首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对丙型肝炎病毒RNA(HCV-RNA)的5′非编码区和部分C区的二级结构,设计并合成了四个不同的锤头型核酶(ribozyme A, ribozyme B, ribozyme C1, ribozyme C2).首先应用体外切割实验筛选出作用于HCV-RNA起始密码子上游GTA↓位点的核酶RzA有较好的活性.为初步验证核酶RzA在细胞内的切割活性,经脂质体介导,将RzA-RNA与另一携带该核酶靶基因的质粒表达载体pCl-neo-luciferase(载体中荧光素酶基因受核酶靶基因的调控)共转染HepG2细胞.通过测定荧光素酶基因的表达证实了核酶在细胞内有较好的切割活性.在此实验基础上,把RzA基因克隆至pCl-neo质粒表达载体中,再次经脂质体介导,将重组的表达载体pCl-neo-RzA与携带该核酶靶基因的质粒表达载体pCl-neo-luciferase共转染HepG2细胞,获得了更好的切割效果.  相似文献   

2.
CD55 limits excessive complement activation on the host cell surface by accelerating the decay of C3 convertases. In this study, we observed that hepatitis C virus (HCV) infection of hepatocytes or HCV core protein expression in transfected hepatocytes upregulated CD55 expression at the mRNA and protein levels. Further analysis suggested that the HCV core protein or full-length (FL) genome enhanced CD55 promoter activity in a luciferase-based assay, which was further augmented in the presence of interleukin-6. Mutation of the CREB or SP-1 binding site on the CD55 promoter impaired HCV core protein-mediated upregulation of CD55. HCV-infected or core protein-transfected Huh7.5 cells displayed greater viability in the presence of CD81 and CD55 antibodies and complement. Biochemical analysis revealed that CD55 was associated with cell culture-grown HCV after purification by sucrose density gradient ultracentrifugation. Consistent with this, a polyclonal antibody to CD55 captured cell culture-grown HCV. Blocking antibodies against CD55 or virus envelope glycoproteins in the presence of normal human serum as a source of complement inhibited HCV infection. The inhibition was enhanced in the presence of both the antibodies and serum complement. Collectively, these results suggest that HCV induces and associates with a negative regulator of the complement pathway, a likely mechanism for immune evasion.  相似文献   

3.
Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.  相似文献   

4.
Our previous studies have found that hepatitis C virus (HCV) particles are enriched in apolipoprotein E (apoE) and that apoE is required for HCV infectivity and production. Studies by others, however, suggested that both microsomal transfer protein (MTP) and apoB are important for HCV production. To define the roles of apoB and apoE in the HCV life cycle, we developed a single-cycle HCV growth assay to determine the correlation of HCV assembly with apoB and apoE expression, as well as the influence of MTP inhibitors on the formation of HCV particles. The small interfering RNA (siRNA)-mediated knockdown of apoE expression remarkably suppressed the formation of HCV particles. However, apoE expressed ectopically could restore the defect of HCV production posed by the siRNA-mediated knockdown of endogenous apoE expression. In contrast, apoB-specific antibodies and siRNAs had no significant effect on HCV infectivity and production, respectively, suggesting that apoB does not play a significant role in the HCV life cycle. Additionally, two MTP inhibitors, CP-346086 and BMS-2101038, efficiently blocked secretion of apoB-containing lipoproteins but did not affect HCV production unless apoE expression and secretion were inhibited. At higher concentrations, however, MTP inhibitors blocked apoE expression and secretion and consequently suppressed the formation of HCV particles. Furthermore, apoE was found to be sensitive to trypsin digestion and to interact with NS5A in purified HCV particles and HCV-infected cells, as demonstrated by coimmunoprecipitation. Collectively, these findings demonstrate that apoE but not apoB is required for HCV assembly, probably via a specific interaction with NS5A.Hepatitis C virus (HCV) is the leading cause of chronic viral hepatitis, affecting approximately 170 million people worldwide (8, 40). HCV coinfection with human immunodeficiency virus (HIV) is also common, occurring overall in 25 to 30% of HIV-positive persons (1). Individuals with chronic HCV infection are at high risk for the development of cirrhosis and hepatocellular carcinoma. A pegylated interferon and ribavirin combination is the standard therapy to treat hepatitis C but suffers from limited efficacy (<50% antiviral response among patients infected with the dominant genotype 1 HCV) and severe side effects (18, 27). More efficacious and safer antiviral drugs for effective treatment of hepatitis C are urgently needed. A thorough understanding of the HCV life cycle will likely provide novel targets for antiviral drug discovery and development to control HCV infection.HCV is an enveloped RNA virus containing a single-stranded, positive-sense RNA genome and is classified as a Hepacivirus in the Flaviviridae family (11, 33). The viral RNA genome carries a single open reading frame flanked by untranslated regions (UTRs) at both the 5′ and 3′ ends. The 5′ and 3′ UTRs contain cis-acting RNA elements important for the initiation of HCV polyprotein translation and viral RNA replication (24). Upon translation, the HCV polyprotein precursor is proteolytically processed by cellular peptidases and viral proteases into at least 10 different viral proteins (C, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Studies with subgenomic HCV RNAs demonstrated that the NS3 to NS5B proteins, in association with intracellular membranes and cellular proteins, are essential and sufficient for HCV RNA replication in the cell (5, 14, 25). The newly synthesized HCV proteins and RNA genome are assembled to form progeny HCV particles by undetermined mechanisms.Our earlier work found that infectious HCV particles are highly enriched in apolipoprotein E (apoE), which is a major determinant of HCV infectivity and production in cell culture (10). ApoE-specific monoclonal antibodies (MAbs) effectively neutralized HCV infectivity, in a dose-dependent manner. The knockdown of apoE expression by specific small interfering RNA (siRNA) remarkably suppressed HCV production, suggesting that apoE is also important for the formation of infectious particles and/or egression (10). However, studies by others suggested that HCV assembly and production are dependent on microsomal transfer protein (MTP) and apolipoprotein B (apoB), both of which are essential components required for the assembly and secretion of very-low-density lipoproteins (VLDLs) (19, 21). In those studies, both apoB-specific siRNAs and MTP inhibitors were found to suppress HCV production (19, 21). It was speculated that HCV shares the same assembly and secretion pathway with VLDLs.To define the roles of apoB and apoE in the formation of HCV particles and egression, we developed a single-cycle HCV growth assay. Using this assay system, we have demonstrated that apoE but not apoB is required for the infectivity and formation of infectious HCV particles. First of all, apoB-specific MAb and polyclonal antibodies did not affect HCV infection. Additionally, apoE-specific siRNA potently inhibited the formation of infectious HCV particles, whereas HCV production was unaffected by the siRNA-mediated knockdown of apoB expression. Furthermore, two MTP inhibitors, CP-346086 and BMS-2101038, efficiently blocked apoB secretion but did not significantly affect HCV production prior to the blockage of apoE expression/secretion. At higher concentrations, however, both MTP inhibitors blocked apoE secretion and consequently suppressed the formation of infectious HCV particles. To further understand the role of apoE in HCV assembly, we carried out coimmunoprecipitation (co-IP) experiments and found that apoE-specific MAb pulled down NS5A but not other HCV proteins from lysed HCV particles, suggesting a specific interaction between apoE and NS5A during the formation of infectious HCV particles. Collectively, our findings demonstrate that apoE but not apoB is required for HCV assembly, probably via a specific interaction with NS5A.  相似文献   

5.
Membrane-anchored complement regulatory proteins (CRPs), including CD46, CD55, and CD59, protect host cells from complement attack. In the present study, we investigated whether periodontopathogen lipopolysaccharide and proinflammatory cytokines modulate CRP gene/protein expression in human oral epithelial cells. The lipopolysaccharide of Treponema denticola and Tannerella forsythia were the most potent for increasing the gene expression of CD55 and CD59, and to a lesser extent CD46, after a 48-h stimulation. An lipopolysaccharide-induced upregulation of epithelial cell-surface CRP was also demonstrated. The stimulation of epithelial cells with lipopolysaccharide was associated with interleukin-6 (IL-6) and IL-8 secretion. Although these two cytokines had no effect on CD46 and CD55 gene expression in epithelial cells, IL-1β and tumor necrosis factor-α induced a significant upregulation. The cell-surface expression of CRP was also increased by the stimulation of epithelial cells with cytokines. The CD46, CD55, and CD59 gene/protein expression was upregulated by periodontopathogen lipopolysaccharide and proinflammatory cytokines. It can be hypothesized that, when faced with bacterial challenges and inflammatory conditions associated with active periodontal sites, oral epithelial cells may respond by increasing CRP gene/protein expression to avoid cell lysis by the complement system, which is activated during periodontitis.  相似文献   

6.
7.
Critical protection from renal ischemia reperfusion injury by CD55 and CD59   总被引:11,自引:0,他引:11  
Renal ischemia-reperfusion injury (IRI) is a feature of ischemic acute renal failure and it impacts both short- and long-term graft survival after kidney transplantation. Complement activation has been implicated in renal IRI, but its mechanism of action is uncertain and the determinants of complement activation during IRI remain poorly understood. We engineered mice deficient in two membrane complement regulatory proteins, CD55 and CD59, and used them to investigate the role of these endogenous complement inhibitors in renal IRI. CD55-deficient (CD55(-/-)), but not CD59-deficient (CD59(-/-)), mice exhibited increased renal IRI as indicated by significantly elevated blood urea nitrogen levels, histological scores, and neutrophil infiltration. Remarkably, although CD59 deficiency alone was inconsequential, CD55/CD59 double deficiency greatly exacerbated IRI. Severe IRI in CD55(-/-)CD59(-/-) mice was accompanied by endothelial deposition of C3 and the membrane attack complex (MAC) and medullary capillary thrombosis. Complement depletion in CD55(-/-)CD59(-/-) mice with cobra venom factor prevented these effects. Thus, CD55 and CD59 act synergistically to inhibit complement-mediated renal IRI, and abrogation of their function leads to MAC-induced microvascular injury and dysfunction that may exacerbate the initial ischemic assault. Our findings suggest a rationale for anti-complement therapies aimed at preventing microvascular injury during ischemia reperfusion, and the CD55(-/-)CD59(-/-) mouse provides a useful animal model in this regard.  相似文献   

8.
9.
10.
11.
The putative envelope glycoproteins of hepatitis C virus (HCV) likely play an important role in the initiation of viral infection. Available information suggests that the genomic regions encoding the putative envelope glycoproteins, when expressed as recombinant proteins in mammalian cells, largely accumulate in the endoplasmic reticulum. In this study, genomic regions which include the putative ectodomain of the E1 (amino acids 174 to 359) and E2 (amino acids 371 to 742) glycoproteins were appended to the transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein. This provided a membrane anchor signal and the VSV incorporation signal at the carboxy termini of the E1 and E2 glycoproteins. The chimeric gene constructs exhibited expression of the recombinant proteins on the cell surface in a transient expression assay. When infected with a temperature-sensitive VSV mutant (ts045) and grown at the nonpermissive temperature (40.5°C), cells transiently expressing the E1 or E2 chimeric glycoprotein generated VSV/HCV pseudotyped virus. The resulting pseudotyped virus generated from E1 or E2 surprisingly exhibited the ability to infect mammalian cells and sera derived from chimpanzees immunized with the homologous HCV envelope glycoproteins neutralized pseudotyped virus infectivity. Results from this study suggested a potential functional role for both the E1 and E2 glycoproteins in the infectivity of VSV/HCV pseudotyped virus in mammalian cells. These observations further suggest the importance of using both viral glycoproteins in a candidate subunit vaccine and the potential for using a VSV/HCV pseudotyped virus to determine HCV neutralizing antibodies.  相似文献   

12.
Enveloped viruses can incorporate host cell membrane proteins during the budding process. Here we demonstrate that mumps virus (MuV) and vesicular stomatitis virus (VSV) assemble to include CD46 and CD55, two host cell regulators which inhibit propagation of complement pathways through distinct mechanisms. Using viruses which incorporated CD46 alone, CD55 alone, or both CD46 and CD55, we have tested the relative contribution of these regulators in resistance to complement-mediated neutralization. Virion-associated CD46 and CD55 were biologically active, with VSV showing higher levels of activity of both cofactors, which promoted factor I-mediated cleavage of C3b into iC3b as well as decay-accelerating factor (DAF) activity against the C3 convertase, than MuV. Time courses of in vitro neutralization with normal human serum (NHS) showed that both regulators could delay neutralization, but viruses containing CD46 alone were neutralized faster and more completely than viruses containing CD55 alone. A dominant inhibitory role for CD55 was most evident for VSV, where virus containing CD55 alone was not substantially different in neutralization kinetics from virus harboring both regulators. Electron microscopy showed that VSV neutralization proceeded through virion aggregation followed by lysis, with virion-associated CD55 providing a delay in both aggregation and lysis more substantial than that conferred by CD46. Our results demonstrate the functional significance of incorporation of host cell factors during virion envelope assembly. They also define pathways of virus complement-mediated neutralization and suggest the design of more effective viral vectors.  相似文献   

13.
So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.  相似文献   

14.
Hepatitis C virus (HCV) glycoproteins E1 and E2, when expressed in eukaryotic cells, are retained in the endoplasmic reticulum (ER). C-terminal truncation of E2 at residue 661 or 715 (position on the polyprotein) leads to secretion, consistent with deletion of a proposed hydrophobic transmembrane anchor sequence. We demonstrate cell surface expression of a chimeric glycoprotein consisting of E2 residues 384 to 661 fused to the transmembrane and cytoplasmic domains of influenza A virus hemagglutinin (HA), termed E2661-HATMCT. The E2661-HATMCT chimeric glycoprotein was able to bind a number of conformation-dependent monoclonal antibodies and a recombinant soluble form of CD81, suggesting that it was folded in a manner comparable to "native" E2. Furthermore, cell surface-expressed E2661-HATMCT demonstrated pH-dependent changes in antigen conformation, consistent with an acid-mediated fusion mechanism. However, E2661-HATMCT was unable to induce cell fusion of CD81-positive HEK cells after neutral- or low-pH treatment. We propose that a stretch of conserved, hydrophobic amino acids within the E1 glycoprotein, displaying similarities to flavivirus and paramyxovirus fusion peptides, may constitute the HCV fusion peptide. We demonstrate that influenza virus can incorporate E2661-HATMCT into particles and discuss experiments to address the relevance of the E2-CD81 interaction for HCV attachment and entry.  相似文献   

15.
16.
BackgroundProprotein convertase subtilisin/kexin type 9 (PSCK9) is secreted mainly from the liver and binds to the low-density lipoprotein receptor (LDLR), reducing LDLR availability and thus resulting in an increase in LDL-cholesterol. While the LDLR has been implicated in the cell entry process of the hepatitis C virus (HCV), overexpression of an artificial non-secreted, cell membrane-bound form of PCSK9 has also been shown to reduce surface expression of CD81, a major component of the HCV entry complex, leading to concerns that pharmacological inhibition of PCSK9 may increase susceptibility to HCV infection by increasing either CD81 or LDLR availability. Here, we evaluated effects of PCSK9 and PCSK9 blockade on CD81 levels and HCV entry with a physiologically relevant model using native secreted PCSK9 and a monoclonal antibody to PCSK9, alirocumab.ConclusionThese results suggest that inhibition of PCSK9 with alirocumab has no effect on CD81 and does not result in increased susceptibility to HCV entry.  相似文献   

17.
使用亲和捕获PCR法研究丙型肝炎病毒(HCV)和人IgG的相互作用,发现HCV能与IgG及完整的IgGFc片段结合,但不与Fab片段结合。这种结合可以被Fc片段所竞争抑制,而不能被Fab片段所抑制。HCVRNA阴性血浆不能阻断Fc片段与HCV的结合,推测这是一种HCV颗粒与IgGFc片段之间的特异性结合。本研究揭示了HCV与IgG之间的相互作用,探讨了HCV引起免疫复合物疾病的机理及丙型肝炎的慢性化倾向。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号