首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian outer hair cells (OHCs) provide a positive mechanical feedback to enhance the cochlea''s hearing sensitivity and frequency selectivity. Although the OHC-specific, somatic motor protein prestin is required for cochlear amplification, it remains unclear whether prestin can provide sufficient cycle-by-cycle feedback. In cochlear mechanical modeling, varying amounts of OHC motor activity should provide varying degrees of feedback efficiency to adjust the gain of cochlear amplifier at resonant frequencies. Here we created and characterized two new prestin-hypomorphic mouse models with reduced levels of wild-type prestin. OHCs from these mice exhibited length, total elementary charge movement (Q max), charge density, and electromotility intermediate between those of wild-type and prestin-null mice. Remarkably, measurements of auditory brainstem responses and distortion product otoacoustic emissions from these mice displayed wild-type like hearing sensitivities at 4–22 kHz. These results indicate that as low as 26.7% Q max, 34.0% charge density and 44.0% electromotility in OHCs were sufficient for wild-type-like hearing sensitivity in mice at 4–22 kHz, and that these in vitro parameters of OHCs did not correlate linearly with the feedback efficiency for in vivo gain of the cochlear amplifier. Our results thus provide valuable data for modeling cochlear mechanics and will stimulate further mechanistic analysis of the cochlear amplifier.  相似文献   

2.
The operation of the mammalian cochlea relies on a mechanical traveling wave that is actively boosted by electromechanical forces in sensory outer hair cells (OHCs). This active cochlear amplifier produces the impressive sensitivity and frequency resolution of mammalian hearing. The cochlear amplifier has inspired scientists since its discovery in the 1970s, and is still not well understood. To explore cochlear electromechanics at the sensory cell/tissue interface, sound-evoked intracochlear pressure and extracellular voltage were measured using a recently developed dual-sensor with a microelectrode attached to a micro-pressure sensor. The resulting coincident in vivo observations of OHC electrical activity, pressure at the basilar membrane and basilar membrane displacement gave direct evidence for power amplification in the cochlea. Moreover, the results showed a phase shift of voltage relative to mechanical responses at frequencies slightly below the peak, near the onset of amplification. Based on the voltage-force relationship of isolated OHCs, the shift would give rise to effective OHC pumping forces within the traveling wave peak. Thus, the shift activates the cochlear amplifier, serving to localize and thus sharpen the frequency region of amplification. These results are the most concrete evidence for cochlear power amplification to date and support OHC somatic forces as its source.  相似文献   

3.
The operation of the mammalian cochlea relies on a mechanical traveling wave that is actively boosted by electromechanical forces in sensory outer hair cells (OHCs). This active cochlear amplifier produces the impressive sensitivity and frequency resolution of mammalian hearing. The cochlear amplifier has inspired scientists since its discovery in the 1970s, and is still not well understood. To explore cochlear electromechanics at the sensory cell/tissue interface, sound-evoked intracochlear pressure and extracellular voltage were measured using a recently developed dual-sensor with a microelectrode attached to a micro-pressure sensor. The resulting coincident in vivo observations of OHC electrical activity, pressure at the basilar membrane and basilar membrane displacement gave direct evidence for power amplification in the cochlea. Moreover, the results showed a phase shift of voltage relative to mechanical responses at frequencies slightly below the peak, near the onset of amplification. Based on the voltage-force relationship of isolated OHCs, the shift would give rise to effective OHC pumping forces within the traveling wave peak. Thus, the shift activates the cochlear amplifier, serving to localize and thus sharpen the frequency region of amplification. These results are the most concrete evidence for cochlear power amplification to date and support OHC somatic forces as its source.  相似文献   

4.
We used a computational model of rhythmic movement to analyze how the connectivity of sensory feedback affects the tuning of a closed-loop neuromechanical system to the mechanical resonant frequency (ωr). Our model includes a Matsuoka half-center oscillator for a central pattern generator (CPG) and a linear, one-degree-of-freedom system for a mechanical component. Using both an open-loop frequency response analysis and closed-loop simulations, we compared resonance tuning with four different feedback configurations as the mechanical resonant frequency, feedback gain, and mechanical damping varied. The feedback configurations consisted of two negative and two positive feedback connectivity schemes. We found that with negative feedback, resonance tuning predominantly occurred when ωr was higher than the CPG’s endogenous frequency (ωCPG). In contrast, with the two positive feedback configurations, resonance tuning only occurred if ωr was lower than ωCPG. Moreover, the differences in resonance tuning between the two positive (negative) feedback configurations increased with increasing feedback gain and with decreasing mechanical damping. Our results indicate that resonance tuning can be achieved with positive feedback. Furthermore, we have shown that the feedback configuration affects the parameter space over which the endogenous frequency of the CPG or resonant frequency the mechanical dynamics dominates the frequency of a rhythmic movement.  相似文献   

5.
A mechanism for active hearing   总被引:3,自引:0,他引:3  
The remarkable sensitivity, frequency selectivity, and nonlinearity of the cochlea have been attributed to the putative 'cochlear amplifier', which consumes metabolic energy to amplify the cochlear mechanical response to sounds. Recent studies have demonstrated that outer hair cells actively generate force using somatic electromotility and active hair-bundle motion. However, the expected power gain of the cochlear amplifier has not been demonstrated experimentally, and the measured location of cochlear nonlinearity is inconsistent with the predicted location of the cochlear amplifier. We instead propose a 'cochlear transformer' mechanism to interpret cochlear performance.  相似文献   

6.
Ren T  He W  Porsov E 《PloS one》2011,6(5):e20149

Background

To detect soft sounds, the mammalian cochlea increases its sensitivity by amplifying incoming sounds up to one thousand times. Although the cochlear amplifier is thought to be a local cellular process at an area basal to the response peak on the spiral basilar membrane, its location has not been demonstrated experimentally.

Methodology and Principal Findings

Using a sensitive laser interferometer to measure sub-nanometer vibrations at two locations along the basilar membrane in sensitive gerbil cochleae, here we show that the cochlea can boost soft sound-induced vibrations as much as 50 dB/mm at an area proximal to the response peak on the basilar membrane. The observed amplification works maximally at low sound levels and at frequencies immediately below the peak-response frequency of the measured apical location. The amplification decreases more than 65 dB/mm as sound levels increases.

Conclusions and Significance

We conclude that the cochlea amplifier resides at a small longitudinal region basal to the response peak in the sensitive cochlea. These data provides critical information for advancing our knowledge on cochlear mechanisms responsible for the remarkable hearing sensitivity, frequency selectivity and dynamic range.  相似文献   

7.
The remarkable power amplifier [1] of the cochlea boosts low-level and compresses high-level vibrations of the basilar membrane (BM) [2]. By contributing maximally at the characteristic frequency (CF) of each point along its length, the amplifier ensures the exquisite sensitivity, narrow frequency tuning, and enormous dynamic range of the mammalian cochlea. The motor protein prestin in the outer hair cell (OHC) lateral membrane is a prime candidate for the cochlear power amplifier [3]. The other contender for this role is the ubiquitous calcium-mediated motility of the hair cell stereocilia, which has been demonstrated in vitro and is based on fast adaptation of the mechanoelectrical transduction channels [4, 5]. Absence of prestin [6] from OHCs results in a 40-60 dB reduction in cochlear neural sensitivity [7]. Here we show that sound-evoked BM vibrations in the high-frequency region of prestin(-/-) mice cochleae are, surprisingly, as sensitive as those of their prestin(+/+) siblings. The BM vibrations of prestin(-/-) mice are, however, broadly tuned to a frequency approximately a half octave below the CF of prestin(+/+) mice at similar BM locations. The peak sensitivity of prestin(+/+) BM tuning curves matches the neural thresholds. In contrast, prestin(-/-) BM tuning curves at their best frequency are >50 dB more sensitive than the neural responses. We propose that the absence of prestin from OHCs, and consequent reduction in stiffness of the cochlea partition, changes the passive impedance of the BM at high frequencies, including the CF. We conclude that prestin influences the cochlear partition's dynamic properties that permit transmission of its vibrations into neural excitation. Prestin is crucial for defining sharp and sensitive cochlear frequency tuning by reducing the sensitivity of the low-frequency tail of the tuning curve, although this necessitates a cochlear amplifier to determine the narrowly tuned tip.  相似文献   

8.
The role of outer hair cell motility in cochlear tuning.   总被引:7,自引:0,他引:7  
The mammalian cochlea's remarkable sensitivity and frequency selectivity are thought to be mediated by the mechanical feedback action of outer hair cells. New tools for measuring the movement of cochlear elements, and recent advances in modeling are increasing our knowledge of cochlear mechanics.  相似文献   

9.
Due to shortcomings of conventional hearing aid technology, such as unsatisfactory sound quality due to limited frequency range and undesired distortion, occlusion of the outer ear canal, and acoustic feedback with high amplification, but also psychological aspects of stigmatization, a significant of patients in need of hearing aids are actually not wearing them. Active hearing implants can be distinguished in: (1) impedance transformation implants (ITI), (2) cochlear amplifier implants (CAI), (3) cochlear implants (CI), and (4) brain stem implants (BSI). Whereas ITI are designed for patients with middle ear hearing loss, CAI are intended to restore hearing in patients with inner ear hearing loss. Advantages of CAI may be: (1) improved sound fidelity, (2) no occlusion of the outer ear canal, (3) no feedback, and (4) invisibility. However, not all features are true for every device. CI replace inner ear function in deaf or almost deaf patients. This article gives an overview on the range of active hearing implants to restore hearing and outlines the future use of computer and robot aided surgery.  相似文献   

10.
The antennal hearing organs of the fruit fly Drosophila melanogaster boost their sensitivity by an active mechanical process that, analogous to the cochlear amplifier of vertebrates, resides in the motility of mechanosensory cells. This process nonlinearly improves the sensitivity of hearing and occasionally gives rise to self-sustained oscillations in the absence of sound. Time series analysis of self-sustained oscillations now unveils that the underlying dynamical system is well described by a generalization of the van-der-Pol oscillator. From the dynamic equations, the underlying amplification dynamics can explicitly be derived. According to the model, oscillations emerge from a combination of negative damping, which reflects active amplification, and a nonlinear restoring force that dictates the amplitude of the oscillations. Hence, active amplification in fly hearing seems to rely on the negative damping mechanism initially proposed for the cochlear amplifier of vertebrates.  相似文献   

11.
Outer hair cell electromotility is crucial for the proper function of the cochlear amplifier, the active process that enhances sensitivity and frequency discrimination of the mammalian ear. Previous work (Kalinec, F., Zhang, M., Urrutia, R., and Kalinec, G. (2000) J. Biol. Chem. 275, 28000-28005) has suggested a role for Rho GTPases in the regulation of outer hair cell electromotility, although the signaling pathways mediated by these enzymes remain to be established. Here we have investigated the cellular and molecular mechanisms underlying the homeostatic regulation of the electromotile response of guinea pig outer hair cells. Our findings defined a ROCK-mediated signaling cascade that continuously modulates outer hair cell electromotility by selectively targeting the cytoskeleton. A distinct ROCK-independent pathway functions as a fast resetting mechanism for this system. Neither pathway affects the function of prestin, the unique molecular motor of outer hair cells. These results extend our understanding of a basic mechanism of both normal human hearing and deafness, revealing the key role of the cytoskeleton in the regulation of outer hair cell electromotility and suggesting ROCK as a molecular target for modulating the function of the cochlear amplifier.  相似文献   

12.
Power amplification in the mammalian cochlea   总被引:1,自引:0,他引:1  
It was first suggested by Gold in 1948 [1] that the exquisite sensitivity and frequency selectivity of the mammalian cochlea is due to an active process referred to as the cochlear amplifier. It is thought that this process works by pumping energy to augment the otherwise damped sound-induced vibrations of the basilar membrane [2-4], a mechanism known as negative damping. The existence of the cochlear amplifier has been inferred from comparing responses of sensitive and compromised cochleae [5] and observations of acoustic emissions [6, 7] and through mathematical modeling [8, 9]. However, power amplification has yet to be demonstrated directly. Here, we prove that energy is indeed produced in the cochlea on a cycle-by-cycle basis. By using laser interferometry [10], we show that the nonlinear component of basilar-membrane responses to sound stimulation leads the forces acting on the membrane. This is possible only in active systems with negative damping [11]. Our finding provides the first direct evidence for power amplification in the mammalian cochlea. The finding also makes redundant current hypotheses of cochlear frequency sharpening and sensitization that are not based on negative damping.  相似文献   

13.
A key requirement for encoding the auditory environment is the ability to dynamically alter cochlear sensitivity. However, merely attaining a steady state of maximal sensitivity is not a viable solution since the sensory cells and ganglion cells of the cochlea are prone to damage following exposure to loud sound. Most often, such damage is via initial metabolic insult that can lead to cellular death. Thus, establishing the highest sensitivity must be balanced with protection against cellular metabolic damage that can lead to loss of hair cells and ganglion cells, resulting in loss of frequency representation. While feedback mechanisms are known to exist in the cochlea that alter sensitivity, they respond only after stimulus encoding, allowing potentially damaging sounds to impact the inner ear at times coincident with increased sensitivity. Thus, questions remain concerning the endogenous signaling systems involved in dynamic modulation of cochlear sensitivity and protection against metabolic stress. Understanding endogenous signaling systems involved in cochlear protection may lead to new strategies and therapies for prevention of cochlear damage and consequent hearing loss. We have recently discovered a novel cochlear signaling system that is molecularly equivalent to the classic hypothalamic–pituitary–adrenal (HPA) axis. This cochlear HPA-equivalent system functions to balance auditory sensitivity and susceptibility to noise-induced hearing loss, and also protects against cellular metabolic insults resulting from exposures to ototoxic drugs. We review the anatomy, physiology, and cellular signaling of this system, and compare it to similar signaling in other organs/tissues of the body.  相似文献   

14.
M Ospeck  KH Iwasa 《Biophysical journal》2012,102(8):1767-1774
Recent experiments have shown a much larger conductance in outer hair cells, the central components of the mammalian cochlear amplifier. The report used only the cell's linear capacitance, which together with increased conductance, raised the cell's RC corner frequency so that voltage-dependent motility was better able to amplify high-frequency sounds. We construct transfer functions for a simple model of a high characteristic frequency (CF) local cochlear resonance. These show that voltage roll-off does not occur above the RC corner. Instead, it is countered by high-pass filtering that is intrinsic to the mammal's electromechanical resonance. Thus, the RC corner of a short outer hair cell used for high-frequency amplification does not have to be close to the CF, but depending on the drag, raised only above 0.1 CF. This high-pass filter, built in to the mammalian amplifier, allows for sharp frequency selectivity at very high CF.  相似文献   

15.
Outer hair cells are the mechanical effectors of the cochlear amplifier, an active process that improves the sensitivity and frequency discrimination of the mammalian ear. In vivo, the gain of the cochlear amplifier is regulated by the efferent neurotransmitter acetylcholine through the modulation of outer hair cell motility. Little is known, however, regarding the molecular mechanisms activated by acetylcholine. In this study, intracellular signaling pathways involving the small GTPases RhoA, Rac1, and Cdc42 have been identified as regulators of outer hair cell motility. Changes in cell length (slow motility) and in the amplitude of electrically induced movement (fast motility) were measured in isolated outer hair cells patch clamped in whole-cell mode, internally perfused through the patch pipette with different inhibitors and activators of these small GTPases while being externally stimulated with acetylcholine. We found that acetylcholine induces outer hair cell shortening and a simultaneous increase in the amplitude of fast motility through Rac1 and Cdc42 activation. In contrast, a RhoA- and Rac1-mediated signaling pathway induces outer hair cell elongation and decreases fast motility amplitude. These two opposing processes provide the basis for a regulatory mechanism of outer hair cell motility.  相似文献   

16.
Outer hair cell (OHC) or prestin-based electromotility is an active cochlear amplifier in the mammalian inner ear that can increase hearing sensitivity and frequency selectivity. In situ, Deiters supporting cells are well-coupled by gap junctions and constrain OHCs standing on the basilar membrane. Here, we report that both electrical and mechanical stimulations in Deiters cells (DCs) can modulate OHC electromotility. There was no direct electrical conductance between the DCs and the OHCs. However, depolarization in DCs reduced OHC electromotility associated nonlinear capacitance (NLC) and distortion products. Increase in the turgor pressure of DCs also shifted OHC NLC to the negative voltage direction. Destruction of the cytoskeleton in DCs or dissociation of the mechanical-coupling between DCs and OHCs abolished these effects, indicating the modulation through the cytoskeleton activation and DC-OHC mechanical coupling rather than via electric field potentials. We also found that changes in gap junctional coupling between DCs induced large membrane potential and current changes in the DCs and shifted OHC NLC. Uncoupling of gap junctions between DCs shifted NLC to the negative direction. These data indicate that DCs not only provide a physical scaffold to support OHCs but also can directly modulate OHC electromotility through the DC-OHC mechanical coupling. Our findings reveal a new mechanism of cochlear supporting cells and gap junctional coupling to modulate OHC electromotility and eventually hearing sensitivity in the inner ear.  相似文献   

17.
The remarkable hearing sensitivity and frequency selectivity in mammals is attributed to cochlear amplifier in the outer hair cells (OHCs). Prestin, a membrane protein in the lateral wall of OHC plasma membrane, is required for OHC electromotility and cochlear amplifier. In addition, GLUT5, a fructose transporter, is reported to be abundant in the plasma membrane of the OHC lateral wall and has been originally proposed as the OHC motor protein. Here we provide evidence of interactions between prestin/prestin and prestin/GLUT5 in transiently transfected HEK293T cells. We used a combination of techniques: (1) membrane colocalization by confocal microscopy, (2) fluorescence resonance energy transfer (FRET) by fluorescence activated cell sorting (FACS), (3) FRET by acceptor photobleaching, (4) FRET by fluorescence lifetime imaging (FRET-FLIM), and (5) coimmunoprecipitation. Our results suggest that homomeric and heteromeric prestin interactions occur in native OHCs to facilitate its electromotile function and that GLUT5 interacts with prestin for its elusive function.  相似文献   

18.
A mathematical model of the arterial baroreflex was developed and used to assess the stability of the reflex and its potential role in producing the low-frequency arterial blood pressure oscillations called Mayer waves that are commonly seen in humans and animals in response to decreased central blood volume. The model consists of an arrangement of discrete-time filters derived from published physiological studies, which is reduced to a numerical expression for the baroreflex open-loop frequency response. Model stability was assessed for two states: normal and decreased central blood volume. The state of decreased central blood volume was simulated by decreasing baroreflex parasympathetic heart rate gain and by increasing baroreflex sympathetic vaso/venomotor gains as occurs with the unloading of cardiopulmonary baroreceptors. For the normal state, the feedback system was stable by the Nyquist criterion (gain margin = 0.6), but in the hypovolemic state, the gain margin was small (0.07), and the closed-loop frequency response exhibited a sharp peak (gain of 11) at 0.07 Hz, the same frequency as that observed for arterial pressure fluctuations in a group of healthy standing subjects. These findings support the theory that stresses affecting central blood volume, including upright posture, can reduce the stability of the normally stable arterial baroreflex feedback, leading to resonance and low-frequency blood pressure waves.  相似文献   

19.
Dallos P  Wu X  Cheatham MA  Gao J  Zheng J  Anderson CT  Jia S  Wang X  Cheng WH  Sengupta S  He DZ  Zuo J 《Neuron》2008,58(3):333-339
It is a central tenet of cochlear neurobiology that mammalian ears rely on a local, mechanical amplification process for their high sensitivity and sharp frequency selectivity. While it is generally agreed that outer hair cells provide the amplification, two mechanisms have been proposed: stereociliary motility and somatic motility. The latter is driven by the motor protein prestin. Electrophysiological phenotyping of a prestin knockout mouse intimated that somatic motility is the amplifier. However, outer hair cells of knockout mice have significantly altered mechanical properties, making this mouse model unsatisfactory. Here, we study a mouse model without alteration to outer hair cell and organ of Corti mechanics or to mechanoelectric transduction, but with diminished prestin function. These animals have knockout-like behavior, demonstrating that prestin-based electromotility is required for cochlear amplification.  相似文献   

20.
The high sensitivity and wide bandwidth of mammalian hearing are thought to derive from an active process involving the somatic and hair-bundle motility of the thousands of outer hair cells uniquely found in mammalian cochleae. To better understand this, a biophysical three-dimensional cochlear fluid model was developed for gerbil, chinchilla, cat, and human, featuring an active “push-pull” cochlear amplifier mechanism based on the cytoarchitecture of the organ of Corti and using the time-averaged Lagrangian method. Cochlear responses are simulated and compared with in vivo physiological measurements for the basilar membrane (BM) velocity, VBM, frequency tuning of the BM vibration, and Q10 values representing the sharpness of the cochlear tuning curves. The VBM simulation results for gerbil and chinchilla are consistent with in vivo cochlea measurements. Simulated mechanical tuning curves based on maintaining a constant VBM value agree with neural-tuning threshold measurements better than those based on a constant displacement value, which implies that the inner hair cells are more sensitive to VBM than to BM displacement. The Q10 values of the VBM tuning curve agree well with those of cochlear neurons across species, and appear to be related in part to the width of the basilar membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号