首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human lactoferrin (hLF) is a member of the transferrin family and is found in most body fluids of human. Recent study showed that hLF played some roles in the regulation of cell growth. However, the biological function of hLF in the central nervous system and neuronal cells is still unclear. The MTT was used to assay cell viability, ELISA tests were used to assay caspase activities, and TUNEL staining was used to test the cytotoxicity of hLF to the cells. Our result showed that 700 microg/ml hLF significantly reduced the cell viability and increased the caspase 3 and 8 activities in PC12 neuronal cells. TUNEL staining further showed that 700 microg/ml hLF was cytotoxic to the PC12 through apoptosis-mediated pathway. In addition, 700 microg/ml hLF significantly decreased the protein expressions of phosphorylated extracellular-signal-regulated kinase 1/2 (ERK1/2) and Bcl-2 in PC12 cells, whereas 50 microg/ml hLF significantly increased the phosphorylation of ERK1/2 which could be specifically inhibited by PD98059. Furthermore, 50 microg/ml hLF could not only up-regulate the Bcl-2 expression but also protect PC12 cells from FasL-induced apoptosis. In conclusion, hLF plays a crucial role in the regulation of apoptosis and anti-apoptosis in PC12 neuronal cells via ERK1/2 phosphorylation pathway.  相似文献   

2.
The mechanism of intervertebral disc degeneration is still unclear, and there are no effective therapeutic strategies for treating this condition. miRNAs are naturally occurring macromolecules in the human body and have many biological functions. Therefore, we hope to elucidate whether miRNAs are associated with intervertebral disc degeneration and the underlying mechanisms involved. In our study, differentially expressed miRNAs were predicted by the GEO database and then confirmed by qPCR and in situ hybridization. Apoptosis of nucleus pulposus cells was detected by flow cytometry and Bcl2, Bax and caspase 3. Deposition of extracellular matrix was assessed by Alcian blue staining, and the expression of COX2 and MMP13 was detected by immunofluorescence, Western blot and qPCR. Moreover, qPCR was used to detect the expression of miR27a and its precursors. The results showed that miR27a was rarely expressed in healthy intervertebral discs but showed increased expression in degenerated intervertebral discs. Ectopic miR27a expression inhibited apoptosis, suppressed the inflammatory response and attenuated the catabolism of the extracellular matrix by targeting FSTL1. Furthermore, it seems that the expression of miR27a was up-regulated by TNF-α via the P38 signalling pathway. So we conclude that TNF-α and FSTL1 engage in a positive feedback loop to promote intervertebral disc degeneration. At the same time, miR27a is up-regulated by TNF-α via the P38 signalling pathway, which ameliorates inflammation, apoptosis and matrix degradation by targeting FSTL1. Thus, this negative feedback mechanism might contribute to the maintenance of a low degeneration load and would be beneficial to maintain a persistent chronic disc degeneration.  相似文献   

3.
《Cytokine》2015,71(2):87-96
Autophagy and apoptosis are important in maintaining the metabolic homeostasis of intervertebral disc cells, and transforming growth factor-β1 (TGF-β1) is able to delay intervertebral disc degeneration. This study determined the effect of TGF-β1 on the crosstalk between autophagy and apoptosis in the disc cells, with the aim to provide molecular mechanism support for the prevention and treatment of disc degeneration. Annulus fibrosus (AF) cells were isolated and cultured under serum starvation. 10 ng/mL TGF-β1 reduced the apoptosis incidence in the cells under serum starvation for 48 h, down-regulated the autophagy incidence in the cells pretreated with 3-methyladenine (3-MA) or Bafilomycin A (Baf A), partly rescued the increased apoptosis incidence in the cells pretreated with 3-MA, while further reduced the decreased apoptosis incidence in the cells pretreated with Baf A. Meanwhile, TGF-β1 down-regulated the expressions of autophagic and apoptotic markers in the cells under starvation, partly down-regulated the expressions of Beclin-1, LC3 II/I and cleaved caspase-3 in the cells pretreated with 3-MA or Baf A, while significantly decreased the expression of Bax/Bcl-2 in the cells pretreated with Baf A. 3-MA blocked the phosphorylation of both AKT and mTOR and partly reduced the inhibitory effect of TGF-β1 on the expression of LC3 II/I and cleaved caspase-3. TGF-β1 enhanced the expression of p-ERK1/2 and down-regulated the expressions of LC3 II/I and cleaved caspase-3. U0126 partly reversed this inhibitory effect of TGF-β1. In conclusion, TGF-β1 protected against apoptosis of AF cells under starvation through down-regulating excessive autophagy. PI3K–AKT–mTOR and MAPK–ERK1/2 were the possible signaling pathways involved in this process.  相似文献   

4.
The expression of CHOP (C/EBP homologous protein), an apoptosis regulated gene, increases during endoplasmic reticulum (ER) stress induced by cyclic stretch and leads to rat AF cells apoptosis. However, whether the suppression of CHOP can inhibit apoptosis and attenuates disc degeneration by cyclic stretch remains unclear. The aim of this study was to evaluate the suppressive effects of lentiviral CHOP shRNA on apoptosis induced by cyclic stretch in rat annulus fibrosus (AF) cells in vitro and disc degeneration of rat lumber spine in vivo. Lentiviral CHOP shRNA was constructed and introduced into AF cells. After stretched by the Flexcell Tension Plus system with 20% elongation for 36 h, silencing of the CHOP gene was identified by RT-PCR and Western blot. Inhibition of apoptosis was detected by flow cytometry, and nuclei morphologic changes were visualized by Hoechst 33258 staining. The effect of CHOP shRNA on disc degeneration was determined in vivo by using a rat model. At 7 weeks after intradiscal injection of the control or CHOP shRNA in the L4/L5 and L5/L6 discs, disc degeneration was assessed by X-ray examination, magnetic resonance imaging (MRI) assessment, and HE and TUNEL staining. A significant decrease in CHOP mRNA and protein expression was detected in AF cells with CHOP shRNA transfection after 36 h stretch. There was a significant decrease in apoptotic incidence in cells treated with CHOP shRNA, which was parallel to the expression of CHOP. Injection of CHOP shRNA in vivo resulted in the improvement in MRI and histologic score, and decrease in the apoptosis in the disc. No significant change in disc height was observed. In conclusion, a novel lentiviral vector expressing CHOP shRNA efficiently inhibits apoptosis in rat AF cells by silencing CHOP expression. In a rat model, intradiscal injection of CHOP shRNA induces the suppression of disc degeneration. The therapeutic effects of lentiviral CHOP shRNA should be further explored.  相似文献   

5.
The mechanism of intervertebral disc degeneration is still unclear, and there are no effective therapeutic strategies for treating this condition. miRNAs are naturally occurring macromolecules in the human body and have many biological functions. Therefore, we hope to elucidate whether miRNAs are associated with intervertebral disc degeneration and the underlying mechanisms involved. In our study, differentially expressed miRNAs were predicted by the GEO database and then confirmed by qPCR and in situ hybridization. Apoptosis of nucleus pulposus cells was detected by flow cytometry and Bcl2, Bax and caspase 3. Deposition of extracellular matrix was assessed by Alcian blue staining, and the expression of COX2 and MMP13 was detected by immunofluorescence, Western blot and qPCR. Moreover, qPCR was used to detect the expression of miR27a and its precursors. The results showed that miR27a was rarely expressed in healthy intervertebral discs but showed increased expression in degenerated intervertebral discs. Ectopic miR27a expression inhibited apoptosis, suppressed the inflammatory response and attenuated the catabolism of the extracellular matrix by targeting FSTL1. Furthermore, it seems that the expression of miR27a was up‐regulated by TNF‐α via the P38 signalling pathway. So we conclude that TNF‐α and FSTL1 engage in a positive feedback loop to promote intervertebral disc degeneration. At the same time, miR27a is up‐regulated by TNF‐α via the P38 signalling pathway, which ameliorates inflammation, apoptosis and matrix degradation by targeting FSTL1. Thus, this negative feedback mechanism might contribute to the maintenance of a low degeneration load and would be beneficial to maintain a persistent chronic disc degeneration.  相似文献   

6.
It is obvious that epigenetic processes influence the evolution of intervertebral disc degeneration (IDD). However, its molecular mechanisms are poorly understood. Therefore, we tested the hypothesis that IGFBP5, a potential regulator of IDD, modulates IDD via the ERK signalling pathway. We showed that IGFBP5 mRNA was significantly down‐regulated in degenerative nucleus pulposus (NP) tissues. IGFBP5 was shown to significantly promote NP cell proliferation and inhibit apoptosis in vitro, which was confirmed by MTT, flow cytometry and colony formation assays. Furthermore, IGFBP5 was shown to exert its effects by inhibiting the ERK signalling pathway. The effects induced by IGFBP5 overexpression on NP cells were similar to those induced by treatment with an ERK pathway inhibitor (PD98059). Moreover, qRT‐PCR and Western blot analyses were performed to examine the levels of apoptosis‐related factors, including Bax, caspase‐3 and Bcl2. The silencing of IGFBP5 up‐regulated the levels of Bax and caspase‐3 and down‐regulated the level of Bcl2, thereby contributing to the development of human IDD. Furthermore, these results were confirmed in vivo using an IDD rat model, which showed that the induction of Igfbp5 mRNA expression abrogated the effects of IGFBP5 silencing on intervertebral discs. Overall, our findings elucidate the role of IGFBP5 in the pathogenesis of IDD and provide a potential novel therapeutic target for IDD.  相似文献   

7.
Bcl-2 is an antiapoptotic molecule that prevents oxidative stress damage and cell death. We investigated the possible protective mechanisms mediated by Bcl-2 during hyperoxia-induced cell death in L929 cells. In these cells, hyperoxia promoted apoptosis without DNA fragmentation. Overexpression of Bcl-2 significantly protected cells from oxygen-induced apoptosis, as shown by measurement of lactate dehydrogenase release, quantification of apoptotic nuclei, and detection of Annexin-V-positive cells. Bcl-2 partially prevented mitochondrial damage and interfered with the mitochondrial proapoptotic signaling pathway: it reduced Bax translocation to mitochondria, decreased the release of cytochrome c, and inhibited caspase 3 activation. However, treatment with the caspase inhibitor Z-VAD.fmk failed to rescue the cells from death, indicating that protection provided by Bcl-2 was due not only to caspase inhibition. Bcl-2 also prevented the release of mitochondrial apoptotic inducing factor, a mediator of caspase-independent apoptosis, correlating with the absence of oligonucleosomal DNA fragmentation. In addition, Bcl-2-overexpressing cells showed significantly higher intracellular amounts of glutathione after 72 h of oxygen exposure. In conclusion, our results demonstrate that the overexpression of Bcl-2 is able to prevent hyperoxia-induced cell death, by affecting mitochondria-dependent apoptotic pathways and increasing intracellular antioxidant compounds.  相似文献   

8.
Human GraB (hGraB) preferentially induces apoptosis via Bcl-2-regulated mitochondrial damage but can also directly cleave caspases and caspase substrates in cell-free systems. How hGraB kills cells when it is delivered by cytotoxic lymphocytes (CL) and the contribution of hGraB to CL-induced death is still not clear. We show that primary human natural killer (hNK) cells, which specifically used hGraB to induce target cell death, were able to induce apoptosis of cells whose mitochondria were protected by Bcl-2. Purified hGraB also induced apoptosis of Bcl-2-overexpressing targets but only when delivered at 5- to 10-fold the concentration required to kill cells expressing endogenous Bcl-2. Caspases were critical in this process as inhibition of caspase activity permitted clonogenic survival of Bcl-2-overexpressing cells treated with hGraB or hNK cells but did not protect cells that only expressed endogenous Bcl-2. Our data therefore show that hGraB triggers caspase activation via mitochondria-dependent and mitochondria-independent mechanisms that are activated in a hierarchical manner, and that the combined effects of Bcl-2 and direct caspase inhibition can block cell death induced by hGraB and primary hNK cells.  相似文献   

9.
Apoptosis plays an important role during embryonic development. Apoptotic cell death is executed by caspases and can be regulated by the Bcl-2 family of genes. Ribonuclease protection assay was used to investigate the expression of selected apoptosis-related genes of the Bcl-2 family, pro-apoptotic Bax, Bad and anti-apoptotic Bcl-2, during differentiation of murine embryonic stem cells (ES) mediated by all-trans-retinoic acid. The mRNA expression of caspase 3, caspase 6 and certain pro-inflammatory cytokines was also investigated simultaneously. ES cells exposed to 1 microM all-trans-retinoic acid on day 8, 9 and 10 of differentiation revealed increased expression of Bax and Bad compared to the vehicle-treated cells. No effect on Bcl-2 mRNA was noted after all-trans-retinoic acid treatment. Increased mRNA expression of caspase 3 and caspase 6 in all-trans-retinoic acid-exposed ES cells suggested that caspases play an important role in retinoic acid-mediated apoptosis during ES differentiation. Increase in the expression of TNF alpha and macrophage migration inhibitory factor (MIF) was noted in retinoic acid-treated cells on day 14. Significant increase observed in interferon gamma inducing factor (IGIF/IL-18) mRNA expression in all-trans-retinoic acid-treated cells on day 14 and 17 did not translate to increased INF gamma expression. No change in the expression of other pro-inflammatory cytokines was noted with all-trans-retinoic acid treatment. The function of TNF alpha, IGIF/IL-18 and MIF in all-trans-retinoic acid-treated cells during ES differentiation and apoptosis is still speculatory. Results suggested that RA-mediated apoptosis during neural differentiation of ES cells involves up-regulation of caspase 3, caspase 6, Bad, and Bax.  相似文献   

10.

This study aimed to determine the effects of SKI on interleukin (IL)-1β-induced apoptosis of nucleus pulposus (NP) cells, intervertebral disc degeneration (IDD), and the Wnt signaling pathway. NP tissue specimens of different Pfirrmann grades (II–V) were collected from patients with different grades of IDD. Real-time polymerase chain reaction and western blotting were used to compare SKI mRNA and protein expression in NP tissues from patients. Using the IL-1β-induced IDD model, NP cells were infected with lentivirus-coated si-SKI to downregulate the expression of SKI and treated with LiCl to evaluate the involvement of the Wnt/β-catenin signaling pathway. Western blotting, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect NP cell apoptosis, extracellular matrix (ECM) metabolism, and related protein expression changes in the Wnt/β-catenin signaling pathway. To investigate the role of SKI in vivo, a rat IDD model was established by needle puncture of the intervertebral disc. Rats were injected with lentivirus-coated si-SKI and evaluated by magnetic resonance imaging (MRI), and hematoxylin and eosin (HE) and safranin O staining. SKI expression positively correlated with the severity of human IDD. In the IL-1β-induced NP cell degeneration model, SKI expression increased significantly and reached a peak at 24 h. SKI knockdown protected against IL-1β-induced NP cell apoptosis and ECM degradation. LiCl treatment reversed the protective effects of si-SKI on NP cells. Furthermore, lentivirus-coated si-SKI injection partially reversed the NP tissue damage in the IDD model in vivo. SKI knockdown reduced NP cell apoptosis and ECM degradation by inhibiting the Wnt/β-catenin signaling pathway, ultimately protecting against IDD. Therefore, SKI may be an effective target for IDD treatment.

  相似文献   

11.

Aims

This study aims to investigate the effect and the mechanisms of notoginsenoside Ft1, a natural compound exclusively found in P. notoginseng, on the proliferation and apoptosis of human neuroblastoma SH-SY5Y cells.

Main methods

CCK-8 assay was used to assess the cell proliferation. Flow cytometry was performed to measure the cell cycle distribution and cell apoptosis. Hoechst 33258 staining was conducted to confirm the morphological changes of apoptotic cells. Protein expression was detected by western blot analysis and caspase 3 activity was measured by colorimetric assay kit.

Key findings

Among the saponins examined, Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45 μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis, which was confirmed by Hoechst 33258 staining. Further studies demonstrated that Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK. However, the phosphorylation of Jak2 and p85 PI3K was reduced by Ft1. Inhibitors of p38 MAPK and ERK1/2 but not JNK abrogated the up-regulated protein expressions of cleaved caspase 3, p21 and down-regulated protein expression of Bcl-2 as well as elevated caspase 3 activity induced by Ft1.

Significance

Ft1 arrested the proliferation and elicited the apoptosis of SH-SY5Y cells possibly via p38 MAPK and ERK1/2 pathways, which indicates the potential therapeutic effect of it on human neuroblastoma.  相似文献   

12.
摘要 目的:研究miR-124和MAPK/ERK途径对脑梗死大鼠神经细胞凋亡的影响及其可能的机制。方法:本研究将SD大鼠随机分为假手术组(Sham组)、模型组(CI组)、miR-124组(miR组)、脑梗死+miR-124组(CI+miR组)和脑梗死+MEK/ERK阻滞剂组(CI+U0126组),采用mNSS评分法评估大鼠神经功能损伤程度,采用TTC染色检测脑梗死体积,采用尼式染色检查脑组织的病理情况,采用TUNEL染色法检测大鼠脑神经细胞凋亡,TRIzol法提取总RNA,RT-PCR检测miR-124、ERK1和ERK2基因表达,蛋白质免疫印迹法检测Caspase-3、Bax、Bcl-2、MEK2和ERK1蛋白表达水平。结果:与Sham组和miR组相比,CI组、CI+miR组和CI+U0126组大鼠的脑梗死体积、mNSS评分和脑含水量均显著增加(P<0.01)。Sham组、miR组、CI+miR组和CI+U0126组大鼠的脑组织中尼式体的数量显著高于CI组,模型组大鼠的脑神经元结构被破坏且出现核移位和细胞坏死等病理变化;与Sham组和miR组相比,CI组大鼠中miR-124的表达水平显著降低(P<0.01),CI+miR组和CI+U0126组大鼠中miR-124的表达水平显著上调(P<0.01)。TUNEL染色结果显示,与模型组相比,CI+miR组和CI+U0126组大鼠中凋亡数量显著减少(P<0.01),ERK1和ERK2的mRNA相对表达水平均显著下调(P<0.01)。与模型组相比,CI+miR组和CI+U0126组大鼠脑组织中Caspase-3和Bax蛋白表达水平显著下调,Bcl-2蛋白的表达水平显著上调(P<0.01)。与模型组相比,CI+miR组和CI+U0126组大鼠脑组织中磷酸化的p-MEK-2和p-ERK1/2蛋白表达水平均显著下调(P<0.01)。结论:miR-124可能通过抑制MAPK/ERK信号通路的激活,减少脑梗死大鼠的神经细胞的凋亡,最终发挥保护作用。  相似文献   

13.
Apoptosis, a physiological form of cell death, is characterized by the activation of a program that kills cells and recycles their constituents. We have used thymoma cell lines to examine the role of Bcl-2 and caspases in ribosomal destruction during apoptosis. Glucocorticoid- and calcium ionophore (A23187)-induced apoptosis of S49 Neo cells resulted in both 28S rRNA and DNA degradation. Interestingly, anisomycin, a potent protein synthesis inhibitor, also induced 28S rRNA and DNA fragmentation suggesting that the responsible nucleases are present in the viable cells and become activated during apoptosis. The anti-apoptotic protein, Bcl-2, inhibited both glucocorticoid- and anisomycin-induced DNA and 28S rRNA degradation but could not protect against A23187-induced nucleic acid degradation. We next examined the role of caspase activation in the generation of 28S rRNA degradation through the use of ZVAD, a general caspase inhibitor. Under conditions where ZVAD substantially decreased 28S rRNA degradation induced by glucocorticoid or anisomycin, no decrease was observed when A23187 was used to induce apoptosis. Surprisingly, RNA degradation, like DNA degradation, occurs exclusively in shrunken lymphocytes but not those with normal cell volume despite equivalent exposure of the cells to the apoptotic signals. Together, these findings indicate the ribosome is a specific target for death effectors during apoptosis and that a caspase/Bcl-2-independent pathway exists to activate its destruction.  相似文献   

14.
This paper investigated the effects of ox-LDL on PCSK9, and the molecular mechanisms of PCSK9 siRNA-inhibited apoptosis induced by ox-LDL in human umbilical vein endothelial cells (HUVECs), to clarify the role of PCSK9 in atherosclerogenesis. HUVECs were incubated with ox-LDL for 24?h. The apoptosis was observed by Hoechst 33258 staining. The expression of PCSK9, LOX-1 mRNAs and proteins was detected by RT-PCR, western blot, respectively. The PCSK9 siRNAs labeled with fluorescence were transfected into HUVECs by Lipofectamine 2000. After transfection for 24?h, cells were treated with ox-LDL for 24?h, HUVECs apoptosis transfected siRNA was detected by Hoechst 33258 staining and flow cytometer. The expression of Bcl-2, Bax, caspase3, 8, 9 was detected by western blot. The activity of caspase3, 9 was detected by kits. Our results showed that apoptosis of HUVECs and the expressions of PCSK9 and LOX-1 were upregulated secondary to induction by ox-LDL in a concentration-dependent manner. However, ox-LDL-induced HUVEC apoptosis and PCSK9 expression, but not LOX-1 expression, were significantly reduced by PCSK9 siRNA. These results demonstrate a linkage between HUVEC apoptosis and PCSK9 expression. Furthermore, we detected the possible pathway involved in apoptotic regulation by PCSK9 siRNA; our results showed that the expression of Bcl-2 decreased, whereas that of Bax increased. In addition, ox-LDL enhanced the activity of caspase9 and then caspase3. Pretreatment of HUVECs with PCSK9 siRNA blocked these effects of ox-LDL. These findings suggest that ox-LDL-induced HUVECs apoptosis could be inhibited by PCSK9 siRNA, in which Bcl/Bax-caspase9-caspase3 pathway maybe was involved through reducing the Bcl-2/Bax ratio and inhibited the activation of both caspase9 and 3.  相似文献   

15.
16.
Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.  相似文献   

17.
Heregulin can regulate the survival of cardiomyocytes, epithelial cells, neuron, glial cells, and other cell types through binding with the ErbB receptors. The aim of this study is to investigate the effects of heregulin (HRG) on the apoptosis of Bone marrow Mesenchymal stem cells (MSCs). We used the MSCs from adult Sprague–Dawley rats and the model of serum deprivation (SD) and hypoxia-induced apoptosis. The apoptosis was detected by TUNEL method. The apoptosis of MSCs significantly increased 12 h or 18 h after SD and hypoxia, but treatment with HRG significantly decreased the apoptosis induced by SD and hypoxia. Tyrphostin AG1478 (ErbB3/4 inhibitor) or Tyrphostin AG825 (ErbB2 inhibitor) could block this effects of HRG. Akt and ERK were activated by HRG under SD and hypoxia conditions, but HRG had no effects on the activation of JNK and p38. HRG also increased the ratio of Bcl-2/Bax and decreased the activation of caspase3 induced by SD and hypoxia. These results suggested HRG could decrease the apoptosis of MSCs induced by SD and hypoxia through the activation of Akt and ERK, the increase of Bcl-2/Bax ratio and the inhibition of caspase3 activation.  相似文献   

18.
At present the most widely used technique for apoptosis detection in embryos remains the in situ visualization of DNA fragmentation by terminal deoxynucleotidyl transferase-dUTP nick end labelling (TUNEL) assay although this technique may be prone to artefacts. The aim of the present study was to investigate if the mRNA expression of a set of genes involved in apoptosis (Bax, Bcl-2, caspase-3 and -7) at an earlier point in the apoptotic cascade could be a good marker for apoptosis in in vitro produced bovine embryos. After normalization to the geometric mean of three reference genes, GAPD, YWHAZ and SDHA, mRNA expression levels of Bax, Bcl-2, caspase-3 and -7 were compared in embryos treated with an apoptosis inducer, staurosporine and in non-treated embryos. None of the genes were differently expressed in treated in comparison with non-treated embryos. In conclusion, mRNA expression of Bax, Bcl-2, caspase-3 and-7 cannot be used as a reliable apoptosis detection method. Immunofluorescent staining of caspase-3 and -7 is a better choice where as for Bcl-2 no reliable and practicable alternative is available at the moment.  相似文献   

19.
The purpose of the investigation is to reveal the influence of dietary calcium on fluorosis-induced brain cell apoptosis in rat offspring, as well as the underlying molecular mechanism. Sprague–Dawley (SD) female rats were randomly divided into five groups: control group, fluoride group, low calcium, low calcium fluoride group, and high calcium fluoride group. SD male rats were used for breeding only. After 3 months, male and female rats were mated in a 1:1 ratio. Subsequently, 18-day-old gestation rats and 14- and 28-day-old rats were used as experimental subjects. We determined the blood/urine fluoride, the blood/urine calcium, the apoptosis in the hippocampus, and the expression levels of apoptosis-related genes, namely Bcl-2, caspase 12, and JNK. Blood or blood/urine fluoride levels and apoptotic cells were found significantly increased in fluorosis rat offspring as compared to controls. Furthermore, the Bcl-2 messenger RNA (mRNA) expression levels significantly decreased, and caspase 12 mRNA levels significantly increased in each age group as compared to controls. Compared with the fluoride group, the blood/urine fluoride content and apoptotic cells evidently decreased in the high calcium fluoride group, Bcl-2 mRNA expression significantly increased and caspase 12 mRNA expression significantly decreased in each age group. All results showed no gender difference. Based on these results, the molecular mechanisms of fluorosis-induced brain cell apoptosis in rat offspring may include the decrease in Bcl-2 mRNA expression level and increase in caspase 12 mRNA expression signaling pathways. High calcium intake could reverse these gene expression trends. By contrast, low calcium intake intensified the toxic effects of fluoride on brain cells.  相似文献   

20.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号