首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y receptors (YRs) are G protein-coupled receptors whose Y(1)R, Y(2)R, and Y(5)R subtypes preferentially bind neuropeptide Y (NPY) and peptide YY, whereas mammalian Y(4)Rs show a higher affinity for pancreatic polypeptide (PP). Comparison of YR orthologs and paralogs revealed Asp(6.59) to be fully conserved throughout all of the YRs reported so far. By replacing this conserved aspartic acid residue with alanine, asparagine, glutamate, and arginine, we now show that this residue plays a crucial role in binding and signal transduction of NPY/PP at all YRs. Sensitivity to distinct replacements is, however, receptor subtype-specific. Next, we performed a complementary mutagenesis approach to identify the contact site of the ligand. Surprisingly, this conserved residue interacts with two different ligand arginine residues by ionic interactions; although in Y(2)R and Y(5)R, Arg(33) is the binding partner of Asp(6.59), in Y(1)R and Y(4)R, Arg(35) of human PP and NPY interacts with Asp(6.59). Furthermore, Arg(25) of PP and NPY is involved in ligand binding only at Y(2)R and Y(5)R. This suggests significant differences in the docking of YR ligands between Y(1/4)R and Y(2/5)R and provides new insights into the molecular binding mode of peptide agonists at GPCRs. Furthermore, the proposed model of a subtype-specific binding mode is in agreement with the evolution of YRs.  相似文献   

2.
Peptide YY(3-36) is a satiation hormone released postprandially into the bloodstream from L-endocrine cells in the gut epithelia. In the current report, we demonstrate PYY(3-36) is also present in murine as well as in human saliva. In mice, salivary PYY(3-36) derives from plasma and is also synthesized in the taste cells in taste buds of the tongue. Moreover, the cognate receptor Y2R is abundantly expressed in the basal layer of the progenitor cells of the tongue epithelia and von Ebner's gland. The acute augmentation of salivary PYY(3-36) induced stronger satiation as demonstrated in feeding behavioral studies. The effect is mediated through the activation of the specific Y2 receptor expressed in the lingual epithelial cells. In a long-term study involving diet-induced obese (DIO) mice, a sustained increase in PYY(3-36) was achieved using viral vector-mediated gene delivery targeting salivary glands. The chronic increase in salivary PYY(3-36) resulted in a significant long-term reduction in food intake (FI) and body weight (BW). Thus this study provides evidence for new functions of the previously characterized gut peptide PYY(3-36) suggesting a potential simple and efficient alternative therapeutic approach for the treatment of obesity.  相似文献   

3.
The three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones. Although NPY is only released from neurons, PYY and PP are primarily found in endocrine cells in the gut, where they exert such effects as inhibition of gall bladder secretion, gut motility, and pancreatic secretion. However, when PYY is administered in an experimental setting to animals, cloned receptors, or tissue preparations, it can mimic the effects of NPY in essentially all studies, making it difficult to study the effects of PP-fold peptides and to delineate what receptor and peptide accounts for a particular effect. Initial studies with transgenic animals confirmed the well-established action of NPY on metabolism, food-intake, vascular systems, memory, mood, neuronal excitability, and reproduction. More recently, using transgenic techniques and novel antagonists for the Y1, Y2, and Y5 receptors, NPY has been found to be a key player in the regulation of ethanol consumption and neuronal development.  相似文献   

4.
This investigation describes the relative potencies of four peptide agonists, namely, peptide YY (PYY), [Leu3l,Pro34]PYY (Pro34pYY), neuropeptide Y (NPY), and [Leu31,Pro34]NPY (Pro34NPY), as antisecretory agents in human, rat, and mouse gastrointestinal preparations. The inhibition of agonist responses by the Y1-receptor antagonist BIBP 3226 was also tested in each preparation. An unexpectedly pronounced preference for PYY and Pro34PYY was observed in functional studies of two human epithelial lines stably transfected with the rat Y1 receptor (Y1-7 and C1Y1-6). NPY and Pro34NPY were at least an order of magnitude less effective than PYY in these functional studies but were only marginally less potent in displacement binding studies using membrane preparations of the same clonal lines. The orders of agonist potency obtained in Y1-7 and C1Y1-6 epithelia were compared with those obtained from a single human colonic adenocarcinoma cell line (Colony-6, which constitutively expresses Y1 receptors) and also from mucosal preparations of rat and mouse descending colon. Similar peptide orders of potency were obtained in rat and mouse colonic mucosae and Colony-6 epithelia, all of which exhibited PYY preference (although less pronounced than with Y1-7 and C1Y1-6 epithelia) and significant sensitivity to the Y1 receptor antagonist, BIBP 3226. We have compared the pharmacology of these five mammalian epithelial preparations and provide cautionary evidence against the reliance upon agonist concentration-response relationships alone, in the characterization of NPY receptor types.  相似文献   

5.
Taste reception is fundamental for proper selection of food and beverages. Chemicals detected as taste stimuli by vertebrates include a large variety of substances, ranging from inorganic ions (e.g., Na+, H+) to more complex molecules (e.g., sucrose, amino acids, alkaloids). Specialized epithelial cells, called taste receptor cells (TRCs), express specific membrane proteins that function as receptors for taste stimuli. Classical view of the early events in chemical detection was based on the assumption that taste substances bind to membrane receptors in TRCs without permeating the tissue. Although this model is still valid for some chemicals, such as sucrose, it does not hold for small ions, such as Na+, that actually diffuse inside the taste tissue through ion channels. Electrophysiological, pharmacological, biochemical, and molecular biological studies have provided evidence that indeed TRCs use ion channels to reveal the presence of certain substances in foodstuff. In this review, we focus on the functional and molecular properties of ion channels that serve as receptors in taste transduction.  相似文献   

6.
Mammalian sweet taste receptors   总被引:57,自引:0,他引:57  
Nelson G  Hoon MA  Chandrashekar J  Zhang Y  Ryba NJ  Zuker CS 《Cell》2001,106(3):381-390
The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery.  相似文献   

7.
Few studies have suggested that neuropeptide Y (NPY) could play an important role in skin functions. However, the expression of NPY, the related peptides, peptide YY (PYY) and pancreatic polypeptide (PP) and their receptors have not been investigated in human skin. Using specific antisera directed against NPY, PYY, PP and the Y1, Y2, Y4 and Y5 receptor subtypes, we investigated here the expression of these markers. NPY-like immunoreactivity (ir) in the epidermal skin could not be detected. For the first time we report the presence of positive PP-like ir immunofluorescent signals in epidermal cells, i.e. keratinocytes of skin from three areas (abdomen, breast and face) obtained as surgical left-overs. The immunofluorescent signal of PP-like ir varies from very low to high level in all three areas. In contrast, PYY-like ir is only expressed in some cells and with varied level of intensity. Furthermore and for the first time we observed specific Y1 and Y4 receptor-like ir in all epidermal layers, while the Y2 and Y5 subtypes were absent. Interestingly, as seen in human epidermis, in Episkin, a reconstituted human epidermal layer, we detected the presence of PP-like as well as Y1-like and Y4-like ir. These data have shown the presence and distribution of PYY, PP and Y1 and Y4 receptors in the human skin and Episkin, suggesting possible novel roles of NPY related peptides and their receptors in skin homeostasis.  相似文献   

8.
Cox HM  Pollock EL  Tough IR  Herzog H 《Peptides》2001,22(3):445-452
A functional study has been performed to characterise the Y receptors responsible for NPY, PYY and PP-stimulated responses in mouse colonic mucosal preparations. Electrogenic ion secretion was stimulated with VIP following which NPY, PYY and PP analogues were, to varying degrees, inhibitory. PYY(3-36), hPP, Gln(23)hPP and rPP were effective but less potent than full length PYY, NPY or their Pro(34)-substituted analogues, while the Y(5) agonist Ala(31), Aib(32)hNPY was the least active peptide tested. The Y(1) antagonists, BIBP3226 and BIBO3304 virtually abolished Pro(34)PYY and PYY responses while PYY(3-36) responses were selectively inhibited by the Y(2) antagonist, BIIE0246. A combination of BIBO3304 and BIIE0246 also partially attenuated hPP responses, leaving residual effects that were most probably Y(4)-mediated. Thus we conclude that Y(1), Y(2) and Y(4) receptors attenuate ion secretion in mouse colon.  相似文献   

9.
The molecular mechanisms of the mammalian gustatory system have been examined in many studies using rodents as model organisms. In this study, we examined the mRNA expression of molecules involved in taste signal transduction in the fungiform papillae (FuP) and circumvallate papillae (CvP) of the rhesus macaque, Macaca mulatta, using in situ hybridization. TAS1R1, TAS1R2, TAS2Rs, and PKD1L3 were exclusively expressed in different subsets of taste receptor cells (TRCs) in the FuP and CvP. This finding suggests that TRCs sensing different basic taste modalities are mutually segregated in macaque taste buds. Individual TAS2Rs exhibited a variety of expression patterns in terms of the apparent level of expression and the number of TRCs expressing these genes, as in the case of human TAS2Rs. GNAT3, but not GNA14, was expressed in TRCs of FuP, whereas GNA14 was expressed in a small population of TRCs of CvP, which were distinct from GNAT3- or TAS1R2-positive TRCs. These results demonstrate similarities and differences between primates and rodents in the expression profiles of genes involved in taste signal transduction.  相似文献   

10.
Bitter taste has evolved as a central warning signal against the ingestion of potentially toxic substances appearing in the environment. The molecular events in the perception of bitter taste start with the binding of specific water-soluble molecules to G protein-coupled receptors (GPCR) called T2Rs and expressed at the surface of taste receptor cells. The functional characterisation of T2R receptors is far from been completed due to the difficulty to functionally express them in heterologous systems. Taking advantage of the parallelisms between the Caenorhabditis elegans (C. elegans) and mammalian GPCR signalling pathways, we developed a C. elegans-based expression system to express functional human and rodent GPCRs of the T2R family. We generated transgenic worms expressing T2Rs in ASI chemosensory neurons and performed behavioural assays using a variety of bitter tastants. As a proof of the concept, we generated transgenic worms expressing human T2R4 or its mouse ortholog T2R8 receptors, which respond to two bitter tastants previously characterised as their functional ligands, 6-n-propyl-2-thiouracil and denatoniun. As expected, expression of human T2R4 or its mouse ortholog T2R8 in ASI neurons counteracted the water-soluble avoidance to 6-n-propyl-2-thiouracil and denatoniun observed in control wild-type worms. The expression in ASI neurons of human T2R16, the ligand of which, phenyl-beta-d-glucopyranoside, belong to a chemically different group of bitter tastants, also counteracted the water-soluble avoidance to this compound observed in wild-type worms. These results indicate that C. elegans is a suitable heterologous expression system to express functional T2Rs providing a tool to efficiently search for specific taste receptor ligands and to extend our understanding of the molecular basis of gustation.  相似文献   

11.
The purpose of the present study was to determine whether the activation of NPY receptors alters catecholamines (CA) synthesis in the central nervous system and, if so, to identify the NPY receptor subtype(s) mediating this effect. Tyrosine hydroxylation, the rate-limiting step in CA synthesis, was assessed by measuring the accumulation of 3,4-dihydroxyphenyalanine (DOPA) by high pressure liquid chromatography coupled to electrochemical detection (HPLC-EC) in rat striatal dices following incubation of the tissue with the aromatic L-amino acid decarboxylase inhibitor m-hydroxybenzyl hydrazine (NSD 1015). Treatment with NSD 1015 resulted in an increase in DOPA accumulation that was increased even further following depolarization with a high potassium (KCl) buffer. PYY13-36 and NPY13-36 both produced a significant enhancement of the KCl-induced increase in DOPA accumulation. The effect of PYY13-36 was completely attenuated by the selective Y2 antagonist BIIE0246 suggesting that activation of Y2 receptors enhanced the synthesis of dopamine. In contrast to the effects of NPY13-36 and PYY13-36; NPY, PYY and PYY3-36 all produced a significant attenuation of the KCl-induced increase in DOPA accumulation. The Y1 antagonist BIBO3304 and the Y5-antagonist CGP71683A, both prevented the inhibitory effect of NPY converting it to a stimulatory effect. The enhancement of the NPY induced increase in DOPA accumulation observed by BIBO3304 was attenuated when examined in the presence of the Y2 antagonist BIIE0246. These results suggest that activation of NPY receptors can modulate the synthesis of CA in the rat striatum. The Y1 and Y5 receptor appear to be involved in attenuation, while Y2 receptors are involved in the stimulation of synthesis.  相似文献   

12.
Many G protein-coupled receptors belong to families of different receptor subtypes, which are recognized by a variety of distinct ligands. To study such a multireceptor/multiligand system, we investigated the Y-receptor family. This family consists of four G protein-coupled Y receptors in humans (hY 1R, hY 2R, hY 4R, and hY 5R) and is activated by the so-called NPY hormone family, which itself consists of three native peptide ligands named neuropeptide Y (NPY), pancreatic polypeptide (PP), and peptide YY (PYY). The hY 5R shows high affinity for all ligands, although for PP binding, the affinity is slightly decreased. As a rational explanation, we suggest that Tyr (27) is lost as a contact point between PP and the hY 5R in contrast to NPY or PYY. Furthermore, several important residues for ligand binding were identified by the first extensive mutagenesis study of the hY 5R. Using a complementary mutagenesis approach, we were able to discover a novel interaction point between hY 5R and NPY. The interaction between NPY(Arg (25)) and hY 5R(Asp (2.68)) as well as between NPY(Arg (33)) and hY 5R(Asp (6.59)) is maintained in the binding of PYY and PP to hY 5R but different to the PP-hY 4R and NPY-hY 1R contact points. Therefore, we provide evidence that the receptor subtype and not the pre-orientated conformation of the ligand at the membrane decides the binding mode. Furthermore, the first hY 5R model was set up on the basis of the crystal structure of bovine rhodopsin. We can show that most of the residues identified to be critical for ligand binding are located within the now postulated binding pocket.  相似文献   

13.
Corp ES  McQuade J  Krasnicki S  Conze DB 《Peptides》2001,22(3):493-499
Neuropeptide Y (NPY) and peptide YY (PYY) stimulate food intake after injection into the fourth cerebral ventricle, suggesting that NPY receptors in the hindbrain are targets for the stimulatory effect of these peptides on food intake. However, the NPY/PYY receptor subtype mediating the feeding response in the hindbrain is not known. To approach to this question we compared dose-effect of several NPY receptor agonists to stimulate food intake in freely-feeding rats 60- and 120-min after injection into the fourth cerebral ventricle. At the 120-min time point, PYY was 2- to 10-times as potent as NPY over the dose-response range and stimulated twice the total intake at the maximally effective dose (2-fold greater efficacy). NPY was 2-times as potent as the Y1, Y5 receptor agonist, [Leu(31)Pro(34)]NPY but acted with comparable efficacy. The Y5-, Y2-differentiating receptor agonist, NPY 2-36, was comparable in potency to PYY at low doses but equal in efficacy NPY and [Leu(31)Pro(34)]NPY. The Y2 receptor agonist, NPY 13-36, produced only a marginal effect on total food intake. The profile of agonist potency after fourth cerebral ventricle administration is similar to the profile obtained when these or related agonists are injected in the region of the hypothalamus. Agonists at both Y1 and Y5 receptors stimulated food intake with a rank order of potency that does not conclusively favor the exclusive involvement of a single known NPY receptor subtype. Thus it is possible that the ingestive effects of NPY and PYY are mediated by multiple or novel receptor subtypes in the hindbrain. And the relatively greater potency and efficacy of PYY raises the possibility that a novel PYY-preferring receptor in the hindbrain is involved in the stimulation of food intake.  相似文献   

14.
Functional CCK-A and Y2 receptors in guinea pig esophagus   总被引:3,自引:0,他引:3  
Effects of cholecystokinin octapeptide (CCK-8), peptide YY (PPY), neuropeptide Y (NPY) and their analogs on muscle contractions of esophageal strips were investigated. CCK-8 induced a tetrodotoxin and atropine-sensitive contraction. The relative potencies for CCK related peptides to induce contractions were CCK-8 > desulfated CCK-8 > gastrin-17-I. The CCK-A receptor antagonist L-364,718 was 300-fold more potent than the CCK-B receptor antagonist L-365,260 at inhibiting CCK-8-induced contraction. These indicate that neural CCK-A receptors mediate this contraction. PYY or NPY did not cause muscle contraction or inhibit muscle contraction induced by carbachol, endothelin-1 or KCl. However, both PYY and NPY concentration-dependently inhibited contraction induced by CCK-8. This inhibition was not affected by nitric oxide (NO) synthase inhibitors L-NMMA or L-NAME. The relative potencies of PYY related peptides to inhibit CCK-8 induced contraction were PYY > NPY > NPY13-36 > [Leu(31), Pro(34)]NPY > pancreatic polypeptide (PP). We conclude that CCK interacts with neural CCK-A receptors to cause esophageal muscle contraction. PYY and NPY interact with Y2 receptors to inhibit this CCK-induced muscle contraction by an effect not related to NO.  相似文献   

15.
NPY and pain as seen from the histochemical side   总被引:3,自引:0,他引:3  
The expression of neuropeptide tyrosine (NPY) and two of its receptors (Y1- and Y2Rs) in different types of rodent dorsal root ganglion (DRG) and spinal cord neurons, and their regulation by peripheral nerve injury, have suggested a role in neuropathic pain. Here we present the spinal NPYergic system from an immunohistochemical perspective based on recent studies using two specific antibodies recognizing the Y1- and Y2Rs, respectively, as well as on data from a study on a Y1R knock-out mouse. We have, for example, defined seven different neuron populations of Y1R-expressing neurons in the rat spinal cord, representing multiple targets for spinally released NPY. The differential distribution of NPY receptors probably explains both the pro- and antinociceptive effects of NPY previously reported in the literature. One system possibly responsible for antinociception is a group of Y1R-positive, presumably glutamatergic interneurons in the superficial dorsal horn laminae. We also discuss the possibility that NPY released within DRGs can act in a paracrine fashion on NPY receptors on adjacent neurons, perhaps contributing to the so-called cross excitation, a concept advanced by Devor, Amir and collaborators. Taken together with behavioral and electrophysiological results summarized by Smith et al. in this volume, histochemical analyses have advanced the knowledge on the role of NPY in pain processing.  相似文献   

16.
Peptide YY (PYY) and neuropeptide Y (NPY) are peptides that coordinate intestinal activities in response to luminal and neuronal signals. In this study, using the rat hybrid small intestinal epithelial cell line, hBRIE 380i cells, we demonstrated that PYY- and NPY-induced rearrangement of actin filaments may be in part through a Y1alpha and/or a nonneuronal Y2 receptor, which were cloned from both the intestinal mucosa and the hBRIE 380i cells. A number of PYY/NPY-responsive genes were also identified by subtractive hybridization of the hBRIE 380i cells in the presence or absence of a 6-h treatment with PYY. Several of these genes coded for proteins associated with the cell cytoskeleton or extracellular matrix. One of these proteins was the transmembrane-4 superfamily protein CD63, previously shown to associate with beta(1)-integrin and implicated in cell adhesion. CD63 immunoreactivity, using antibody to the extracellular domain, was highest in the differentiated cell clusters of the hBRIE 380i cells. The hBRIE 380i cells transfected with antisense CD63 cDNA lost these differentiated clusters. These studies suggest a new role for NPY and PYY in modulating differentiation through cytoskeletal associated proteins.  相似文献   

17.
18.
NPY, PYY and PP constitute the so‐called NPY hormone family, which exert its biological functions in humans through YRs (Y1, Y2, Y4 and Y5). Systematic modulation of YR function became important as this multireceptor/multiligand system is known to mediate various essential physiological key functions and is involved in a variety of major human diseases such as epilepsy, obesity and cancer. As several YRs have been found to be overexpressed on different types of malignant tumors they emerge as promising target in modern drug development. Here, we summarize the current understanding of YRs function and the molecular mechanisms of ligand binding and trafficking. We further address recent advances in YR‐based drug design, the development of promising future drug candidates and novel approaches in YR‐targeted tumor diagnostics and therapy opportunities. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The bitter taste receptors (T2Rs) belong to the G protein-coupled receptor (GPCR) superfamily. In humans, bitter taste sensation is mediated by 25 T2Rs. Structure–function studies on T2Rs are impeded by the low-level expression of these receptors. Different lengths of rhodopsin N-terminal sequence inserted at the N-terminal region of T2Rs are commonly used to express these receptors in heterologous systems. While the additional sequences were reported, to enhance the expression of the T2Rs, the local structural perturbations caused by these sequences and its effect on receptor function or allosteric ligand binding were not characterized. In this study, we elucidated how different lengths of rhodopsin N-terminal sequence effect the structure and function of the bitter taste receptor, T2R4. Guided by molecular models of T2R4 built using a rhodopsin crystal structure as template, we constructed chimeric T2R4 receptors containing the rhodopsin N-terminal 33 and 38 amino acids. The chimeras were functionally characterized using calcium imaging, and receptor expression was determined by flow cytometry. Our results show that rhodopsin N-terminal 33 amino acids enhance expression of T2R4 by 2.5-fold and do not cause perturbations in the receptor structure.  相似文献   

20.
Vertebrates receive tastants, such as sugars, amino acids, and nucleotides, via taste bud cells in epithelial tissues. In mammals, two families of G protein-coupled receptors for tastants are expressed in taste bud cells-T1Rs for sweet tastants and umami tastants (l-amino acids) and T2Rs for bitter tastants. Here, we report two families of candidate taste receptors in fish species, fish T1Rs and T2Rs, which show significant identity to mammalian T1Rs and T2Rs, respectively. Fish T1Rs consist of three types: fish T1R1 and T1R3 that show the highest degrees of identity to mammalian T1R1 and T1R3, respectively, and fish T1R2 that shows almost equivalent identity to both mammalian T1R1 and T1R2. Unlike mammalian T1R2, fish T1R2 consists of two or three members in each species. We also identified two fish T2Rs that show low degrees of identity to mammalian T2Rs. In situ hybridization experiments revealed that fish T1R and T2R genes were expressed specifically in taste bud cells, but not in olfactory receptor cells. Fish T1R1 and T1R2 genes were expressed in different subsets of taste bud cells, and fish T1R3 gene was co-expressed with either fish T1R1 or T1R2 gene as in the case of mammals. There were also a significant number of cells expressing fish T1R2 genes only. Fish T2R genes were expressed in different cells from those expressing fish T1R genes. These results suggest that vertebrates commonly have two kinds of taste signaling pathways that are defined by the types of taste receptors expressed in taste receptor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号