首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neurokinin B (NKB) and its cognate receptor neurokinin 3 (NK3R) play a critical role in reproduction. NKB and NK3R are coexpressed with dynorphin (Dyn) and kisspeptin (Kiss1) genes in neurons of the arcuate nucleus (Arc). However, the mechanisms of action of NKB as a cotransmitter with kisspeptin and dynorphin remain poorly understood. We explored the role of NKB in the control of LH secretion in the female rat as follows. 1) We examined the effect of an NKB agonist (senktide, 600 pmol, administered into the lateral cerebral ventricle) on luteinizing hormone (LH) secretion. In the presence of physiological levels of estradiol (E(2)), senktide induced a profound increase in serum levels of LH and a 10-fold increase in the number of Kiss1 neurons expressing c-fos in the Arc (P < 0.01 for both). 2) We mapped the distribution of NKB and NK3R mRNAs in the central forebrain and found that both are widely expressed, with intense expression in several hypothalamic nuclei that control reproduction, including the Arc. 3) We studied the effect of E(2) on the expression of NKB and NK3R mRNAs in the Arc and found that E(2) inhibits the expression of both genes (P < 0.01) and that the expression of NKB and NK3R reaches its nadir on the afternoon of proestrus (when circulating levels of E(2) are high). These observations suggest that NKB/NK3R signaling in Kiss1/NKB/Dyn-producing neurons in the Arc has a pivotal role in the control of gonadotropin-releasing hormone (GnRH)/LH secretion and its regulation by E(2)-dependent negative feedback in the rat.  相似文献   

2.
Our previous work using a melanoma progression model composed of melanocytic cells (melanocytes, primary and metastatic melanoma samples) demonstrated various deregulated genes, including a few known lncRNAs. Further analysis was conducted to discover novel lncRNAs associated with melanoma, and candidates were prioritized for their potential association with invasiveness or other metastasis‐related processes. In this sense, we found the intergenic lncRNA U73166 (ENSG00000230454) and decided to explore its effects in melanoma. For that, we silenced the lncRNA U73166 expression using shRNAs in a melanoma cell line. Next, we experimentally investigated its functions and found that migration and invasion had significantly decreased in knockdown cells, indicating an essential association of lncRNA U73166 for cancer processes. Additionally, using naïve and vemurafenib‐resistant cell lines and data from a patient before and after resistance, we found that vemurafenib‐resistant samples had a higher expression of lncRNA U73166. Also, we retrieved data from the literature that indicates lncRNA U73166 may act as a mediator of RNA processing and cell invasion, probably inducing a more aggressive phenotype. Therefore, our results suggest a relevant role of lncRNA U73166 in metastasis development. We also pointed herein the lncRNA U73166 as a new possible biomarker or target to help overcome clinical vemurafenib resistance.  相似文献   

3.

Background

Kisspeptin and its G protein-coupled receptor (GPR) 54 are essential for activation of the hypothalamo-pituitary-gonadal axis. In the rat, the kisspeptin neurons critical for gonadotropin secretion are located in the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei. As the ARC is known to be the site of the gonadotropin-releasing hormone (GnRH) pulse generator we explored whether kisspeptin-GPR54 signalling in the ARC regulates GnRH pulses.

Methodology/Principal Findings

We examined the effects of kisspeptin-10 or a selective kisspeptin antagonist administration intra-ARC or intra-medial preoptic area (mPOA), (which includes the AVPV), on pulsatile luteinizing hormone (LH) secretion in the rat. Ovariectomized rats with subcutaneous 17β-estradiol capsules were chronically implanted with bilateral intra-ARC or intra-mPOA cannulae, or intra-cerebroventricular (icv) cannulae and intravenous catheters. Blood samples were collected every 5 min for 5–8 h for LH measurement. After 2 h of control blood sampling, kisspeptin-10 or kisspeptin antagonist was administered via pre-implanted cannulae. Intranuclear administration of kisspeptin-10 resulted in a dose-dependent increase in circulating levels of LH lasting approximately 1 h, before recovering to a normal pulsatile pattern of circulating LH. Both icv and intra-ARC administration of kisspeptin antagonist suppressed LH pulse frequency profoundly. However, intra-mPOA administration of kisspeptin antagonist did not affect pulsatile LH secretion.

Conclusions/Significance

These data are the first to identify the arcuate nucleus as a key site for kisspeptin modulation of LH pulse frequency, supporting the notion that kisspeptin-GPR54 signalling in this region of the mediobasal hypothalamus is a critical neural component of the hypothalamic GnRH pulse generator.  相似文献   

4.
We recently have demonstrated that EGF receptor (EGFR)-induced cell motility requires receptor kinase activity and autophosphorylation (P. Chen, K. Gupta, and A. Wells. 1994. J. Cell Biol. 124:547-555). This suggests that the immediate downstream effector molecule contains a src homology-2 domain. Phospholipase C gamma (PLC gamma) is among the candidate transducers of this signal because of its potential roles in modulating cytoskeletal dynamics. We utilized signaling-restricted EGFR mutants expressed in receptor devoid NR6 cells to determine if PLC activation is necessary for EGFR-mediated cell movement. Exposure to EGF (25 nM) augmented PLC activity in all five EGFR mutant cell lines which also responded by increased cell movement. Basal phosphoinositide turnover was not affected by EGF in the lines which do not present the enhanced motility response. The correlation between EGFR-mediated cell motility and PLC activity suggested, but did not prove, a causal link. A specific inhibitor of PLC, U73122 (1 microM) diminished both the EGF- induced motility and PLC responses, while its inactive analogue U73343 had no effect on these responses. Both the PLC and motility responses were decreased by expression of a dominant-negative PLC gamma-1 fragment in EGF-responsive infectant lines. Lastly, anti-sense oligonucleotides (20 microM) to PLC gamma-1 reduced both responses in NR6 cells expressing wild-type EGFR. These findings strongly support PLC gamma as the immediate post receptor effector in this motogenic pathway. We have demonstrated previously that EGFR-mediated cell motility and mitogenic signaling pathways are separable. The point of divergence is undefined. All kinase-active EGFR mutants induced the mitogenic response while only those which are autophosphorylated induced PLC activity. U73122 did not affect EGF-induced thymidine incorporation in these motility-responsive infectant cell lines. In addition, the dominant-negative PLC gamma-1 fragment did not diminish EGF-induced thymidine incorporation. All kinase active EGFR stimulated mitogen-activated protein (MAP) kinase activity, regardless of whether the receptors induced cell movement; this EGF-induced MAP kinase activity was not affected by U73122 at concentrations that depressed the motility response. Thus, the signaling pathways which lead to motility and cell proliferation diverge at the immediate post-receptor stage, and we suggest that this is accomplished by differential activation of effector molecules.  相似文献   

5.

Background

Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung that matches blood perfusion to alveolar ventilation to optimize gas exchange. Recently we have demonstrated that acute but not sustained HPV is critically dependent on the classical transient receptor potential 6 (TRPC6) channel. However, the mechanism of TRPC6 activation during acute HPV remains elusive. We hypothesize that a diacylglycerol (DAG)-dependent activation of TRPC6 regulates acute HPV.

Methods

We investigated the effect of the DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) on normoxic vascular tone in isolated perfused and ventilated mouse lungs from TRPC6-deficient and wild-type mice. Moreover, the effects of OAG, the DAG kinase inhibitor R59949 and the phospholipase C inhibitor U73122 on the strength of HPV were investigated compared to those on non-hypoxia-induced vasoconstriction elicited by the thromboxane mimeticum U46619.

Results

OAG increased normoxic vascular tone in lungs from wild-type mice, but not in lungs from TRPC6-deficient mice. Under conditions of repetitive hypoxic ventilation, OAG as well as R59949 dose-dependently attenuated the strength of acute HPV whereas U46619-induced vasoconstrictions were not reduced. Like OAG, R59949 mimicked HPV, since it induced a dose-dependent vasoconstriction during normoxic ventilation. In contrast, U73122, a blocker of DAG synthesis, inhibited acute HPV whereas U73343, the inactive form of U73122, had no effect on HPV.

Conclusion

These findings support the conclusion that the TRPC6-dependency of acute HPV is induced via DAG.  相似文献   

6.
GPR55 is activated by l-α-lysophosphatidylinositol (LPI) but also by certain cannabinoids. In this study, we investigated the GPR55 pharmacology of various cannabinoids, including analogues of the CB1 receptor antagonist Rimonabant®, CB2 receptor agonists, and Cannabis sativa constituents. To test ERK1/2 phosphorylation, a primary downstream signaling pathway that conveys LPI-induced activation of GPR55, a high throughput system, was established using the AlphaScreen® SureFire® assay. Here, we show that CB1 receptor antagonists can act both as agonists alone and as inhibitors of LPI signaling under the same assay conditions. This study clarifies the controversy surrounding the GPR55-mediated actions of SR141716A; some reports indicate the compound to be an agonist and some report antagonism. In contrast, we report that the CB2 ligand GW405833 behaves as a partial agonist of GPR55 alone and enhances LPI signaling. GPR55 has been implicated in pain transmission, and thus our results suggest that this receptor may be responsible for some of the antinociceptive actions of certain CB2 receptor ligands. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.  相似文献   

7.
Group II activators of G-protein signaling play diverse functional roles through their interaction with Gαi, Gαt, and Gαo via a G-protein regulatory (GPR) motif that serves as a docking site for Gα-GDP. We recently reported the regulation of the AGS3-Gαi signaling module by a cell surface, seven-transmembrane receptor. Upon receptor activation, AGS3 reversibly dissociates from the cell cortex, suggesting that it may function as a signal transducer with downstream signaling implications, and this question is addressed in the current report. In HEK-293 and COS-7 cells expressing the α2A/D-AR and Gαi3, receptor activation resulted in the translocation of endogenous AGS3 and AGS3-GFP from the cell cortex to a juxtanuclear region, where it co-localized with markers of the Golgi apparatus (GA). The agonist-induced translocation of AGS3 was reversed by the α2-AR antagonist rauwolscine. The TPR domain of AGS3 was required for agonist-induced translocation of AGS3 from the cell cortex to the GA, and the translocation was blocked by pertussis toxin pretreatment or by the phospholipase Cβ inhibitor U73122. Agonist-induced translocation of AGS3 to the GA altered the functional organization and protein sorting at the trans-Golgi network. The regulated movement of AGS3 between the cell cortex and the GA offers unexpected mechanisms for modulating protein secretion and/or endosome recycling events at the trans-Golgi network.  相似文献   

8.
Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.  相似文献   

9.
Growth factor signaling pathways are tightly regulated by phosphorylation and include many important kinase targets of interest for drug discovery. Small molecule inhibitors of the bone morphogenetic protein (BMP) receptor kinase ALK2 (ACVR1) are needed urgently to treat the progressively debilitating musculoskeletal disease fibrodysplasia ossificans progressiva (FOP). Dorsomorphin analogues, first identified in zebrafish, remain the only BMP inhibitor chemotype reported to date. By screening an assay panel of 250 recombinant human kinases we identified a highly selective 2-aminopyridine-based inhibitor K02288 with in vitro activity against ALK2 at low nanomolar concentrations similar to the current lead compound LDN-193189. K02288 specifically inhibited the BMP-induced Smad pathway without affecting TGF-β signaling and induced dorsalization of zebrafish embryos. Comparison of the crystal structures of ALK2 with K02288 and LDN-193189 revealed additional contacts in the K02288 complex affording improved shape complementarity and identified the exposed phenol group for further optimization of pharmacokinetics. The discovery of a new chemical series provides an independent pharmacological tool to investigate BMP signaling and offers multiple opportunities for pre-clinical development.  相似文献   

10.
ObjectivesBone tissue engineering based on adipose‐derived stem cells (ASCs) is expected to become a new treatment for diabetic osteoporosis (DOP) patients with bone defects. However, compared with control ASCs (CON‐ASCs), osteogenic potential of DOP‐ASCs is decreased, which increased the difficulty of bone reconstruction in DOP patients. Moreover, the cause of the poor osteogenesis of ASCs in a hyperglycemic microenvironment has not been elucidated. Therefore, this study explored the molecular mechanism of the decline in the osteogenic potential of DOP‐ASCs from the perspective of epigenetics to provide a possible therapeutic target for bone repair in DOP patients with bone defects.Materials and methodsAn animal model of DOP was established in mice. CON‐ASCs and DOP‐ASCs were isolated from CON and DOP mice, respectively. AK137033 small interfering RNA (SiRNA) and an AK137033 overexpression plasmid were used to regulate the expression of AK137033 in CON‐ASCs and DOP‐ASCs in vitro. Lentiviruses that carried shRNA‐AK137033 or AK137033 cDNA were used to knockdown or overexpress AK137033, respectively, in CON‐ASCs and DOP‐ASCs in vivo. Hematoxylin and eosin (H&E), Masson''s, alizarin red, and alkaline phosphatase (ALP) staining, micro‐computed tomography (Micro‐CT), flow cytometry, qPCR, western blotting, immunofluorescence, and bisulfite‐specific PCR (BSP) were used to analyze the functional changes of ASCs.ResultsThe DOP mouse model was established successfully. Compared with CON‐ASCs, AK137033 expression, the DNA methylation level of the sFrp2 promoter region, Wnt signaling pathway markers, and the osteogenic differentiation potential were decreased in DOP‐ASCs. In vitro experiments showed that AK137033 silencing inhibited the Wnt signaling pathway and osteogenic ability of CON‐ASCs by reducing the DNA methylation level in the sFrp2 promoter region. Additionally, overexpression of AK137033 in DOP‐ASCs rescued these changes caused by DOP. Moreover, the same results were obtained in vivo.ConclusionsLncRNA‐AK137033 inhibits the osteogenic potential of DOP‐ASCs by regulating the Wnt signaling pathway via modulating the DNA methylation level in the sFrp2 promoter region. This study provides an important reference to find new targets for the treatment of bone defects in DOP patients.  相似文献   

11.
12.
Escherichia coli (ETEC) strain H10407 contains a GTPase virulence factor, LeoA, which is encoded on a pathogenicity island and has been shown to enhance toxin release, potentially through vesicle secretion. By sequence comparisons and X-ray structure determination we now identify LeoA as a bacterial dynamin-like protein (DLP). Proteins of the dynamin family remodel membranes and were once thought to be restricted to eukaryotes. In ETEC H10407 LeoA localises to the periplasm where it forms a punctate localisation pattern. Bioinformatic analyses of leoA and the two upstream genes leoB and leoC suggest that LeoA works in concert with a second dynamin-like protein, made up of LeoB and LeoC. Disruption of the leoAB genes leads to a reduction in secretion of periplasmic Tat-GFP and outer membrane OmpA. Our data suggest a role for LeoABC dynamin-like proteins in potentiating virulence through membrane vesicle associated toxin secretion.  相似文献   

13.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.

Phylum Crenarchaeota

Phylum Deinococcus-Thermus

Phylum Proteobacteria

Phylum Tenericutes

Phylum Firmicutes

Phylum Actinobacteria

Phylum Spirochaetes

Non-Bacterial genomes

  相似文献   

14.
《The Journal of cell biology》1995,129(5):1263-1273
Lysosomes are recruited to the invasion site during host cell entry by Trypanosoma cruzi, an unusual process suggestive of the triggering of signal transduction mechanisms. Previous studies showed that trypomastigotes, but not the noninfective epimastigotes, contain a proteolytically generated trypomastigote factor (PGTF) that induces intracellular free Ca2+ transients in several mammalian cell types. Using confocal time-lapse imaging of normal rat kidney (NRK) fibroblasts loaded with the Ca(2+)-sensitive dye fluo-3, we show that the initial intracellular free Ca(2+) concentration ([Ca2+]i) transient detected a few seconds after exposure to trypomastigote extracts is a result of Ca2+ release from intracellular stores. Removal of Ca2+ from the extracellular medium or inhibition of Ca2+ channels with NiCl2 did not affect the response to PGTF, while depletion of intracellular stores with thapsigargin abolished it. [Ca2+]i transients induced by PGTF were shown to be coupled to the activity of phospholipase C (PLC), since the specific inhibitor U73122 completely blocked the response, while its inactive analogue U73343 had no effect. In addition, polyphosphoinositide hydrolysis and inositol 1,4,5-trisphosphate (IP3) were detected upon cell stimulation with PGTF, suggesting the participation of IP3-sensitive intracellular Ca2+ channels. An immediate effect of the signaling induced by PGTF and live trypomastigotes was a rapid and transient reorganization of host cell microfilaments. The redistribution of F-actin appeared to be a direct consequence of increased [Ca2+]i, since thrombin and the Ca2+ ionophore ionomycin produced a similar effect, with a time course that corresponded to the kinetics of the elevation in [Ca2+]i. These observations support the hypothesis that PGTF-induced disassembly of the cortical actin cytoskeleton may play a role in T. cruzi invasion, by facilitating lysosome access to the invasion site. Taken together, our findings suggest that the proteolytically generated trypomastigote factor PGTF is a novel agonist that acts through the PLC/phosphoinositide signaling pathway of mammalian cells.  相似文献   

15.
The small chaperone protein Hsp27 confers resistance to apoptosis, and therefore is an attractive anticancer drug target. We report here a novel mechanism underlying the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitizing activity of the small molecule LY303511, an inactive analog of the phosphoinositide 3-kinase inhibitor inhibitor LY294002, in HeLa cells that are refractory to TRAIL-induced apoptosis. On the basis of the fact that LY303511 is derived from LY294002, itself derived from quercetin, and earlier findings indicating that quercetin and LY294002 affected Hsp27 expression, we investigated whether LY303511 sensitized cancer cells to TRAIL via a conserved inhibitory effect on Hsp27. We provide evidence that upon treatment with LY303511, Hsp27 is progressively sequestered in the nucleus, thus reducing its protective effect in the cytosol during the apoptotic process. LY303511-induced nuclear translocation of Hsp27 is linked to its sustained phosphorylation via activation of p38 kinase and MAPKAP kinase 2 and the inhibition of PP2A. Furthermore, Hsp27 phosphorylation leads to the subsequent dissociation of its large oligomers and a decrease in its chaperone activity, thereby further compromising the death inhibitory activity of Hsp27. Furthermore, genetic manipulation of Hsp27 expression significantly affected the TRAIL sensitizing activity of LY303511, which corroborated the Hsp27 targeting activity of LY303511. Taken together, these data indicate a novel mechanism of small molecule sensitization to TRAIL through targeting of Hsp27 functions, rather than its overall expression, leading to decreased cellular protection, which could have therapeutic implications for overcoming chemotherapy resistance in tumor cells.  相似文献   

16.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.

Phylum Euryarchaeota

Phylum Crenarchaeota

Phylum Deinococcus-Thermus

Phylum Proteobacteria

Phylum Tenericutes

Phylum Firmicutes

Phylum Actinobacteria

Non-Bacterial genomes

  相似文献   

17.
Exposure of females to a male pheromone accelerates pulsatile gonadotropin-releasing hormone (GnRH) secretion in goats. Recent evidence has suggested that neurons in the arcuate nucleus (ARC) containing kisspeptin and neurokinin B (NKB) play a pivotal role in the control of GnRH secretion. Therefore, we hypothesized that these neurons may be the central target of the male pheromone. To test this hypothesis, we examined whether NKB signaling is involved in the pheromone action, and whether ARC kisspeptin/NKB neurons receive input from the medial nucleus of the amygdala (MeA)—the nucleus suggested to relay pheromone signals. Ovariectomized goats were implanted with a recording electrode aimed at a population of ARC kisspeptin/NKB neurons, and GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA) volleys, was measured. Pheromone exposure induced an MUA volley and luteinizing hormone (LH) pulse in control animals, whereas the MUA and LH responses to the pheromone were completely suppressed by the treatment with an NKB receptor antagonist. These results indicate that NKB signaling is a prerequisite for pheromone action. In ovariectomized goats, an anterograde tracer was injected into the MeA, and possible connections between the MeA and ARC kisspeptin/NKB neurons were examined. Histochemical observations demonstrated that a subset of ARC kisspeptin/NKB neurons receive efferent projections from the MeA. These results suggest that the male pheromone signal is conveyed via the MeA to ARC kisspeptin neurons, wherein the signal stimulates GnRH pulse generator activity through an NKB signaling-mediated mechanism in goats.  相似文献   

18.
19.
Viral infections are detected in most cases by the host innate immune system through pattern-recognition receptors (PRR), the sensors for pathogen-associated molecular patterns (PAMPs), which induce the production of cytokines, such as type I interferons (IFN). Recent identification in mammalian and teleost fish of cytoplasmic viral RNA sensors, RIG-I-like receptors (RLRs), and their mitochondrial adaptor: the mitochondrial antiviral signaling (MAVS) protein, also called IPS-1, highlight their important role in the induction of IFN at the early stage of a virus infection. More recently, an endoplasmic reticulum (ER) adaptor: the stimulator of interferon genes (STING) protein, also called MITA, ERIS and MPYS, has been shown to play a pivotal role in response to both non-self-cytosolic RNA and dsDNA. In this study, we cloned STING cDNAs from zebrafish and showed that it was an ortholog to mammalian STING. We demonstrated that overexpression of this ER protein in fish cells led to a constitutive induction of IFN and interferon-stimulated genes (ISGs). STING-overexpressing cells were almost fully protected against RNA virus infection with a strong inhibition of both DNA and RNA virus replication. In addition, we found that together with MAVS, STING was an important player in the RIG-I IFN-inducing pathway. This report provides the demonstration that teleost fish possess a functional RLR pathway in which MAVS and STING are downstream signaling molecules of RIG-I. The Sequences presented in this article have been submitted to GenBank under accession numbers: Zebrafish STING (HE856619); EPC STING (HE856620); EPC IRF3 (HE856621); EPC IFN promoter (HE856618).  相似文献   

20.

Background

Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARδ agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice.

Methodology/Principal Findings

Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved.

Conclusions/Significance

The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号