首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel apparatus, composed by a controllable treadmill, a computer, and an ultrasonic range finder, is here proposed to help investigation of many aspects of spontaneous locomotion. The acceleration or deceleration of the subject, detected by the sensor and processed by the computer, is used to accelerate or decelerate the treadmill in real time. The system has been used to assess, in eight subjects, the self-selected speed of walking and running, the maximum "reasonable" speed of walking, and the minimum reasonable speed of running at different gradients (from level up to +25%). This evidenced the speed range at which humans neither walk nor run, from 7.2 +/- 0.6 to 8.4 +/- 1.1 km/h for level locomotion, slightly narrowing at steeper slopes. These data confirm previous results, obtained indirectly from stride frequency recordings. The self-selected speed of walking decreases with increasing gradient (from 5.0 +/- 0.8 km/h at 0% to 3.0 +/- 0.9 km/h at +25%) and seems to be approximately 30% higher than the speed that minimizes the metabolic energy cost of walking, obtained from the literature, at all the investigated gradients. The advantages, limitations, and potential applications of the newly proposed methodology in physiology, biomechanics, and pathology of locomotion are discussed in this paper.  相似文献   

2.
On Earth, a person uses about one-half as much energy to walk a mile as to run a mile. On another planet with lower gravity, would walking still be more economical than running? When people carry weights while they walk or run, energetic cost increases in proportion to the added load. It would seem to follow that if gravity were reduced, energetic cost would decrease in proportion to body weight in both gaits. However, we find that under simulated reduced gravity, the rate of energy consumption decreases in proportion to body weight during running but not during walking. When gravity is reduced by 75%, the rate of energy consumption is reduced by 72% during running but only by 33% during walking. Because reducing gravity decreases the energetic cost much more for running than for walking, walking is not the cheapest way to travel a mile at low levels of gravity. These results suggest that the link between the mechanics of locomotion and energetic cost is fundamentally different for walking and for running.  相似文献   

3.
Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154-176 degrees) during much of the support phase of walking, its flexed position (134-164 degrees) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% (P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.  相似文献   

4.
Pygmy locomotion     
The hypothesis that Pygmies may differ from Caucasians in some aspects of the mechanics of locomotion was tested. A total of 13 Pygmies and 7 Caucasians were asked to walk and run on a treadmill at 4–12 km · h–1. Simultaneous metabolic measurements and three-dimensional motion analysis were performed allowing the energy expenditure and the mechanical external and internal work to be calculated. In Pygmies the metabolic energy cost was higher during walking at all speeds (P < 0.05), but tended to be lower during running (NS). The stride frequency and the internal mechanical work were higher for Pygmies at all walking (P < 0.05) and running (NS) speeds although the external mechanical work was similar. The total mechanical work for Pygmies was higher during walking (P < 0.05), but not during running and the efficiency of locomotion was similar in all subjects and speeds. The higher cost of walking in Pygmies is consistent with the allometric prediction for smaller subjects. The major determinants of the higher cost of walking was the difference in stride frequency (+9.45, SD 0.44% for Pygmies), which affected the mechanical internal work. This explains the observed higher total mechanical work of walking in Pygmies, even when the external component was the same. Most of the differences between Pygmies and Caucasians, observed during walking, tended to disappear when the speed was normalized as the Fronde number. However, this was not the case for running. Thus, whereas the tested hypothesis must be rejected for walking, the data from running, do indeed suggest that Pygmies may differ in some aspects of the mechanics of locomotion.  相似文献   

5.
In natural motor behaviour arm movements, such as pointing or reaching, often need to be coordinated with locomotion. The underlying coordination patterns are largely unexplored, and require the integration of both rhythmic and discrete movement primitives. For the systematic and controlled study of such coordination patterns we have developed a paradigm that combines locomotion on a treadmill with time-controlled pointing to targets in the three-dimensional space, exploiting a virtual reality setup. Participants had to walk at a constant velocity on a treadmill. Synchronized with specific foot events, visual target stimuli were presented that appeared at different spatial locations in front of them. Participants were asked to reach these stimuli within a short time interval after a “go” signal. We analysed the variability patterns of the most relevant joint angles, as well as the time coupling between the time of pointing and different critical timing events in the foot movements. In addition, we applied a new technique for the extraction of movement primitives from kinematic data based on anechoic demixing. We found a modification of the walking pattern as consequence of the arm movement, as well as a modulation of the duration of the reaching movement in dependence of specific foot events. The extraction of kinematic movement primitives from the joint angle trajectories exploiting the new algorithm revealed the existence of two distinct main components accounting, respectively, for the rhythmic and discrete components of the coordinated movement pattern. Summarizing, our study shows a reciprocal pattern of influences between the coordination patterns of reaching and walking. This pattern might be explained by the dynamic interactions between central pattern generators that initiate rhythmic and discrete movements of the lower and upper limbs, and biomechanical factors such as the dynamic gait stability.  相似文献   

6.
Recent research has suggested that energy minimization in human walking involves both a fast preprogrammed process and a slow optimization process. Here, we studied human running to test whether these two processes represent control mechanisms specific to walking or a more general strategy for minimizing energetic cost in human locomotion. To accomplish this, we used free response experiments to enforce step frequency with a metronome at values above and below preferred step frequency and then determined the response times for the return to preferred steady-state step frequency when the auditory constraint was suddenly removed. In forced response experiments, we applied rapid changes in treadmill speed and examined response times for the processes involved in the consequent adjustments to step frequency. We then compared the dynamics of step frequency adjustments resulting from the two different perturbations to each other and to previous results found in walking. Despite the distinct perturbations applied in the two experiments, both responses were dominated by a fast process with a response time of 1.47 ± 0.05 s with fine-tuning provided by a slow process with a response time of 34.33 ± 0.50 s. The dynamics of the processes underlying step frequency adjustments in running match those found previously in walking, both in magnitude and relative importance. Our results suggest that the underlying mechanisms are fundamental strategies for minimizing energetic cost in human locomotion.  相似文献   

7.
As humans walk or run, external (environmental) and internal (physiological) disturbances induce variability. How humans regulate this variability from stride-to-stride can be critical to maintaining balance. One cannot infer what is “controlled” based on analyses of variability alone. Assessing control requires quantifying how deviations are corrected across consecutive movements. Here, we assessed walking and running, each at two speeds. We hypothesized differences in speed would drive changes in variability, while adopting different gaits would drive changes in how people regulated stepping. Ten healthy adults walked/ran on a treadmill under four conditions: walk or run at comfortable speed, and walk or run at their predicted walk-to-run transition speed. Time series of relevant stride parameters were analyzed to quantify variability and stride-to-stride error-correction dynamics within a Goal-Equivalent Manifold (GEM) framework. In all conditions, participants’ stride-to-stride control respected a constant-speed GEM strategy. At each consecutively faster speed, variability tangent to the GEM increased (p ≤ 0.031), while variability perpendicular to the GEM decreased (p ≤ 0.044). There were no differences (p ≥ 0.999) between gaits at the transition speed. Differences in speed determined how stepping variability was structured, independent of gait, confirming our first hypothesis. For running versus walking, measures of GEM-relevant statistical persistence were significantly less (p ≤ 0.004), but showed minimal-to-no speed differences (0.069 ≤ p ≤ 0.718). When running, people corrected deviations both more quickly and more directly, each indicating tighter control. Thus, differences in gait determined how stride-to-stride fluctuations were regulated, independent of speed, confirming our second hypothesis.  相似文献   

8.
Spinal pattern generators in quadrupedal animals can coordinate different forms of locomotion, like trotting or galloping, by altering coordination between the limbs (interlimb coordination). In the human system, infants have been used to study the subcortical control of gait, since the cerebral cortex and corticospinal tract are immature early in life. Like other animals, human infants can modify interlimb coordination to jump or step. Do human infants possess functional neuronal circuitry necessary to modify coordination within a limb (intralimb coordination) in order to generate distinct forms of alternating bipedal gait, such as walking and running? We monitored twenty-eight infants (7–12 months) stepping on a treadmill at speeds ranging between 0.06–2.36 m/s, and seventeen adults (22–47 years) walking or running at speeds spanning the walk-to-run transition. Six of the adults were tested with body weight support to mimic the conditions of infant stepping. We found that infants could accommodate a wide range of speeds by altering stride length and frequency, similar to adults. Moreover, as the treadmill speed increased, we observed periods of flight during which neither foot was in ground contact in infants and in adults. However, while adults modified other aspects of intralimb coordination and the mechanics of progression to transition to a running gait, infants did not make comparable changes. The lack of evidence for distinct walking and running patterns in infants suggests that the expression of different functional, alternating gait patterns in humans may require neuromuscular maturation and a period of learning post-independent walking.  相似文献   

9.
Kinematic and center of mass (CoM) mechanical variables used to define terrestrial gaits are compared for various tetrapod species. Kinematic variables (limb phase, duty factor) provide important timing information regarding the neural control and limb coordination of various gaits. Whereas, mechanical variables (potential and kinetic energy relative phase, %Recovery, %Congruity) provide insight into the underlying mechanisms that minimize muscle work and the metabolic cost of locomotion, and also influence neural control strategies. Two basic mechanisms identified by Cavagna et al. (1977. Am J Physiol 233:R243-R261) are used broadly by various bipedal and quadrupedal species. During walking, animals exchange CoM potential energy (PE) with kinetic energy (KE) via an inverted pendulum mechanism to reduce muscle work. During the stance period of running (including trotting, hopping and galloping) gaits, animals convert PE and KE into elastic strain energy in spring elements of the limbs and trunk and regain this energy later during limb support. The bouncing motion of the body on the support limb(s) is well represented by a simple mass-spring system. Limb spring compliance allows the storage and return of elastic energy to reduce muscle work. These two distinct patterns of CoM mechanical energy exchange are fairly well correlated with kinematic distinctions of limb movement patterns associated with gait change. However, in some cases such correlations can be misleading. When running (or trotting) at low speeds many animals lack an aerial period and have limb duty factors that exceed 0.5. Rather than interpreting this as a change of gait, the underlying mechanics of the body's CoM motion indicate no fundamental change in limb movement pattern or CoM dynamics has occurred. Nevertheless, the idealized, distinctive patterns of CoM energy fluctuation predicted by an inverted pendulum for walking and a bouncing mass spring for running are often not clear cut, especially for less cursorial species. When the kinematic and mechanical patterns of a broader diversity of quadrupeds and bipeds are compared, more complex patterns emerge, indicating that some animals may combine walking and running mechanics at intermediate speeds or at very large size. These models also ignore energy costs that are likely associated with the opposing action of limbs that have overlapping support times during walking. A recent model of terrestrial gait (Ruina et al., 2005. J Theor Biol, in press) that treats limb contact with the ground in terms of collisional energy loss indicates that considerable CoM energy can be conserved simply by matching the path of CoM motion perpendicular to limb ground force. This model, coupled with the earlier ones of pendular exchange during walking and mass-spring elastic energy savings during running, provides compelling argument for the view that the legged locomotion of quadrupeds and other terrestrial animals has generally evolved to minimize muscle work during steady level movement.  相似文献   

10.
The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF). Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upon return to the normal belt condition, while the two components of the GRF showed different behaviors depending on the gaits. The anterior braking component showed prominent adaptive and de-adaptive behaviors in both gaits. The posterior propulsive component, on the other hand, exhibited such behavior only in running, while that in walking showed only short-term aftereffect (lasting less than 10 seconds) accompanied by largely reactive responses. These results demonstrate a possible difference in motor strategies (that is, the use of reactive feedback and adaptive feedforward control) by the central nervous system (CNS) for split-belt locomotor adaptation between walking and running. The present results provide basic knowledge on neural control of human walking and running as well as possible strategies for gait training in athletic and rehabilitation scenes.  相似文献   

11.
There is extensive modulation of cutaneous and H-reflexes during rhythmic leg movement in humans. Mechanisms controlling reflex modulation (e.g., phase- and task-dependent modulation, and reflex reversal) during leg movements have been ascribed to the activity of spinal central pattern generating (CPG) networks and peripheral feedback. Our working hypothesis has been that neural mechanisms (i.e., CPGs) controlling rhythmic movement are conserved between the human lumbar and cervical spinal cord. Thus reflex modulation during rhythmic arm movement should be similar to that for rhythmic leg movement. This hypothesis has been tested by studying the regulation of reflexes in arm muscles during rhythmic arm cycling and treadmill walking. This paper reviews recent studies that have revealed that reflexes in arm muscles show modulation within the movement cycle (e.g., phase-dependency and reflex reversal) and between static and rhythmic motor tasks (e.g., task-dependency). It is concluded that reflexes are modulated similarly during rhythmic movement of the upper and lower limbs, suggesting similar motor control mechanisms. One notable exception to this pattern is a failure of contralateral arm movement to modulate reflex amplitude, which contrasts directly with observations from the leg. Overall, the data support the hypothesis that CPG activity contributes to the neural control of rhythmic arm movement.  相似文献   

12.
Optimal methods for the prevention of negative impact of weightlessness have been developed based on the concept of Kozlovskaya, which states that support afferentation plays a trigger role in the development of the hypogravity motor syndrome. In this study, the maximal vertical ground reaction force (GRF) values were analyzed when locomotor training was performed on a BD-2 treadmill in long-term spaceflights. The study involved 12 cosmonauts. Recorded segments of the locomotor training (4554) performed in active (motor-driven) and passive (non-motor-driven) modes of BD-2 belt motion were analyzed. The data were analyzed by the methods of correlation and regression analysis and the nonparametric Mann–Whitney test. It was found that when running, regardless of the treadmill modes, an increase in the axial load by 1 kg was associated with a more than 1-kg increase in GRF; during walking an increase in GRF was less than 1 kg. As the speed increased, the GRF values increased most quickly when running in a passive mode and most slowly when walking in a passive mode. The GRF values in different BD-2 modes depended on both individual parameters of cosmonauts and locomotion types (walking or running). Our data can be the basis for the individualization of locomotor training onboard the ISS.  相似文献   

13.
Interactions between locomotion and ventilation have now been studied in several species of reptiles, birds and mammals, from a variety of perspectives. Among these perspectives are neural interactions of separate but linked central controllers; mechanical impacts of locomotion upon ventilatory pressures and flows; and the extent to which the latter may affect gas exchange and the energetics of exercise. A synchrony, i.e. 1:1 pattern of coordination, is observed in many running mammals once they achieve galloping speeds, as well as in flying bats, some flying birds and hopping marsupials. Other, non-1:1, patterns of coordination are seen in trotting and walking quadrupeds, as well as running bipedal humans and running and flying birds. There is evidence for an energetic advantage to coordination of locomotor and respiratory cycles for flying birds and running mammals. There is evidence for a mechanical constraint upon ventilation by locomotion for some reptiles (e.g. iguana), but not for others (e.g. varanids and crocodilians). In diving birds the impact of wing flapping or foot paddling on differential air sac pressures enhances gas exchange during the breath hold by improving diffusive and convective movement of air sac oxygen to parabronchi. This paper will review the current state of our knowledge of such influences of locomotion upon respiratory system function.  相似文献   

14.
Laboratory studies have suggested that the preferred cadence of walking is approximately 120 steps/min, and the vertical acceleration of the head exhibits a dominant peak at this step frequency (2 Hz). These studies have been limited to short periods of walking along a predetermined path or on a treadmill, and whether such a highly tuned frequency of movement can be generalized to all forms of locomotion in a natural setting is unknown. The aim of this study was to determine whether humans exhibit a preferred cadence during extended periods of uninhibited locomotor activity and whether this step frequency is consistent with that observed in laboratory studies. Head linear acceleration was measured over a 10-h period in 20 subjects during the course of a day, which encompassed a broad range of locomotor (walking, running, cycling) and nonlocomotor (working at a desk, driving a car, riding a bus or subway) activities. Here we show a highly tuned resonant frequency of human locomotion at 2 Hz (SD 0.13) with no evidence of correlation with gender, age, height, weight, or body mass index. This frequency did not differ significantly from the preferred step frequency observed in the seminal laboratory study of Murray et al. (Murray MP, Drought AB, and Kory RC. J Bone Joint Surg 46A: 335-360, 1964). [1.95 Hz (SD 0.19)]. On the basis of the frequency characteristics of otolith-spinal reflexes, which drive lower body movement via the lateral vestibulospinal tract, and otolith-mediated collic and ocular reflexes that maintain gaze when walking, we speculate that this spontaneous tempo of locomotion represents some form of central "resonant frequency" of human movement.  相似文献   

15.
Variability is ubiquitous in human movement, arising from internal and external noise, inherent biological redundancy, and from the neurophysiological control actions that help regulate movement fluctuations. Increased walking variability can lead to increased energetic cost and/or increased fall risk. Conversely, biological noise may be beneficial, even necessary, to enhance motor performance. Indeed, encouraging more variability actually facilitates greater improvements in some forms of locomotor rehabilitation. Thus, it is critical to identify the fundamental principles humans use to regulate stride-to-stride fluctuations in walking. This study sought to determine how humans regulate stride-to-stride fluctuations in stepping movements during treadmill walking. We developed computational models based on pre-defined goal functions to compare if subjects, from each stride to the next, tried to maintain the same speed as the treadmill, or instead stay in the same position on the treadmill. Both strategies predicted average behaviors empirically indistinguishable from each other and from that of humans. These strategies, however, predicted very different stride-to-stride fluctuation dynamics. Comparisons to experimental data showed that human stepping movements were generally well-predicted by the speed-control model, but not by the position-control model. Human subjects also exhibited no indications they corrected deviations in absolute position only intermittently: i.e., closer to the boundaries of the treadmill. Thus, humans clearly do not adopt a control strategy whose primary goal is to maintain some constant absolute position on the treadmill. Instead, humans appear to regulate their stepping movements in a way most consistent with a strategy whose primary goal is to try to maintain the same speed as the treadmill at each consecutive stride. These findings have important implications both for understanding how biological systems regulate walking in general and for being able to harness these mechanisms to develop more effective rehabilitation interventions to improve locomotor performance.  相似文献   

16.
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.  相似文献   

17.
It was the purpose of this investigation to: 1) compare the ratings of perceived exertion (RPEs) in high and low fit individuals when walking and running at comparable exercise intensities and 2) to determine if ventilation (VE) provides a central signal for RPEs. Nine high fit and nine low fit male subjects completed two exercise bouts on a treadmill, one uphill walking and the other level running. Workloads for each bout were set at 90% of each subject's ventilatory threshold (VT) as determined from a graded exercise test. Oxygen consumption (Vo2), heart rate (HR), and VE were all similar between the walk and run trials for the low fit subjects (P greater than 0.05). HR were found to be significantly greater during the walk trial vs. the run trial (P less than 0.05) for the high fit subjects, whereas, VE was significantly greater during the run trial. Oxygen consumption was similar for the high fit subjects during both trials (P greater than 0.05). During the walk and run trials, central (12.1 +/- 1.6 vs. 11.4 +/- 1.5), local (14.0 +/- 1.3 vs. 13.9 +/- 1.1) and overall (12.8 +/- 1.2 vs. 12.4 +/- 1.4) RPEs were not found to be significantly different for the low fit group (P greater than 0.05). In contrast, during the walk vs. the run trial there was a significant increase in central (10.7 +/- 2.0 vs. 9.2 +/- 1.9), local (11.5 +/- 2.0 vs. 9.8 +/- 1.8) and overall (11.2 +/- 2.4 vs. 9.6 +/- 2.3) RPEs for the high fit group (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
It has been argued that minimization of metabolic-energy costs is a primary determinant of gait selection in terrestrial animals. This view is based predominantly on data from humans and horses, which have been shown to choose the most economical gait (walking, running, galloping) for any given speed. It is not certain whether a minimization of metabolic costs is associated with the selection of other prevalent forms of terrestrial gaits, such as grounded running (a widespread gait in birds). Using biomechanical and metabolic measurements of four ostriches moving on a treadmill over a range of speeds from 0.8 to 6.7 m s(-1), we reveal here that the selection of walking or grounded running at intermediate speeds also favours a reduction in the metabolic cost of locomotion. This gait transition is characterized by a shift in locomotor kinetics from an inverted-pendulum gait to a bouncing gait that lacks an aerial phase. By contrast, when the ostrich adopts an aerial-running gait at faster speeds, there are no abrupt transitions in mechanical parameters or in the metabolic cost of locomotion. These data suggest a continuum between grounded and aerial running, indicating that they belong to the same locomotor paradigm.  相似文献   

19.
Clinical locomotor research seeks to facilitate adaptation or retention of new walking patterns by providing feedback. Within a split-belt treadmill paradigm, sagittal plane feedback improves adaptation but does not affect retention. Representation of error in this manner is cognitively demanding. However, it is unknown in this paradigm how frontal plane feedback, which may utilize a unique learning process, impacts locomotor adaptation. Frontal plane movement feedback has been shown to impact retention of novel running mechanics but has yet to be evaluated in gait conditions widely applicable within neurorehabilitation, such as walking. The purpose of this study was to investigate the effects of frontal plane mirror feedback on gait adaptation and retention during split-belt treadmill walking. Forty healthy young adults were divided into two groups: one group received mirror feedback during the first split-belt exposure and the other received no mirror feedback. Individuals in the mirror feedback group were asked to look at their legs in the mirror, but no further instructions were given. Individuals with mirror feedback displayed more symmetric stance time during the first strides of adaptation and maintained this pattern into the second split-belt exposure when no feedback was provided. Individuals with mirror feedback also demonstrated more symmetric double support time upon returning to normal walking. Lastly, the mirror feedback also allowed individuals to walk with smaller gait variability during the final steps of both split-belt exposures. Overall, mirror feedback allowed individuals to reduce their stance time asymmetry and led to a more consistent adapted pattern, suggesting this type of feedback may have utility in gait training that targets symmetry and consistency in movement.  相似文献   

20.
Recent psychophysical studies on normal subjects, as well as brain imaging studies, have revised the concepts concerning the mechanisms underlying spatial orientation during navigation tasks. The emphasis has been put on internal models that allow the prediction of a planned trajectory and are essential in the steering of locomotion. Cognitive factors such as strategies and emotional parameters are now starting to be included in the research on spatial orientation. It is obvious that important individual and gender differences exist in the brain operations underlying spatial orientation in humans, which may help to understand the construction of a coherent perception and the organic neural disorders related to the internal representation of space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号