首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In tetrapods, the ability to ingest food on land is based on certain morphological features of the oropharynx in general and the feeding apparatus in particular. Recent paleoecological studies imply that terrestrial feeding has evolved secondarily in turtles, so they had to meet the morphological oropharyngeal requirements independently to other amniotes. This study is designed to improve our limited knowledge about the oropharyngeal morphology of tortoises by analyzing in detail the oropharynx in Manouria emys emys. Special emphasis is placed on the form and function of the tongue. Even if Manouria is considered a basal member of the only terrestrial turtle clade and was hypothesized to have retained some features reflecting an aquatic ancestry, Manouria shows oropharyngeal characteristics found in more derived testudinids. Accordingly, the oropharyngeal cavity in Manouria is richly structured and the glands are large and complexly organized. The tongue is large and fleshy and bears numerous slender papillae lacking lingual muscles. The hyolingual skeleton is mainly cartilaginous, and the enlarged anterior elements support the tongue and provide insertion sides for the well‐developed lingual muscles, which show striking differences to other reptiles. We conclude that the oropharyngeal design in Manouria differs clearly from semiaquatic and aquatic turtles, as well as from other reptilian sauropsids. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
This study examines the kinematics and morphology of the feeding apparatus of two geoemydid chelonians, the Malayan (Amboina) box turtle (Cuora amboinensis) and the yellow-margined box turtle (Cuora flavomarginata). Both species are able to feed on land as well as in water. Feeding patterns were analysed by high-speed cinematography. The main focus of the present study is on the terrestrial feeding strategies in both Asian box turtles, because feeding on land has probably evolved de novo within the ancestrally aquatic genus Cuora. During terrestrial feeding (analysed for both species), the initial food prehension is always done by the jaws, whereas intraoral food transport and pharyngeal packing actions are tongue-based. The food uptake modes in Cuoras differ considerably from those described for purely terrestrial turtles. Lingual food prehension is typical of all tortoises (Testudinidae), but is absent in C. amboinensis and C. flavomarginata. A previous study on Terrapene carolina shows that this emydid turtle protrudes the tongue during ingestion on land, but that the first contact with the food item occurs by the jaws. Both Asian box turtles investigated here have highly movable, fleshy tongues; nonetheless, the hyolingual complex remains permanently retracted during initial prey capture. In aquatic feeding (analysed for C. amboinensis only), the prey is captured by a fast forward strike of the head (ram feeding). As opposed to ingestion on land, in the underwater grasp the hyoid protracts prior to jaw opening. The head morphology of the investigated species differs. In contrast to the Malayan box turtle, C. flavomarginata exhibits a more complexly structured dorsal lingual epithelium, a considerable palatal vault, weaker jaw adductor muscles and a simplified trochlear complex. The differences in the hyolingual morphology reflect the kinematic patterns of the terrestrial feeding transport.  相似文献   

3.
The Hynobiidae is generally regarded as the most phylogenetically basal and least derived extant family of terrestrial salamanders. As in the other families of terrestrial salamanders, prey capture in the Hynobiidae is accomplished by lingual prehension. In Hynobius, the prey capture system appears to be a mosaic of derived and primitive features. This, in conjunction with previous studies, suggests that the hyolingual systems of all families of terrestrial salamanders have evolved various degrees of specialization since the appearance of the common ancestral condition. We propose that the generalized feeding system for the extant terrestrial salamanders includes a hyolingual skeleton comprised of one basibranchial, one pair of radial or radial-like structures, two pairs of ceratobranchials, two pairs of epibranchials, one pair of ceratohyals, and one urohyal arranged in a configuration similar to that of Hynobius; a simple, sac-like secondary tongue pad; a lift and thrust system of tongue projection; a four-part gape cycle; and a forward head and body surge. Modifications to this general plan, previously described for the disparate families, include various changes in the size, shape, and definition of the tongue pad, changes in the specific types of structures and configurations in the anterior hyolingual skeleton, secondary ossification in the posterior hyolingual skeleton, the appearance of various protrusion, projection, and flipping systems for tongue protraction, simplification of the kinematic gape profile, and loss of the forward head and body surge. The evolutionary trends in these modifications have provided a rich data set from which much phylogenetic information has been inferred. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The Indochinese box turtle Cuora galbinifrons is regarded as a purely terrestrial species, but our results demonstrate that it can feed both on land and in water. The inverse relationship between the relative development of the hyoid apparatus and the tongue found in the most investigated chelonians is not valid in the Indochinese box turtle. Our morphological analysis of the feeding apparatus reveals that the palate shape and the design of the tongue are consistent with terrestrial feeders, but the construction of the hyoid complex is more characteristic of aquatic feeders. Previous studies have demonstrated that tongue enlargement negatively impacts the capacity of the turtles to suction feed. The present study focuses on the aquatic intraoral prey transport kinematic patterns. Our analysis is based on high-speed films with 250 fr/s and high-speed cineradiography with 50 fr/s. The aquatic intraoral food transport mechanisms differ depending on prey size: small items are transported predominantly by “inertial suction”, whereas larger items are moved by the tongue—normally a clear terrestrial strategy. As the genus Cuora is ancestrally aquatic, the use of lingual food transport in the aquatic environment is presumably an aberrant modus typical only for the most terrestrial among the Asian box turtles.  相似文献   

5.

Background

Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250–65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles.

Principal Findings

A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles.

Conclusion/Significance

The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late Maastrichtian phosphatic beds of Morocco, further supports the hypothesis that marine life was, at least locally, very diversified just prior to the Cretaceous/Palaeogene (K/Pg) biotic crisis.  相似文献   

6.
Within Anseriformes, waterfowl (ducks, geese, and swans) exhibit three specialized feeding modes that are distinctive among Aves: filter-feeding with fine and dense keratinous lamellae on a flat, mediolaterally expanded bill; cropping or grazing vegetation with large and robust lamellae with a dorsoventrally expanded bill; and sharp lamellae associated with a narrow bill used in acquiring mixed invertebrates and fish underwater mainly by grasping. Here we assess morphometric variation in cranial and hyolingual structures as well as hyolingual myology in a diverse sample of Anatidae to explore the relationship of tongue variation and feeding mode. Phylogenetically informed principal component analysis (phyl.PCA) of cranial-lingual measurements for 67 extant and two extinct anatids recovers grazers and filter-feeding taxa in largely distinct areas of morphospace, while underwater graspers and other mixed feeders show less distinct clustering. The relationship between morphometric differences in skeletal features and muscular variation was further explored through a reassessment of hyolingual musculature enabled by contrast-enhanced X-ray computed tomography (CT) imagery acquired from three exemplar species (Branta canadensis, Chen caerulescens, and Aythya americana) with distinctive ecologies and morphologies of the bony hyoid. Data for these duck and geese exemplars reveal further significant, and previously unstudied, morphological differences between filter-feeding and grazing species. Grazers have a larger hyolingual apparatus with highly-developed extrinsic hyoid muscles; while filter-feeding species are characterized by relatively more diminutive extrinsic hyoid muscles and larger intrinsic hyoid muscles. The feeding modes of two extinct taxa (i.e., Presbyornis and Thambetochen) were also estimated from morphometric data. The results indicate a derived terrestrial browsing or grazing ecology for Thambetochen but do not unequivocally support a specialized filter-feeding ecology for Presbyornis, which is recovered with mixed feeders including swans. The combination of detailed, CT-mediated acquisition of fine muscular anatomy with morphometric approaches shows promise for illuminating form–function relationships in extant taxa more generally.  相似文献   

7.
Wahlberg’s epauletted fruit bat (Epomophorus wahlbergi) feed on fleshy fruit and nectar of flowers and have an important role in pollination and seed dispersal. It was expected that their buccal morphological structures are adapted to this type of feeding. Consequently, buccal cavity and lingual structures of E. wahlbergi were examined by extended focus light microscopy (LM) and scanning electron microscopy (SEM). Morphology of the tongue of E. wahlbergi was similar to that of other fruit- and nectar-feeding bats. The elongated tongue of these bats possessed filiform and conical papillae as mechanical papillae and fungiform and circumvallate papillae as gustatory papillae that varied in distribution. Epomophorus wahlbergi had five palatal ridges and one post-dental palatal ridge, and relatively wide, flattened molar teeth. A hard, papillae structure at the posterior end of the upper palate of the upper plate, which has not been previously described, was observed. It appears that this structure works together with the palatal ridges and teeth, so that the bats crush fleshy fruits during feeding and extract the juices before discarding the pulp. Consequently, lingual and particularly palatal structures of E. wahlbergi show morphological adaptations for efficiently feeding on fleshy fruit and nectar.  相似文献   

8.
The ability to modulate feeding kinematics in response to prey items with different functional properties is likely a prerequisite for most organisms that feed on a variety of food items. Variation in prey properties is expected to reveal variation in feeding function and the functional role of the different phases in a transport cycle. Here we describe the kinematics of prey transport of two varanid species, Varanus niloticus and Varanus ornatus. These species were selected for analysis because of their highly specialised hyolingual system and food transport mechanism (inertial food transport). In these animals, tongue and hyoid movements are expected to make no, or only a minor, contribution to prey transport. We observed statistically significant prey type effects that could be associated with prey properties such as mass, size and mobility. These data show that both species are capable of modulating the kinematics of food transport in response to different prey types. Moreover, not only the kinematics of the jaws were modulated in response to prey characteristics but also the anterior/posterior movements of the tongue and hyoid. This suggests a more important role of the tongue and hyolingual movements in these animals than previously suspected. In contrast, head movements were rather stereotyped and were not modulated in response to changes in prey type.  相似文献   

9.
Mosasauroids are conventionally conceived of as gigantic, obligatorily aquatic marine lizards (1000s of specimens from marine deposited rocks) with a cosmopolitan distribution in the Late Cretaceous (90–65 million years ago [mya]) oceans and seas of the world. Here we report on the fossilized remains of numerous individuals (small juveniles to large adults) of a new taxon, Pannoniasaurus inexpectatus gen. et sp. nov. from the Csehbánya Formation, Hungary (Santonian, Upper Cretaceous, 85.3–83.5 mya) that represent the first known mosasauroid that lived in freshwater environments. Previous to this find, only one specimen of a marine mosasauroid, cf. Plioplatecarpus sp., is known from non-marine rocks in Western Canada. Pannoniasaurus inexpectatus gen. et sp. nov. uniquely possesses a plesiomorphic pelvic anatomy, a non-mosasauroid but pontosaur-like tail osteology, possibly limbs like a terrestrial lizard, and a flattened, crocodile-like skull. Cladistic analysis reconstructs P. inexpectatus in a new clade of mosasauroids: (Pannoniasaurus (Tethysaurus (Yaguarasaurus, Russellosaurus))). P. inexpectatus is part of a mixed terrestrial and freshwater faunal assemblage that includes fishes, amphibians turtles, terrestrial lizards, crocodiles, pterosaurs, dinosaurs and birds.  相似文献   

10.
The tongue body of Rhea americana is triangular and partially pigmented with each caudo-lateral margin displaying a round, sub-divided lingual papilla. The tongue root is a smooth, non-pigmented tract of mucosa. The tongue body is supported by the paraglossum and distal half of the rostral projection of the basihyal (RPB), and the tongue root by the proximal half of the RPB, body of the basihyal and proximal ceratobranchials. An urohyal is absent; however, peculiar to R. americana, the caudal margin of the cricoid body displays a median projection, which may represent the remnant of the urohyal incorporated into the cricoid. The laryngeal mound is less elevated, the arytenoid cartilages are smaller than in other ratites, and the caudal margin displays pharyngeal papillae that vary in shape and number. The unique morphology of the lingual skeleton and its positioning within the tongue of R. americana, the rostral insertion of the M. ceratoglossus, the absence of the urohyal (enhanced ventroflexion) and the caudal positioning and mobile attachment of the ensheathed basihyal to the paraglossum would appear to allow independent movement of the tongue body relative to the hyobranchial apparatus. Additionally, the deeply indented base and rostral oval opening in the paraglossum limits the length of cartilage present in the midline of the tongue body. This may allow the tongue the necessary flexibility for the lingual papillae to clean the choana. The cleaning action of the tongue would occur simultaneously with the previously described role of this organ and associated structures during feeding. Thus, the so-called reduced, ancestral tongue of R. americana may be structurally and functionally more complex than previously believed.  相似文献   

11.
Acanthostega is one of the earliest and most primitive limbed vertebrates. Its numerous fish-like features indicate a primarily aquatic lifestyle, yet cranial suture morphology suggests that its skull is more similar to those of terrestrial taxa. Here, we apply geometric morphometrics and two-dimensional finite-element analysis to the lower jaws of Acanthostega and 22 other tetrapodomorph taxa in order to quantify morphological and functional changes across the fish–tetrapod transition. The jaw of Acanthostega is similar to that of certain tetrapodomorph fish and transitional Devonian taxa both morphologically (as indicated by its proximity to those taxa in morphospace) and functionally (as indicated by the distribution of stress values and relative magnitude of bite force). Our results suggest a slow tempo of morphological and biomechanical changes in the transition from Devonian tetrapod jaws to aquatic/semi-aquatic Carboniferous tetrapod jaws. We conclude that Acanthostega retained a primitively aquatic lifestyle and did not possess cranial adaptations for terrestrial feeding.  相似文献   

12.
Vacuolar myelinopathy (VM) is a neurologic disease primarily found in birds that occurs when wildlife ingest submerged aquatic vegetation colonized by an uncharacterized toxin-producing cyanobacterium (hereafter “UCB” for “uncharacterized cyanobacterium”). Turtles are among the closest extant relatives of birds and many species directly and/or indirectly consume aquatic vegetation. However, it is unknown whether turtles can develop VM. We conducted a feeding trial to determine whether painted turtles (Chrysemys picta) would develop VM after feeding on Hydrilla (Hydrilla verticillata), colonized by the UCB (Hydrilla is the most common “host” of UCB). We hypothesized turtles fed Hydrilla colonized by the UCB would exhibit neurologic impairment and vacuolation of nervous tissues, whereas turtles fed Hydrilla free of the UCB would not. The ability of Hydrilla colonized by the UCB to cause VM (hereafter, “toxicity”) was verified by feeding it to domestic chickens (Gallus gallus domesticus) or necropsy of field collected American coots (Fulica americana) captured at the site of Hydrilla collections. We randomly assigned ten wild-caught turtles into toxic or non-toxic Hydrilla feeding groups and delivered the diets for up to 97 days. Between days 82 and 89, all turtles fed toxic Hydrilla displayed physical and/or neurologic impairment. Histologic examination of the brain and spinal cord revealed vacuolations in all treatment turtles. None of the control turtles exhibited neurologic impairment or had detectable brain or spinal cord vacuolations. This is the first evidence that freshwater turtles can become neurologically impaired and develop vacuolations after consuming toxic Hydrilla colonized with the UCB. The southeastern United States, where outbreaks of VM occur regularly and where vegetation colonized by the UCB is common, is also a global hotspot of freshwater turtle diversity. Our results suggest that further investigations into the effect of the putative UCB toxin on wild turtles in situ are warranted.  相似文献   

13.
We investigated the functional morphology of lingual prey capture in the blue‐tongued skink, Tiliqua scincoides, a lingual‐feeding lizard nested deep within the family Scincidae, which is presumed to be dominated by jaw‐feeding. We used kinematic analysis of high‐speed video to characterize jaw and tongue movements during prey capture. Phylogenetically informed principal components analysis of tongue morphology showed that, compared to jaw‐feeding scincids and lacertids, T. scincoides and another tongue‐feeding scincid, Corucia zebrata, are distinct in ways suggesting an enhanced ability for hydrostatic shape change. Lingual feeding kinematics show substantial quantitative and qualitative variation among T. scincoides individuals. High‐speed video analysis showed that T. scincoides uses significant hydrostatic elongation and deformation during protrusion, tongue‐prey contact, and retraction. A key feature of lingual prey capture in T. scincoides is extensive hydrostatic deformation to increase the area of tongue‐prey contact, presumably to maximize wet adhesion of the prey item. Adhesion is mechanically reinforced during tongue retraction through formation of a distinctive “saddle” in the foretongue that supports the prey item, reducing the risk of prey loss during retraction.  相似文献   

14.
Naturalists as early as Darwin observed terrestrial basking in green turtles (Chelonia mydas), but the distribution and environmental influences of this behaviour are poorly understood. Here, we examined 6 years of daily basking surveys in Hawaii and compared them with the phenology of local sea surface temperatures (SST). Data and models indicated basking peaks when SST is coolest, and we found this timeline consistent with bone stress markings. Next, we assessed the decadal SST profiles for the 11 global green turtle populations. Basking generally occurs when winter SST falls below 23°C. From 1990 to 2014, the SST for these populations warmed an average 0.04°C yr−1 (range 0.01–0.09°C yr−1); roughly three times the observed global average over this period. Owing to projected future warming at basking sites, we estimated terrestrial basking in green turtles may cease globally by 2100. To predict and manage for future climate change, we encourage a more detailed understanding for how climate influences organismal biology.  相似文献   

15.
《Mammalian Biology》2014,79(3):189-194
Semiaquatic and terrestrial mammals frequently have to cross or move along water bodies, both trying to remain on the water surface using one or two pairs of limbs, combining different gaits and stride lengths and frequencies. This is the case of the semiaquatic water rats Nectomys and the cursorial Cerradomys, sister genera of the Oryzomyini tribe, capable of swimming using similar gaits. They provide an opportunity to investigate performance specializations involving the semiaquatic habitat, our objective in this study. Rodents were filmed at 30 frames s−1 in lateral view, swimming in a glass aquarium. Video sequences were analyzed dividing the swimming cycle into power and recovery phases. Differences in swimming performance were detected between species of Nectomys and Cerradomys, but not between species of the same genus. Absolute mean speed did not differ between the semiaquatic and terrestrial groups, but the semiaquatic Nectomys had longer stride lengths with lower stride frequency, whereas the terrestrial Cerradomys had higher stride frequency and relative swimming speed. The widest behavior repertoire of Nectomys allowed more efficient, but not necessarily faster swimming than the terrestrial Cerradomys. Efficient aquatic locomotion in Nectomys is ultimately a result of improved buoyancy by hydrophobic fur and subtle morphological specializations, which allow this genus to perform more efficiently in water than the terrestrial Cerradomys without compromising locomotion in the terrestrial environment.  相似文献   

16.
The origin of turtles is one of the most contentious issues in systematics with three currently viable hypotheses: turtles as the extant sister to (i) the crocodile–bird clade, (ii) the lizard–tuatara clade, or (iii) Diapsida (a clade composed of (i) and (ii)). We reanalysed a recent dataset that allied turtles with the lizard–tuatara clade and found that the inclusion of the stem turtle Proganochelys quenstedti and the ‘parareptile’ Eunotosaurus africanus results in a single overriding morphological signal, with turtles outside Diapsida. This result reflects the importance of transitional fossils when long branches separate crown clades, and highlights unexplored issues such as the role of topological congruence when using fossils to calibrate molecular clocks.  相似文献   

17.
The family Soricidae is reviewed with special regard to anatomical structures related to habitat and life-style. Some 266 species in 20 genera are classified into six feeding and foraging categories: terrestrial, semifossorial, scansorial, semiaquatic, psammophilic and anthropophilic. Examples of corresponding anatomical adaptations are given as well as notes on adaptive radiation and convergent evolution.  相似文献   

18.
Movements of the neck, jaws, and hyolingual apparatus during inertial feeding in Caiman crocodilus were studied by cineradiography. Analysis reveals two kinds of cycles: inertial bites (reposition, kill/crush, and transport) and swallowing cycles. They differ in their gape profile and in displacement of the neck, cranium, and hyolingual apparatus. Inertial bites are initiated by an elevation of the neck and cranium; the head is then retracted backward, the prey simultaneously being lifted by the hyolingual apparatus. Next the lower jaw is depressed, and the prey is rapidly pushed further upward by the hyolingual apparatus. Thereafter fast mouth-closure occurs with the neck and cranium being abruptly depressed, the lower jaw elevated, and the hyolingual apparatus rapidly retracted ventrally. Depression of the neck and cranium thrusts the head forward and impacts the backward moving prey more posteriorly in the oral cavity. Swallowing cycles initially involve movement of the hyoid in front of the prey followed by rapid posteroventrad retraction of the hyoid, forcing the prey into the esophagus during opening and closing of the mouth. After mouth-closure, the hyoid apparatus is again protracted. Jaws, neck, tongue, and hyoid apparatus play an active role during intertial feeding sequences. At the beginning of a feeding sequence, the hyolingual apparatus mainly moves dorsoventrally, whereas toward the end of a sequence anteroposterior displacements of the hyoid are prominent. © 1992 Wiley-Liss, Inc.  相似文献   

19.
We investigated the extent that the 2010 Deepwater Horizon oil spill potentially affected oceanic-stage sea turtles from populations across the Atlantic. Within an ocean-circulation model, particles were backtracked from the Gulf of Mexico spill site to determine the probability of young turtles arriving in this area from major nesting beaches. The abundance of turtles in the vicinity of the oil spill was derived by forward-tracking particles from focal beaches and integrating population size, oceanic-stage duration and stage-specific survival rates. Simulations indicated that 321 401 (66 199–397 864) green (Chelonia mydas), loggerhead (Caretta caretta) and Kemp''s ridley (Lepidochelys kempii) turtles were likely within the spill site. These predictions compared favourably with estimates from in-water observations recently made available to the public (though our initial predictions for Kemp''s ridley were substantially lower than in-water estimates, better agreement was obtained with modifications to mimic behaviour of young Kemp''s ridley turtles in the northern Gulf). Simulations predicted 75.2% (71.9–76.3%) of turtles came from Mexico, 14.8% (11–18%) from Costa Rica, 5.9% (4.8–7.9%) from countries in northern South America, 3.4% (2.4–3.5%) from the United States and 1.6% (0.6–2.0%) from West African countries. Thus, the spill''s impacts may extend far beyond the current focus on the northern Gulf of Mexico.  相似文献   

20.
Site fidelity refers to the restriction of dispersal distance of an animal and its tendency to return to a stationary site. To our knowledge, the homing ability of freshwater turtles and their fidelity is reportedly very low in Asia. We examined mark–recapture data spanning a 4‐year period in Diaoluoshan National Nature Reserve, Hainan Province, China, to investigate the site fidelity and homing behavior of big‐headed turtles Platysternon megacephalum. A total of 11 big‐headed turtles were captured, and all individuals were used in this mark–recapture study. The site fidelity results showed that the adult big‐headed turtles (n = 4) had a 71.43% recapture rate in the original site after their release at the same site, whereas the juveniles (n = 1) showed lower recapture rates (0%). Moreover, the homing behavior results showed that the adults (n = 5) had an 83.33% homing rate after displacement. Adult big‐headed turtles were able to return to their initial capture sites (home) from 150 to 2,400 m away and precisely to their home sites from either upstream or downstream of their capture sites or even from other streams. However, none of the juveniles (n = 4) returned home, despite only being displaced 25–150 m away. These results indicated that the adult big‐headed turtles showed high fidelity to their home site and strong homing ability. In contrast, the juvenile turtles may show an opposite trend but further research is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号