首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Alternate day calorie restriction (CR) has been shown to be almost as beneficial as daily CR. The question arises whether this concept is also applicable to alternating dietary composition.

Objective

To seek evidence that alternating high cholesterol (HC) - cholesterol-free (CON) Western diet can effectively diminish hepatic and renal inflammation and cardiovascular risk factors as compared with daily HC-supplemented Western diet.

Design

Four groups of ApoE*3Leiden mice, a humanized model for atherosclerosis, were subjected to different feeding treatments for 16 weeks. Mice were fed CON diet; CON diet with 1% w/w cholesterol (HC); alternate (ALT) diet regimen of CON (4 days) and HC (3 days); or CON diet supplemented with 0.43% (w/w) cholesterol (MC), with overall dietary cholesterol intake equal to ALT. Plasma was analyzed for cardiovascular risk factors, aorta for atherosclerotic lesion formation, and liver and kidney for inflammation.

Results

ALT diet but not MC was almost as effective as daily CON feeding in preventing disease development. Compared to HC, the ALT group showed 62% lower hepatic nuclear factor kappa B (NF-κB) activity (P<0.001), a reduction of the circulating inflammatory markers E-selectin (−20%; P<0.05), vascular cell adhesion molecule 1 (VCAM-1; −15%; P<0.05) and Serum Amyloid A (SAA; −31%; P<0.05), smaller atherosclerotic lesion sizes (−51%; 46497±10791 µm2 vs. 94664±16470 µm2; P<0.05) and diminished renal expression of specific inflammation and activation markers (VCAM-1, −27%; P<0.05; monocyte chemotactic protein-1 (MCP-1); −37%; P<0.01).

Conclusion

Alternate HC-CON feeding reproduced most of the beneficial effects of daily cholesterol-free diet, including strongly diminished hepatic, vascular and renal activation and inflammation; also atherosclerosis was reduced by half as compared to HC, albeit still higher compared to the CON group.  相似文献   

2.

Background

Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance.

Methodology/Principal Findings

We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state.

Conclusions/Significance

The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice.  相似文献   

3.

Background

Fat redistribution, increased inflammation and insulin resistance are prevalent in non-diabetic subjects treated with maintenance dialysis. The aim of this study was to test whether pioglitazone, a powerful insulin sensitizer, alters body fat distribution and adipokine secretion in these subjects and whether it is associated with improved insulin sensitivity.

Trial Design

This was a double blind cross-over study with 16 weeks of pioglitazone 45 mg vs placebo involving 12 subjects.

Methods

At the end of each phase, body composition (anthropometric measurements, dual energy X-ray absorptometry (DEXA), abdominal CT), hepatic and muscle insulin sensitivity (2-step hyperinsulinemic euglycemic clamp with 2H2-glucose) were measured and fasting blood adipokines and cardiometabolic risk markers were monitored.

Results

Four months treatment with pioglitazone had no effect on total body weight or total fat but decreased the visceral/sub-cutaneous adipose tissue ratio by 16% and decreased the leptin/adiponectin (L/A) ratio from 3.63×10−3 to 0.76×10−3. This was associated with a 20% increase in hepatic insulin sensitivity without changes in muscle insulin sensitivity, a 12% increase in HDL cholesterol and a 50% decrease in CRP.

Conclusions/Limitations

Pioglitazone significantly changes the visceral-subcutaneous fat distribution and plasma L/A ratio in non diabetic subjects on maintenance dialysis. This was associated with improved hepatic insulin sensitivity and a reduction of cardio-metabolic risk markers. Whether these effects may improve the outcome of non diabetic end-stage renal disease subjects on maintenance dialysis still needs further evaluation.

Trial Registration

ClinicalTrial.gov NCT01253928  相似文献   

4.

Introduction

Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs), particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation.

Objective

To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks.

Material and Methods

Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin – acetic acid; guar gum – propionic acid; or a mixture – butyric acid). At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks.

Results and Discussion

Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.  相似文献   

5.

[Purpose]

This study suggests that the negative effects of inflammation caused by obesity could be prevented through diet restriction and exercise.

[Methods]

In this study, 44 C57/BL6 male mice at about 4 weeks old (Orient bio, South Korea) were given a high fat diet for 5 weeks to make them obese. To help the mice lose weight, their dietary intake was limited and they were exercised on the treadmill for 8 weeks, and during that period, we analyzed the changes of MCP-1, ERK, Mn-SOD, HIF-1, and NOX in epididymal adipose tissue. There ND control group and obese group with high fat diet (HFD), and it is divided into four groups; HFD-ND-EX group, HFD-ND-nonEX group, HFD-DR-EX group and HFD-DR-nonEX group.

[Results]

During their progress, the mRNA expressions of HIF-1α and ERK2 decreased, as did the expression of MCP-1 contained in the nucleus by suppressing oxygen free radicals, which was observed after the exercise program. However, dietary restriction without exercise training triggered an increase in the mRNA expression of MCP-1.

[Conclusion]

To put this in perspective, combining exercise and dietary intake restriction likely prevented an influx of macrophages by reducing the number of fat cells, whereas only dietary restriction was not effective against reducing inflammation.  相似文献   

6.

Background

It has been proposed that muscle insulin resistance in type 2 diabetes is due to a selective decrease in the components of the mitochondrial electron transport chain and results from accumulation of toxic products of incomplete fat oxidation. The purpose of the present study was to test this hypothesis.

Methodology/Principal Findings

Rats were made severely iron deficient, by means of an iron-deficient diet. Iron deficiency results in decreases of the iron containing mitochondrial respiratory chain proteins without affecting the enzymes of the fatty acid oxidation pathway. Insulin resistance was induced by feeding iron-deficient and control rats a high fat diet. Skeletal muscle insulin resistance was evaluated by measuring glucose transport activity in soleus muscle strips. Mitochondrial proteins were measured by Western blot. Iron deficiency resulted in a decrease in expression of iron containing proteins of the mitochondrial respiratory chain in muscle. Citrate synthase, a non-iron containing citrate cycle enzyme, and long chain acyl-CoA dehydrogenase (LCAD), used as a marker for the fatty acid oxidation pathway, were unaffected by the iron deficiency. Oleate oxidation by muscle homogenates was increased by high fat feeding and decreased by iron deficiency despite high fat feeding. The high fat diet caused severe insulin resistance of muscle glucose transport. Iron deficiency completely protected against the high fat diet-induced muscle insulin resistance.

Conclusions/Significance

The results of the study argue against the hypothesis that a deficiency of the electron transport chain (ETC), and imbalance between the ETC and β-oxidation pathways, causes muscle insulin resistance.  相似文献   

7.

Objective

Insulin resistance induces hyperinsulinemic compensation, which in turn maintains almost a constant disposition index. However, the signal that gives rise to the hyperinsulinemic compensation for insulin resistance remains unknown.

Methods

In a dog model of obesity we examined the possibility that potential early-week changes in plasma FFA, glucose, or both could be part of a cascade of signals that lead to compensatory hyperinsulinemia induced by insulin resistance.

Results

Hypercaloric high fat feeding in dogs resulted in modest weight gain, and an increase in adipose tissue with no change in the non-adipose tissue size. To compensate for the drop in insulin sensitivity, there was a significant rise in plasma insulin, which can be attributed in part to a decrease in the metabolic clearance rate of insulin and increased insulin secretion. In this study we observed complete compensation for high fat diet induced insulin resistance as measured by the disposition index. The compensatory hyperinsulinemia was coupled with significant changes in plasma FFAs and no change in plasma glucose.

Conclusions

We postulate that early in the development of diet induced insulin resistance, a change in plasma FFAs may directly, through signaling at the level of β-cell, or indirectly, by decreasing hepatic insulin clearance, result in the observed hyperinsulinemic compensation.  相似文献   

8.

Background

The Chinese population has undergone rapid transition to a high-fat diet. Furthermore, monosodium L-glutamate (MSG) is widely used as a daily food additive in China. Little information is available on the effects of oral MSG and dietary fat supplementation on the amino acid balance in tissues. The present study aimed to determine the effects of both dietary fat and MSG on amino acid metabolism in growing pigs, and to assess any possible interactions between these two nutrients.

Methods and Results

Four iso-nitrogenous and iso-caloric diets (basal diet, high fat diet, basal diet with 3% MSG and high fat diet with 3% MSG) were provided to growing pigs. The dietary supplementation with fat and MSG used alone and in combination were found to modify circulating and tissue amino acid pools in growing pigs. Both dietary fat and MSG modified the expression of gene related to amino acid transport in jejunum.

Conclusions

Both dietary fat and MSG clearly influenced amino acid content in tissues but in different ways. Both dietary fat and MSG enhance the absorption of amino acids in jejunum. However, there was little interaction between the effects of dietary fat and MSG.  相似文献   

9.

Background

Although dietary ketogenic essential amino acid (KAA) content modifies accumulation of hepatic lipids, the molecular interactions between KAAs and lipid metabolism are yet to be fully elucidated.

Methodology/Principal Findings

We designed a diet with a high ratio (E/N) of essential amino acids (EAAs) to non-EAAs by partially replacing dietary protein with 5 major free KAAs (Leu, Ile, Val, Lys and Thr) without altering carbohydrate and fat content. This high-KAA diet was assessed for its preventive effects on diet-induced hepatic steatosis and whole-animal insulin resistance. C57B6 mice were fed with a high-fat diet, and hyperinsulinemic ob/ob mice were fed with a high-fat or high-sucrose diet. The high-KAA diet improved hepatic steatosis with decreased de novo lipogensis (DNL) fluxes as well as reduced expressions of lipogenic genes. In C57B6 mice, the high-KAA diet lowered postprandial insulin secretion and improved glucose tolerance, in association with restored expression of muscle insulin signaling proteins repressed by the high-fat diet. Lipotoxic metabolites and their synthetic fluxes were also evaluated with reference to insulin resistance. The high-KAA diet lowered muscle and liver ceramides, both by reducing dietary lipid incorporation into muscular ceramides and preventing incorporation of DNL-derived fatty acids into hepatic ceramides.

Conclusion

Our results indicate that dietary KAA intake improves hepatic steatosis and insulin resistance by modulating lipid synthetic pathways.  相似文献   

10.

Background

Nonalcoholic steatohepatitis (NASH), a progressive stage of nonalcoholic fatty liver disease (NAFLD), is characterized by steatosis (accumulation of triacylglycerols within hepatocytes) along with inflammation and ballooning degeneration. It has been suggested that oxidative stress may play an important role in the progress of NAFLD to NASH. The aim of present study was to determine whether antioxidant supplementations using EUK-8, EUK-134 and vitamin C could improve the biochemical and histological abnormalities associated with diet-induced NASH in rats.

Methods

NASH was induced in male N-Mary rats by feeding a methionine - choline deficient (MCD) diet. The rats were fed either normal chow or MCD diet for 10 weeks. After NASH development, the MCD-fed rats were randomly divided into four groups of six: the NASH group that received MCD diet, the EUK-8 group which was fed MCD diet plus EUK-8, the EUK-134 group which was fed MCD diet plus EUK-134 and the vitamin C group which received MCD diet plus vitamin C. EUK-8, EUK-134 and vitamin C (30 mg/kg body weight/day) were administered by gavage for eight weeks.

Results

Treatment of MCD-fed rats with salens reduced the sera aminotransferases, cholesterol, low density lipoprotein contents, the extent of lipid peroxidation and protein carbonylation whereas the HDL-C cholesterol levels were significantly increased. In addition, EUK-8 and EUK-134 improved steatosis, ballooning degeneration and inflammation in liver of MCD-fed rats.

Conclusion

Antioxidant (EUK-8, EUK-134 and vitamin C) supplementation reduces NASH-induced biochemical and histological abnormalities, pointing out that antioxidant strategy could be beneficial in treatment of NASH.  相似文献   

11.

Background

Klotho is a renal protein with anti-aging properties that is downregulated in conditions related to kidney injury. Hyperlipidemia accelerates the progression of renal damage, but the mechanisms of the deleterious effects of hyperlipidemia remain unclear.

Methods

We evaluated whether hyperlipidemia modulates Klotho expression in kidneys from C57BL/6 and hyperlipidemic apolipoprotein E knockout (ApoE KO) mice fed with a normal chow diet (ND) or a Western-type high cholesterol-fat diet (HC) for 5 to 10 weeks, respectively.

Results

In ApoE KO mice, the HC diet increased serum and renal cholesterol levels, kidney injury severity, kidney macrophage infiltration and inflammatory chemokine expression. A significant reduction in Klotho mRNA and protein expression was observed in kidneys from hypercholesteromic ApoE KO mice fed a HC diet as compared with controls, both at 5 and 10 weeks. In order to study the mechanism involved in Klotho down-regulation, murine tubular epithelial cells were treated with ox-LDL. Oxidized-LDL were effectively uptaken by tubular cells and decreased both Klotho mRNA and protein expression in a time- and dose-dependent manner in these cells. Finally, NF-κB and ERK inhibitors prevented ox-LDL-induced Klotho downregulation.

Conclusion

Our results suggest that hyperlipidemia-associated kidney injury decreases renal expression of Klotho. Therefore, Klotho could be a key element explaining the relationship between hyperlipidemia and aging with renal disease.  相似文献   

12.

Background

Magnesium plays a role in glucose and insulin homeostasis and evidence suggests that magnesium intake is associated with insulin resistance (IR). However, data is inconsistent and most studies have not adequately controlled for critical confounding factors.

Objective

The study investigated the association between magnesium intake and IR in normal-weight (NW), overweight (OW) and obese (OB) along with pre- and post- menopausal women.

Design

A total of 2295 subjects (590 men and 1705 women) were recruited from the CODING study. Dietary magnesium intake was computed from the Willett Food Frequency Questionnaire (FFQ). Adiposity (NW, OW and OB) was classified by body fat percentage (%BF) measured by Dual-energy X-ray absorptiometry according to the Bray criteria. Multiple regression analyses were used to test adiposity-specific associations of dietary magnesium intake on insulin resistance adjusting for caloric intake, physical activity, medication use and menopausal status.

Results

Subjects with the highest intakes of dietary magnesium had the lowest levels of circulating insulin, HOMA-IR, and HOMA-ß and subjects with the lowest intake of dietary magnesium had the highest levels of these measures, suggesting a dose effect. Multiple regression analysis revealed a strong inverse association between dietary magnesium with IR. In addition, adiposity and menopausal status were found to be critical factors revealing that the association between dietary magnesium and IR was stronger in OW and OB along with Pre-menopausal women.

Conclusion

The results of this study indicate that higher dietary magnesium intake is strongly associated with the attenuation of insulin resistance and is more beneficial for overweight and obese individuals in the general population and pre-menopausal women. Moreover, the inverse correlation between insulin resistance and dietary magnesium intake is stronger when adjusting for %BF than BMI.  相似文献   

13.

Objective

Experimental evidence revealed that obesity-associated non-alcoholic fatty liver disease (NAFLD) is linked to changes in intestinal permeability and translocation of bacterial products to the liver. Hitherto, no reliable therapy is available except for weight reduction. Within this study, we examined the possible effect of the probiotic bacterial strain Lactobacillus rhamnosus GG (LGG) as protective agent against experimental NAFLD in a mouse model.

Methods

Experimental NAFLD was induced by a high-fructose diet over eight weeks in C57BL/J6 mice. Fructose was administered via the drinking water containing 30% fructose with or without LGG at a concentration resulting in approximately 5×107 colony forming units/g body weight. Mice were examined for changes in small intestinal microbiota, gut barrier function, lipopolysaccharide (LPS) concentrations in the portal vein, liver inflammation and fat accumulation in the liver.

Results

LGG increased beneficial bacteria in the distal small intestine. Moreover, LGG reduced duodenal IκB protein levels and restored the duodenal tight junction protein concentration. Portal LPS (P≤0.05) was reduced and tended to attenuate TNF-α, IL-8R and IL-1β mRNA expression in the liver feeding a high-fructose diet supplemented with LGG. Furthermore liver fat accumulation and portal alanine-aminotransferase concentrations (P≤0.05) were attenuated in mice fed the high-fructose diet and LGG.

Conclusions

We show for the first time that LGG protects mice from NAFLD induced by a high-fructose diet. The underlying mechanisms of protection likely involve an increase of beneficial bacteria, restoration of gut barrier function and subsequent attenuation of liver inflammation and steatosis.  相似文献   

14.

Background

High fat diet and its induced changes in glucose homeostasis, inflammation and obesity continue to be an epidemic in developed countries. The A2b adenosine receptor (A2bAR) is known to regulate inflammation. We used a diet-induced obesity murine knockout model to investigate the role of this receptor in mediating metabolic homeostasis, and correlated our findings in obese patient samples.

Methodology/Principal Findings

Administration of high fat, high cholesterol diet (HFD) for sixteen weeks vastly upregulated the expression of the A2bAR in control mice, while A2bAR knockout (KO) mice under this diet developed greater obesity and hallmarks of type 2 diabetes (T2D), assessed by delayed glucose clearance and augmented insulin levels compared to matching control mice. We identified a novel link between the expression of A2bAR, insulin receptor substrate 2 (IRS-2), and insulin signaling, determined by Western blotting for IRS-2 and tissue Akt phosphorylation. The latter is impaired in tissues of A2bAR KO mice, along with a greater inflammatory state. Additional mechanisms involved include A2bAR regulation of SREBP-1 expression, a repressor of IRS-2. Importantly, pharmacological activation of the A2bAR by injection of the A2bAR ligand BAY 60-6583 for four weeks post HFD restores IRS-2 levels, and ameliorates T2D. Finally, in obese human subjects A2bAR expression correlates strongly with IRS-2 expression.

Conclusions/Significance

Our study identified the A2bAR as a significant regulator of HFD-induced hallmarks of T2D, thereby pointing to its therapeutic potential.  相似文献   

15.

[Purpose]

This study investigated the effect of exercise training and resveratrol supplementation with low fat diet on proinflammatory profiles by Lipopolysaccharide (LPS)-stimulation in peritoneal macrophage of high fat diet mice.

[Methods]

To accomplish the purpose of this study, C57BL/6 male mice were fed high fat diet (45% fat diet) for 8 weeks. Then these mice were divided into 3 groups; HLC (high fat diet and low fat diet for 8 weeks as the control, n=10), HLR (high fat diet and low fat diet for 8 weeks with resveratrol supplementation, n=10). HLE (high fat diet and low fat diet for 8 weeks with moderate exercise training, n=10). Resveratrol (10 mg/kg) was administrated once a day, 5 days/week for 8 weeks. Exercise training was performed for 8 weeks on a treadmill running for 30-60 min/day at 10-22 m/min, 0% grade, 5 days/week. After exercise training, all the peritoneal macrophage was collected and LPS (0, 0.5, 1.0 μg/ml) were used to stimulate the cells. Then peritoneal macrophage TNF-α, IL-6, MCP-1, IL12p70, IFN-γ, IL-10 were measured by BD cytometric bead array mouse inflammation kit.

[Results]

As a result, body weight and total cholesterol were significantly reduced in HLE compared with HLC (p<.05). Also, TNF-α and MCP-1 were decreased in HLE compared with HLC (p<.05) by LPS-stimulation (0, 0.5, 1.0 μg/ml) and IL-6, IL-12p70 and IFN-r were decreased in HLE compared with HLC (p<.05) by LPS-stimulation (1.0 μg/ml). But resveratrol supplementation did not affect the result.

[Conclusion]

These findings suggest that exercise training has beneficial effects on body weight, total cholesterol, peritoneal macrophage and proinflammatory cytokine in high fat diet mice.  相似文献   

16.
17.

Objective

Obesity is a metabolic disorder that can lead to high blood pressure, increased blood cholesterol and triglycerides, insulin resistance, and diabetes mellitus. The aim was to study the effects of pioglitazone mediated sensitization of peroxisome proliferator-activated receptor gamma (PPAR-γ) on the relationship of Cell death-inducing DFFA-like effector C (CIDEC) with obesity related changes in mice.

Methods

Sixty C57B/L6 mice weighing 10–12g at 3 weeks of age were randomly divided into 3 groups. Mice in Group 1 were fed on normal diet (ND) while Group 2 mice were given high fat diet (HFD), and Group 3 mice were given high fat diet and treated with Pioglitazone (HFD+P). Body weight, length and level of blood sugar were measured weekly. Quantitative real-time PCR, fluorescence microscopy, and ELISA were performed to analyze the expression of CIDEC and PPAR-γ in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT).

Results

Body weight and length of mice increased gradually with time in all groups. Blood sugar in HFD mice started to increase significantly from the mid of late phase of obesity while pioglitazone attenuated blood sugar level in HFD+P mice. The mRNA expressions and protein levels of PPAR-γ and CIDEC genes started to increase in HFD mice as compared to ND mice and decreased gradually during the late phase of obesity in VAT. Pioglitazone enhanced the expression of PPAR-γ and CIDEC genes in HFD+P mice even during the late phase of obesity.

Conclusion

It is insinuated that VAT is associated with late phase obesity CIDEC decrease and insulin resistance, while pioglitazone enhances CIDEC through activation of PPAR-γ, increases its expression, and decreases lipolysis, hence preventing an increase of blood sugar in mice exposed to HFD.  相似文献   

18.

Background

Emerging evidence suggests that dietary soy and phytoestrogens can have beneficial effects on lipid and glucose metabolism. We have previously shown that male mice fed from conception to adulthood with a high soy-containing diet had reduced body weight, adiposity and a decrease in glucose intolerance, an early marker of insulin resistance and diabetes.

Objectives

The purpose of this study was to identify the precise periods of exposure during which phytoestrogens and dietary soy improve lipid and glucose metabolism. Since intrauterine position (IUP) has been shown to alter sensitivity to endocrine disruptors, we also investigated whether the combination of IUP and fetal exposure to dietary phytoestrogens could potentially affect adult metabolic parameters.

Methods

Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet either during gestation, lactation or after weaning. Adiposity and bone mass density was assessed by dual x-ray absorptiometry. Glucose tolerance was assessed by a glucose tolerance test. Blood pressure was examined by the tail-cuff system.

Results

Here we show that metabolic improvements are dependent on precise windows of exposure during life. The beneficial effects of dietary soy and phytoestrogens on adiposity were apparent only in animals fed post-natally, while the improvements in glucose tolerance are restricted to animals with fetal exposure to soy. Interestingly, we observed that IUP influenced adult glucose tolerance, but not adiposity. Similar IUP trends were observed for other estrogen-related metabolic parameters such as blood pressure and bone mass density.

Conclusion

Our results suggest that IUP and fetal exposure to estrogenic environmental disrupting compounds, such as dietary phytoestrogens, could alter metabolic and cardiovascular parameters in adult individuals independently of adipose gain.  相似文献   

19.

Background

Obesity is associated with inflammation of visceral adipose tissues, which increases the risk for insulin resistance. Animal models suggest that T-lymphocyte infiltration is an important early step, although it is unclear why these cells are attracted. We have recently demonstrated that dietary triglycerides, major components of high fat diets, promote intestinal absorption of a protein antigen (ovalbumin, “OVA”). The antigen was partly transported on chylomicrons, which are prominently cleared in adipose tissues. We hypothesized that intestinally absorbed gut antigens may cause T-lymphocyte associated inflammation in adipose tissue.

Methodology/Principal Findings

Triglyceride absorption promoted intestinal absorption of OVA into adipose tissue, in a chylomicron-dependent manner. Absorption tended to be higher in mesenteric than subcutaneous adipose tissue, and was lowest in gonadal tissue. OVA immunoreactivity was detected in stromal vascular cells, including endothelial cells. In OVA-sensitized mice, OVA feeding caused marked accumulation of CD3+ and osteopontin+ cells in mesenteric adipose tissue. The accumulating T-lymphocytes were mainly CD4+. As expected, high-fat (60% kCal) diets promoted mesenteric adipose tissue inflammation compared to low-fat diets (10% Kcal), as reflected by increased expression of osteopontin and interferon-gamma. Immune responses to dietary OVA further increased diet-induced osteopontin and interferon-gamma expression in mesenteric adipose. Inflammatory gene expression in subcutaneous tissue did not respond significantly to OVA or dietary fat content. Lastly, whereas OVA responses did not significantly affect bodyweight or adiposity, they significantly impaired glucose tolerance.

Conclusions/Significance

Our results suggest that loss or lack of immunological tolerance to intestinally absorbed T-lymphocyte antigens can contribute to mesenteric adipose tissue inflammation and defective glucose metabolism during high-fat dieting.  相似文献   

20.

Background

Optimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model.

Methodology/Principal Findings

Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF) diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH.

Conclusions/Significance

These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号