首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no systematic studies have been performed to examine the potential of all PBPs present in one bacterial species to evolve increased resistance against β-lactam antibiotics, we explored the ability of fifteen different defined or putative PBPs in Salmonella enterica to acquire increased resistance against penicillin G. We could after mutagenesis and selection in presence of penicillin G isolate mutants with amino-acid substitutions in the PBPs, FtsI, DacB and DacC (corresponding to PBP3, PBP4 and PBP6) with increased resistance against β-lactam antibiotics. Our results suggest that: (i) most evolved PBPs became ‘generalists” with increased resistance against several different classes of β-lactam antibiotics, (ii) synergistic interactions between mutations conferring antibiotic resistance are common and (iii) the mechanism of resistance of these mutants could be to make the active site more accessible for water allowing hydrolysis or less binding to β-lactam antibiotics.  相似文献   

2.

Background

Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs β-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for β-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs.

Methodology/Principal Findings

Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains.

Conclusions

We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.  相似文献   

3.
β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs), which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths.  相似文献   

4.
Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the d-Ala-d-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetylglucosamine and N-acetyl-muramic acid-l-Ala-d-Glu-l-Lys-d-Ala-d-Ala. β-Lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a β-lactamase and is not trapped as an acyl intermediate with β-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.Penicillin binding proteins (PBPs) are critical components of the cell wall synthesis machinery in bacteria. These membrane-associated proteins are broadly classified as low-molecular-mass (LMM) PBPs that are monofunctional d,d-carboxypeptidase enzymes or multimodular high-molecular-mass (HMM) PBPs with multiple functional roles. PBPs, in general, are anchored to the cytoplasmic membrane by a noncleavable pseudo-signal peptide. In the case of the HMM PBPs, the cytoplasmic C-terminal domain binds penicillin and catalyzes peptidoglycan cross-linking, whereas the juxtamembrane N-terminal domain participates in transglycosylation (12). The catalytic penicillin-binding (PB) module also occurs as part of penicillin sensor transducers, such as Staphylococcus aureus MecR and Bacillus licheniformis BlaR (15). The transpeptidase activity in HMM PBPs is based on a conserved lysine residue located in the so-called catalytic S-X-X-K motif, whereas the other conserved S-X-N and K(H)-T(S)-G motifs govern carboxypeptidase activity and bind penicillin (20). The carboxypeptidase domain of PBPs is the target for β-lactam antibiotics in susceptible staphylococci (with penicillin MICs as low as 1 μg/ml).The transpeptidase activity of the PBPs occurs at the d-Ala-d-Ala terminus of a precursor disaccharide pentapeptide comprising N-acetylglucosamine and N-acetyl-muramic acid-l-Ala-d-Ala-l-Lys-d-Ala-d-Ala. This reaction is initiated by acylation involving a nucleophilic attack by the active-site serine on the penultimate d-Ala residue to form an acyl-enzyme complex. The C-terminal d-Ala is subsequently released from the peptide chain, followed by deacylation. In the case of HMM PBPs, deacylation occurs when an amino group on a second peptide substrate acts as an acceptor, resulting in a peptide cross-link between two adjacent peptidoglycan strands. The carboxypeptidase activity of LMM PBPs follows a similar reaction scheme, except that the acceptor in this case is a water molecule. β-Lactam antibiotics mimic the substrates of the PBPs. However, unlike the natural substrate, the β-lactam-PBP acyl adduct is stable and results in irreversible inhibition of PBP function. The β-lactam-PBP acyl adduct has been characterized extensively, with over 50 protein-antibiotic complexes reported to date (37). Thus, in contrast to the nonessential LMM PBPs, HMM PBPs constitute lethal targets for β-lactam antibiotics (6).Staphylococcus aureus is a gram-positive coccus and is one of the leading causes of high morbidity and mortality associated with both community- and hospital-associated infections (42, 46). This coccus shows extensive genomic variation, with over 22% of the genome dedicated to dispensable regions. A genome-scale analysis of a clinical strain of S. aureus is of particular interest in this context, wherein the conversion of a susceptible strain of S. aureus to a multidrug-resistant phenotype was shown to involve just 35 mutations in 13 loci, achieved within 3 months (36). Of the five PBPs in S. aureus, an acquired PBP, PBP2a, is the most extensively examined, as it was noted to be a specific marker for methicillin-resistant S. aureus (MRSA) strains. Among the intrinsic PBPs, PBP1 has been shown to play a key role in cell growth and division (2). PBP2 is a dual-function enzyme with both transglycosylase and transpeptidase activities, and inhibition of this protein leads to restrained peptidoglycan elongation and subsequent leakage of cytoplasmic contents due to cell lysis (34, 40). Inactivation of PBP3 neither changes the muropeptide composition of the cell wall nor significantly decreases the rate of autolysis. However, cells of abnormal size and shape and with disoriented septa are produced when bacteria with inactivated PBP3 are grown with sub-MIC levels of methicillin (29).S. aureus PBP4 is a carboxypeptidase and is needed for the secondary cross-linking of peptidoglycan (19). However, it is not essential for cell growth under laboratory conditions, because mutants of S. aureus defective in PBP4 are viable (48). Overexpression of PBP4 was noted to result in an increase in β-lactam resistance and in greater cross-linking of the peptidoglycan (18). S. aureus PBP4 is similar to other LMM PBPs and is grouped within the superfamily of penicillin-susceptible and penicillin-interacting enzymes. However, homologues of PBP4 have a different phenotype in other species (1, 15). For example, a mutation of PBP4 in Pseudomonas aeruginosa triggers an AmpR-dependent overproduction of the chromosomal β-lactamase AmpC. The P. aeruginosa PBP4 mutant also activates CreBC, a two-component regulator, thereby mediating β-lactam resistance (33). Indeed, S. aureus PBP4 has been suggested to have different functions in strains with different genetic backgrounds (26). However, based on in vitro and genetic data, S. aureus PBP4 is primarily a transpeptidase and has little d,d-carboxypeptidase activity. This is also supported by the observation that increased carboxypeptidase activity decreases cell wall cross-linking due to loss of the free d-Ala-d-Ala termini necessary for transpeptidation (10). In this context, it is pertinent that pbp4 gene knockout strains of S. aureus were more resistant to the glycopeptide antibiotic vancomycin (46).Here we present the biochemical and structural characteristics of PBP4 from S. aureus strain COL. S. aureus PBP4 is a β-lactamase. A comparison of the crystal structure of S. aureus PBP4 in complex with antibiotic with that of its Escherichia coli homologue, PBP5, provides a conformational and biochemical rationale for the β-lactamase activity of PBP4. Monitoring the expression of PBP4 in the MRSA strain COL and representative clinical strains of S. aureus suggested that the expression level of PBP4 does not fluctuate substantially across these strains. Together, these data on the structure, expression, activity, and regulation of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.  相似文献   

5.
Resistance to penicillin in non-β-lactamase-producing strains of Neisseria gonorrhoeae (CMRNG strains) is mediated in part by the production of altered forms of penicillin-binding protein 2 (PBP 2) that have a decreased affinity for penicillin. The reduction in the affinity of PBP 2 is largely due to the insertion of an aspartic acid residue (Asp-345a) into the amino acid sequence of PBP 2. Truncated forms of N. gonorrhoeae PBP 2, which differed only by the insertion of Asp-345a, were constructed by placing the region of the penA genes encoding the periplasmic domain of PBP 2 (amino acids 42–581) into an ATG expression vector. When the recombinant PBP 2 molecules were over-expressed in Escherichia coli, insoluble PBP 2 inclusion bodies, which could be isolated by low-speed centrifugation of cell lysates, were formed. These insoluble aggregates were solubilized and the truncated PBP 2 polypeptides were partially purified by cation-exchange chromatography and gel filtration in the presence of denaturant prior to the refolding of the enzyme in vitro. After renaturation, gel filtration was used to separate monomeric soluble PBP 2 from improperly folded protein aggregates and other protein contaminants. A 4-liter culture of induced E. coli cells yielded 1.4 mg of soluble PBP 2 or PBP 2′ (PBP 2 containing the Asp-345a insertion), both of which were estimated to be 99% pure. The affinity of soluble PBP 2′ for [3H]penicillin G was decreased fourfold relative to that of soluble PBP 2, and their affinities were found to be identical to the affinities of the full-length PBP 2 enzymes that were previously determined in N. gonorrhoeae membranes. Furthermore, soluble PBP 2 displayed a rank order of affinity for several other β-lactam antibiotics that was consistent with the rank order of affinities previously reported for the native molecules. On the basis of these results, both of these soluble PBPs should be suitable for crystallization and X-ray crystallographic analysis.  相似文献   

6.
We used fluorescein-tagged β-lactam antibiotics to visualize penicillin-binding proteins (PBPs) in sporulating cultures of Streptomyces griseus. Six PBPs were identified in membranes prepared from growing and sporulating cultures. The binding activity of an 85-kDa PBP increased fourfold by 10 to 12 h of sporulation, at which time the sporulation septa were formed. Cefoxitin inhibited the interaction of the fluorescein-tagged antibiotics with the 85-kDa PBP and also prevented septum formation during sporulation but not during vegetative growth. The 85-kDa PBP, which was the predominant PBP in membranes of cells that were undergoing septation, preferentially bound fluorescein-6-aminopenicillanic acid (Flu-APA). Fluorescence microscopy showed that the sporulation septa were specifically labeled by Flu-APA; this interaction was blocked by prior exposure of the cells to cefoxitin at a concentration that interfered with septation. We hypothesize that the 85-kDa PBP is involved in septum formation during sporulation of S. griseus.  相似文献   

7.
The SOS response, a conserved regulatory network in bacteria that is induced in response to DNA damage, has been shown to be associated with the emergence of resistance to antibiotics. Previously, we demonstrated that heterogeneous (HeR) MRSA strains, when exposed to sub-inhibitory concentrations of oxacillin, were able to express a homogeneous high level of resistance (HoR). Moreover, we showed that oxacillin appeared to be the triggering factor of a β-lactam-mediated SOS response through lexA/recA regulators, responsible for an increased mutation rate and selection of a HoR derivative. In this work, we demonstrated, by selectively exposing to β-lactam and non-β-lactam cell wall inhibitors, that PBP1 plays a critical role in SOS-mediated recA activation and HeR-HoR selection. Functional analysis of PBP1 using an inducible PBP1-specific antisense construct showed that PBP1 depletion abolished both β-lactam-induced recA expression/activation and increased mutation rates during HeR/HoR selection. Furthermore, based on the observation that HeR/HoR selection is accompanied by compensatory increases in the expression of PBP1,-2, -2a, and -4, our study provides evidence that a combination of agents simultaneously targeting PBP1 and either PBP2 or PBP2a showed both in-vitro and in-vivo efficacy, thereby representing a therapeutic option for the treatment of highly resistant HoR-MRSA strains. The information gathered from these studies contributes to our understanding of β-lactam-mediated HeR/HoR selection and provides new insights, based on β-lactam synergistic combinations, that mitigate drug resistance for the treatment of MRSA infections.  相似文献   

8.
Resistance to the extended-spectrum cephalosporin ceftriaxone in the pathogenic bacteria Neisseria gonorrhoeae is conferred by mutations in penicillin-binding protein 2 (PBP2), the lethal target of the antibiotic, but how these mutations exert their effect at the molecular level is unclear. Using solution NMR, X-ray crystallography, and isothermal titration calorimetry, we report that WT PBP2 exchanges dynamically between a low-affinity state with an extended β3–β4 loop conformation and a high-affinity state with an inward β3–β4 loop conformation. Histidine-514, which is located at the boundary of the β4 strand, plays an important role during the exchange between these two conformational states. We also find that mutations present in PBP2 from H041, a ceftriaxone-resistant strain of N. gonorrhoeae, increase resistance to ceftriaxone by destabilizing the inward β3–β4 loop conformation or stabilizing the extended β3–β4 loop conformation to favor the low-affinity drug-binding state. These observations reveal a unique mechanism for ceftriaxone resistance, whereby mutations in PBP2 lower the proportion of target molecules in the high-affinity drug-binding state and thus reduce inhibition at lower drug concentrations.Keywords: PBP2, Neisseria gonorrhoeae, beta-lactam, conformational dynamics, antibiotic resistance

Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea, with nearly 80 million cases worldwide each year (1). Without antibiotic treatment, infections persist as a chronic disease and can cause serious sequelae, including pelvic inflammatory disease, infertility, arthritis, and disseminated infections (2). For many years, N. gonorrhoeae was treated with a single dose of penicillin, and more recently, ceftriaxone. In 2012, the emergence of several high-level ceftriaxone-resistant strains led the Centers for Disease Control and Prevention to change its recommended treatment for gonorrhea from monotherapy to dual therapy with ceftriaxone and azithromycin (3, 4, 5). However, treatment failures have been reported for both agents, and in 2018, a strain with high-level resistance to both ceftriaxone and azithromycin was identified (6, 7). Concern about azithromycin resistance led the Centers for Disease Control and Prevention recently to drop the recommendation of dual therapy in favor of an increased dose (500 mg) of ceftriaxone alone (8). Both penicillin and ceftriaxone inhibit cell wall biosynthesis in N. gonorrhoeae by targeting penicillin-binding protein 2 (PBP2).PBP2 is an essential peptidoglycan transpeptidase (TPase) that crosslinks the peptide chains from adjacent peptidoglycan strands during cell-wall synthesis (9). β-lactam antibiotics, including the extended-spectrum cephalosporin (ESC) ceftriaxone, are analogs of the d-Ala-d-Ala C terminus of the peptidoglycan substrate and as such target PBP2 by binding to and reacting with the active-site serine nucleophile (Ser310 in N. gonorrhoeae PBP2) to form a covalently acylated complex (10, 11). The acylation reaction (Equation 1) proceeds first through formation of a noncovalent complex with the β-lactam (defined by the equilibrium constant, Ks), which is then attacked by the serine nucleophile to form a covalent acyl-enzyme complex (k2). For PBPs, hydrolysis of the acyl-enzyme (k3) is very slow compared with its formation, and the enzyme is essentially irreversibly inactivated. The acylation of PBPs by β-lactam antibiotics is therefore defined by a second-order rate constant, k2/Ks (M−1 s−1), which reflects both the noncovalent binding affinity (Ks) and the first-order acylation rate (k2):E+SKsESk2ESk3E+P(1)The emergence of resistance to penicillin and ceftriaxone in N. gonorrhoeae occurs primarily via the acquisition of mutant alleles of the penA gene encoding PBP2 (12). These alleles are referred to as mosaic because they arise through multiple homologous recombination events with DNA released by commensal Neisseria species. PBP2 from the high-level ceftriaxone-resistant strain, H041, contains 61 mutations compared with PBP2 from the antibiotic-susceptible strain, FA19 (13, 14). Determining how these mutations lower the k2/Ks of ceftriaxone for PBP2 by over 10,000-fold while still preserving essential TPase activity is fundamental for understanding the evolution of antibiotic resistance.Toward this goal, we have identified a subset of these mutations that, when incorporated into the penA gene from FA19, confer ∼80% of the increase in minimum inhibitory concentration for ceftriaxone relative to that of the penA gene from H041 (penA41) (15, 16). We recently reported the structures of apo and ceftriaxone-acylated PBP2 at high resolution and have detailed conformational changes in β3 and the β3–β4 loop involved in antibiotic binding and acylation (17). Intriguingly, although present in the active site region, most of the mutations conferring resistance are not in direct contact with ceftriaxone in the crystal structure of acylated PBP2 (17, 18). We have proposed that these mutations alter the binding and acylation kinetics of PBP2 with ceftriaxone by restricting protein dynamics (18).To understand further the structural and biochemical mechanisms by which these mutations lower the acylation rates of β-lactam antibiotics, we utilized a combination of solution 19F NMR, X-ray crystallography, and biochemical approaches to investigate PBP2. We report that the β3–β4 loop in the TPase domain of WT PBP2, which is known to adopt markedly different conformations in the apo versus acylated crystal structures (17), samples two major conformational states in solution. Substitutions of WT PBP2 residues with mutations in H041 that confer ceftriaxone resistance alter the conformational landscape of PBP2 by destabilizing the high-affinity state containing the inward conformation of the β3–β4 loop and stabilizing a low-affinity conformation containing an extended β3–β4 loop conformation, thereby restricting access to the inward conformation required for high-affinity drug binding. Our combined solution NMR and crystallographic analyses of PBP2 and its preacylation drug complexes further support the notion that mutations in PBP2 from ceftriaxone-resistant strains of N. gonorrhoeae confer antibiotic resistance by hindering conformational changes required to form a productive drug-binding state (18).  相似文献   

9.
Penicillin-resistant isolates of Streptococcus pneumoniae generally contain mosaic genes encoding the low-affinity penicillin-binding proteins (PBPs) PBP2x, PBP2b, and PBP1a. We now present evidence that PBP2a and PBP1b also appear to be low-affinity variants and are encoded by distinct alleles in β-lactam-resistant transformants of S. pneumoniae obtained with chromosomal donor DNA from a Streptococcus mitis isolate. Different lineages of β-lactam-resistant pneumococcal transformants were analyzed, and transformants with low-affinity variants of all high-molecular-mass PBPs, PBP2x, -2a, -2b, -1a, and -1b, were isolated. The MICs of benzylpenicillin, oxacillin, and cefotaxime for these transformants were up to 40, 100, and 50 μg/ml, respectively, close to the MICs for the S. mitis donor strain. Recruitment of low-affinity PBPs was accompanied by a decrease in cross-linked muropeptides as revealed by high-performance liquid chromatography of muramidase-digested cell walls, but no qualitative changes in muropeptide chemistry were detected. The growth rates of all transformants were identical to that of the parental S. pneumoniae strain. The results stress the potential for the acquisition by S. pneumoniae of high-level β-lactam resistance by interspecies gene transfer.  相似文献   

10.
We found that the three high molecular weight penicillin-binding proteins (PBP) 1, 2, and 3 of Staphylococcus aureus could be blocked by the β-lactam antibiotics imipenem, cefotaxime, and mecillinam, respectively. The inhibition of any of these PBPs was not sufficient for an antibacterial effect. Even the simultaneous blocking of PBPs 2 and 3, previously supposed to be the lethal targets of β-lactam antibiotics, did not induce bacteriolysis, nor did the combined saturation of PBPs 2, 3, and 4. Instead, PBP 1 seems to play a key role, because on one hand the combined inhibition of PBP 1 with any of the other high molecular weight PBPs led to bacteriolysis, on the other hand, only inhibition of PBP 1 led to a loss of the ‘splitting system’ of the staphylococcal cross wall, similar to that observed in penicillin G-treated cells earlier.  相似文献   

11.
The combination of antibiotics is one of the strategies to combat drug-resistant bacteria, though only a handful of such combinations are in use, such as the β-lactam combinations. In the present study, the efficacy of a specific sub-inhibitory concentration of cefsulodin with other β-lactams was evaluated against a range of Gram-negative clinical isolates. This approach increased the sensitivity of the isolates, regardless of the β-lactamase production. The preferred target and mechanism of action of cefsulodin were identified in laboratory strains of Escherichia coli, by examining the effects of deleting the penicillin-binding protein (PBP) 1a and 1b encoding genes individually. Deletion of PBP1b was involved in sensitizing the bacteria to β-lactam agents, irrespective of its O-antigen status. Moreover, the use of a sub-inhibitory concentration of cefsulodin in combination with a β-lactam exerted an effect similar to that one obtained for PBP1b gene deletion. We conclude that the identified β-lactam/cefsulodin combination works by inhibiting PBP1b (at least partially) despite the involvement of β-lactamases, and therefore could be extended to a broad range of Gram-negative pathogens.  相似文献   

12.
Active efflux of antimicrobial agents is a primary mechanism by which bacterial pathogens can become multidrug resistant. The combined use of efflux pump inhibitors (EPIs) with pump substrates is under exploration to overcome efflux-mediated multidrug resistance. Phenylalanine-arginine β-naphthylamide (PAβN) is a well-studied EPI that is routinely combined with fluoroquinolone antibiotics, but few studies have assessed its utility in combination with β-lactam antibiotics. The initial goal of this study was to assess the efficacy of β-lactams in combination with PAβN against the opportunistic pathogen, Pseudomonas aeruginosa. PAβN reduced the minimal inhibitory concentrations (MICs) of several β-lactam antibiotics against P. aeruginosa; however, the susceptibility changes were not due entirely to efflux inhibition. Upon PAβN treatment, intracellular levels of the chromosomally-encoded AmpC β-lactamase that inactivates β-lactam antibiotics were significantly reduced and AmpC levels in supernatants correspondingly increased, potentially due to permeabilization of the outer membrane. PAβN treatment caused a significant increase in uptake of 8-anilino-1-naphthylenesulfonic acid, a fluorescent hydrophobic probe, and sensitized P. aeruginosa to bulky antibiotics (e.g. vancomycin) that are normally incapable of crossing the outer membrane, as well as to detergent-like bile salts. Supplementation of growth media with magnesium to stabilize the outer membrane increased MICs in the presence of PAβN and restored resistance to vancomycin. Thus, PAβN permeabilizes bacterial membranes in a concentration-dependent manner at levels below those typically used in combination studies, and this additional mode of action should be considered when using PAβN as a control for efflux studies.  相似文献   

13.
Class A penicillin-binding proteins (PBPs) catalyze the last two steps in the biosynthesis of peptidoglycan, a key component of the bacterial cell wall. Both reactions, glycosyl transfer (polymerization of glycan chains) and transpeptidation (cross-linking of stem peptides), are essential for peptidoglycan stability and for the cell division process, but remain poorly understood. The PBP-catalyzed transpeptidation reaction is the target of β-lactam antibiotics, but their vast employment worldwide has prompted the appearance of highly resistant strains, thus requiring concerted efforts towards an understanding of the transpeptidation reaction with the goal of developing better antibacterials. This goal, however, has been elusive, since PBP substrates are rapidly deacylated. In this work, we provide a structural snapshot of a “trapped” covalent intermediate of the reaction between a class A PBP with a pseudo-substrate, N-benzoyl-d-alanylmercaptoacetic acid thioester, which partly mimics the stem peptides contained within the natural, membrane-associated substrate, lipid II. The structure reveals that the d-alanyl moiety of the covalent intermediate (N-benzoyl-d-alanine) is stabilized in the cleft by a network of hydrogen bonds that place the carbonyl group in close proximity to the oxyanion hole, thus mimicking the spatial arrangement of β-lactam antibiotics within the PBP active site. This arrangement allows the target bond to be in optimal position for attack by the acceptor peptide and is similar to the structural disposition of β-lactam antibiotics with PBP clefts. This information yields a better understanding of PBP catalysis and could provide key insights into the design of novel PBP inhibitors.  相似文献   

14.
High-molecular-weight penicillin-binding proteins (PBPs) are essential integral membrane proteins of the bacterial cytoplasmic membrane responsible for biosynthesis of peptidoglycan. They are the targets of antibacterial β-lactam drugs, including penicillins, cephalosporins, and carbapenems. β-Lactams covalently acylate the active sites of the PBP transpeptidase domains. Because β-lactams are time-dependent inhibitors, quantitative assessment of the inhibitory activity of these compounds ideally involves measurement of their second-order acylation rate constants. We previously described a fluorescence anisotropy-based assay to measure these rate constants for soluble constructs of PBP3 (Anal. Biochem. 439 (2013) 37–43). Here we report the expression and purification of a soluble construct of Pseudomonas aeruginosa PBP2 as a fusion protein with NusA. This soluble PBP2 was used to measure second-order acylation rate constants with the fluorescence anisotropy assay. Measurements were obtained for mecillinam, which reacts specifically with PBP2, and for several carbapenems. The assay also revealed that PBP2 slowly hydrolyzed mecillinam and was used to measure the rate constant for this deacylation reaction.  相似文献   

15.
High-molecular-mass penicillin-binding proteins (HMM PBPs) are essential for bacterial cell wall biosynthesis and are the lethal targets of β-lactam antibiotics. When purified, HMM PBPs give undetectable or weak enzyme activity. This has impeded efforts to develop assays for HMM PBPs and to develop new inhibitors for HMM PBPs as HMM PBP targeted antibacterial agents. However, even when purified, HMM PBPs retain their ability to bind β-lactams. Here we describe a fluorescently detected microtiter plate-based assay for inhibitor binding to HMM PBPs based on competition with biotin-ampicillin conjugate (BIO-AMP) binding.  相似文献   

16.
In response to the widespread use of β-lactam antibiotics bacteria have evolved drug resistance mechanisms that include the production of resistant Penicillin Binding Proteins (PBPs). Boronic acids are potent β-lactamase inhibitors and have been shown to display some specificity for soluble transpeptidases and PBPs, but their potential as inhibitors of the latter enzymes is yet to be widely explored. Recently, a (2,6-dimethoxybenzamido)methylboronic acid was identified as being a potent inhibitor of Actinomadura sp. R39 transpeptidase (IC(50): 1.3 μM). In this work, we synthesized and studied the potential of a number of acylaminomethylboronic acids as inhibitors of PBPs from different classes. Several derivatives inhibited PBPs of classes A, B and C from penicillin sensitive strains. The (2-nitrobenzamido)methylboronic acid was identified as a good inhibitor of a class A PBP (PBP1b from Streptococcus pneumoniae, IC(50) = 26 μM), a class B PBP (PBP2xR6 from Streptococcus pneumoniae, IC(50) = 138 μM) and a class C PBP (R39 from Actinomadura sp., IC(50) = 0.6 μM). This work opens new avenues towards the development of molecules that inhibit PBPs, and eventually display bactericidal effects, on distinct bacterial species.  相似文献   

17.
Zymomonas mobilis, a Gram-negative ethanologenic non-pathogenic bacterium, is reported to exhibit resistance to high concentrations of β-lactam antibiotics. In the present study, Z. mobilis was found to be resistant to I-IV generations of cephalosporins and carbapenems, i.e. narrow, broad and extended spectrum β-lactam antibiotics. We have analysed the genome of Z. mobilis (GenBank accession No.: NC 006526) harbouring multiple genes coding for β-lactamases (BLA), β-lactamase domain containing proteins (BDP) and penicillin binding proteins (PBP). The conserved domain database analysis of BDPs predicted them to be members of metallo β-lactamase superfamily. Further, class C specific multidomain AmpC (β-lactamase C) was found in the three β-lactamases. The β-lactam resistance determinants motifs, HXHXD, KXG, SXXK, SXN, and YXN are present in the BLAs, BDPs and PBPs of Z. mobilis. The predicted theoretical pI and aliphatic index values suggested their stability. One of the PBPs, PBP2, was predicted to share functional association with rod shape determining proteins (GenBank accession Nos. YP_162095 and YP_162091). Homology modelling of three dimensional structures of the β-lactam resistance determinants and further docking studies with penicillin and other β-lactam antibiotics indicated their substrate-specificity. Semi-quantitative PCR analysis indicated that the expression of all BLAs and one BDP are induced by penicillin. Disk diffusion assay, SDS-PAGE and zymogram analysis confirms the substrate specificity of the β-lactam resistance determinants. This study gives a broader picture of the β-lactam resistance determinants of a non-pathogenic ethanologenic Z. mobilis bacterium that could have implications in laboratories since it is routinely used in many research laboratories in the world for ethanol, fructooligosaccharides, levan production and has also been reported to be present in wine and beer as a spoilage organism.  相似文献   

18.
Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth, new peptidoglycan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the β-lactam antibiotics amdinocillin (mecillinam) and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to β-lactam antibiotics.  相似文献   

19.
We report the first crystal structures of a penicillin-binding protein (PBP), PBP3, from Pseudomonas aeruginosa in native form and covalently linked to two important β-lactam antibiotics, carbenicillin and ceftazidime. Overall, the structures of apo and acyl complexes are very similar; however, variations in the orientation of the amino-terminal membrane-proximal domain relative to that of the carboxy-terminal transpeptidase domain indicate interdomain flexibility. Binding of either carbenicillin or ceftazidime to purified PBP3 increases the thermostability of the enzyme significantly and is associated with local conformational changes, which lead to a narrowing of the substrate-binding cleft. The orientations of the two β-lactams in the active site and the key interactions formed between the ligands and PBP3 are similar despite differences in the two drugs, indicating a degree of flexibility in the binding site. The conserved binding mode of β-lactam-based inhibitors appears to extend to other PBPs, as suggested by a comparison of the PBP3/ceftazidime complex and the Escherichia coli PBP1b/ceftoxamine complex. Since P. aeruginosa is an important human pathogen, the structural data reveal the mode of action of the frontline antibiotic ceftazidime at the molecular level. Improved drugs to combat infections by P. aeruginosa and related Gram-negative bacteria are sought and our study provides templates to assist that process and allows us to discuss new ways of inhibiting PBPs.  相似文献   

20.
Resistance to β-lactam antibiotics in Streptococcus pneumoniae is due to alteration of penicillin-binding proteins (PBPs). S. pneumoniae PBP 1a belongs to the class A high-molecular-mass PBPs, which harbor transpeptidase (TP) and glycosyltransferase (GT) activities. The GT active site represents a new potential target for the generation of novel nonpenicillin antibiotics. The 683-amino-acid extracellular region of PBP 1a (PBP 1a*) was expressed in Escherichia coli as a GST fusion protein. The GST-PBP 1a* soluble protein was purified, and its domain organization was revealed by limited proteolysis. A protease-resistant fragment spanning Ser 264 to Arg 653 exhibited a reactivity profile against both β-lactams and substrate analogues similar to that of the parent protein. This protein fragment represents the TP domain. The GT domain (Ser 37 to Lys 263) was expressed as a recombinant GST fusion protein. Protection by moenomycin of the GT domain against trypsin degradation was interpreted as an interaction between the GT domain and the moenomycin.The synthesis of the bacterial cell wall requires cytoplasmic and periplasmic enzymes. The final steps of peptidoglycan biosynthesis occur outside the cytoplasmic membrane, and they are catalyzed by membrane-bound penicillin-binding proteins (PBPs). PBPs play essential roles in cell division and morphology (6, 20, 31). Based upon their molecular sizes and amino acid sequence similarities, PBPs can be classified into two groups (6): low-molecular-weight (low-Mr) PBPs, which act as d,d-carboxypeptidases, and high-molecular-weight (high-Mr) PBPs, which carry transpeptidase (TP) and glycosyltransferase (GT) activities. The high-Mr group can be further divided into bifunctional enzymes with TP and GT activities (class A) and monofunctional TP enzymes (class B).β-Lactam antibiotics bind with high affinity specifically to d,d-carboxypeptidase and TP domains because of their structural similarity to the natural substrates, the stem peptides. This binding results in the formation of a covalent acyl-PBP enzyme complex, leading to the inactivation of PBPs.High-Mr PBPs are multidomain proteins (6). The three-dimensional structure of Streptococcus pneumoniae PBP 2x (class B high-Mr PBP) illustrates this domain organization (25). The only non-penicillin-binding domain of known function is the GT domain, corresponding to the N-terminal region of class A PBPs. This GT activity, clearly identified in Escherichia coli PBP 1b, is difficult to measure (23, 29, 3135). It is insensitive to penicillin but sensitive to moenomycin, an antibiotic which is not used for human therapy (23, 29, 32, 33).S. pneumoniae is one of the major human pathogens of the upper respiratory tract, causing pneumonia, meningitis, and ear infections. Six PBPs have been identified in S. pneumoniae: high-Mr PBPs 1a, 1b, 2a, 2x, and 2b and low-Mr PBP 3 (8). PBPs 1a, 1b, and 2a belong to class A, while PBPs 2x and 2b are monofunctional class B proteins. Deletion of pbp2x and pbp2b in S. pneumoniae is lethal for the bacteria, while the deletion of pbp1a is tolerated (11), probably due to compensation by PBP 1b. This has been observed for E. coli class A PBP 1a, whose deletion can be compensated for by PBP 1b (36). In clinical isolates of resistant pneumococci, pbp1a, pbp2x, and pbp2b genes were shown to present a mosaic organization, encoding PBPs with reduced affinity for β-lactam antibiotics (2, 5, 15, 18). The specific resistance to ceftriaxone and cefotaxime of S. pneumoniae from the hospital environment is mediated by modification of PBP 2x and PBP 1a (22). Furthermore, gene transfer of pbp1a, pbp2x, and pbp2b from resistant strains conferred penicillin resistance on sensitive S. pneumoniae strains under laboratory conditions (24, 14, 15, 27, 30).The effort to overcome resistance to antibiotics in S. pneumoniae might therefore benefit from a detailed understanding of the molecular basis of TP and GT activities. The GT domain represents a new potential target for novel nonpenicillin antibiotics. Here, we delineate the GT and TP domains of S. pneumoniae PBP 1a* (a water-soluble form of PBP 1a) by limited proteolytic digestion and expression of recombinant domains. The TP activity of PBP 1a* and that of the isolated TP domain were compared. We also present evidence for an interaction between the isolated GT domain and moenomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号