lourenço Rommel Rodríguez Burbano Marília Cardoso Smith 《Journal of cellular biochemistry》2017,118(4):869-877
16.
17.
18.
19.
20.
小分子GTP蛋白涉及肿瘤发生中多条信号通路的改变。类核糖基化因子肿瘤抑制基因1(ADP-ribosylation factor-like tumor suppressorgene1,ARLTS1),是小分子GTP蛋白Ras超家族中ARF家族的成员之一。该基因是低显性基因,可因启动子超甲基化而失调。有两种ARLTSl的多态性与肿瘤的家族风险相关。ARLTS1表达下调与部分肿瘤发生有重要关系,而恢复其表达则会诱导caspase依赖的细胞凋亡发生,并减少肿瘤的体内生长。通过基因微阵列实验发现,转导ARLTS1基因诱导细胞凋亡过程中众多涉及细胞存活、增殖和发育的信号通路。 相似文献