首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To specify the taxonomic rank of form ciscaucasicus (independent species Sylvaemus ciscaucasicus, or intraspecific form of pygmy wood mouse, S. uralensis), a 402-bp the mtDNA cytochrome b gene fragment (402 bp) was examined in ciscaucasicus individuals from six geographic localities of the Caucasus and Ciscaucasus (Krasnodar krai and Adygeya Republic) and 17 S. uralensis individuals from seven localities of the Russian Plain (Saratov oblast, Smolensk oblast, Voronezh oblast, Tula oblast, Moscow oblast, Tver’ oblast, and northern Krasnodar krai). For comparison, the cytochrome b gene was partly sequenced in the samples of yellow necked, S. flavicollis (n = 2, Samara oblast), and Caucasian, S. ponticus (n = 6, Krasnodar krai), wood mice. One Mus musculus specimen from Western Europe, whose nucleotide sequences were deposed in the GenBank, was used as intergeneric outgroup. Phylogenetic trees for the forms examined were constructed based on the mtDNA sequence variation and using the neighbor joining and maximum parsimony methods. The network of the cytochrome b haplotypes was also constructed. The level of genetic divergence was evaluated using Kimura’s two-parameter algorithm. Based on the data on the sequence variation in a 402-bp mtDNA cytochrome b gene fragment, the hypothesis on the species status of the ciscaucasicus form was. The mean intergroup distances (d) between the geographic groups of S. uralensis varied from 0.0036 to 0.0152. At the same time, the distances between the pygmy wood mice and the group of S. flavicollis-S. ponticus varies in the range from 0.0860 to 0.0935, and the level of intergeneric genetic differentiation (Sylvaemus-Mus) is higher than the latter index (d = 0.142). Ciscaucasicus should be considered as geographic substitution form of S. uralensis. Furthermore, the Caucasian populations of S. uralensis (= ciscaucasicus) were characterized by a threefold lower value of intergroup genetic divergence (d = 0.0062) than the East European populations (d = 0.0179). This finding pointed to some isolation of Caucasian populations of pygmy wood mouse and depletion of their gene pool. However other molecular genetic data (similarity of nucleotide composition and consistence of the levels of intra-and intergroup distances) suggest the absence of geographic subdivision between Caucasian and East European populations of S. uralensis relative to the molecular marker examined.  相似文献   

2.
To ascertain intra- and interspecific differentiation patterns of some Sylvaemus wood mice species (S. uralensis, S. sylvaticus, S. ponticus, S. flavicollis, and S. fulvipectus), sequence variation of the mitochondrial cytochrome oxidase subunit I gene (COI) fragment (654 bp) was analyzed and the data obtained using several molecular genetic markers were compared. Distinct isolation of all Sylvaemus species (including closely related allopatric S. flavicollis and S. ponticus), as well as of the European and Asian races of pygmy wood mouse S. uralensis at the COI gene was demonstrated. However, genetic differences of the Sylvaemus species were 1.5 times and more higher than the distance (D) between the races of S. uralenciis. This finding provides no ample grounds to treat the latter as the independent species. The only specimen of Pamir-Alay subspecies S. uralensis pallipes examined showed closest relatedness to to the Asian race, although was rather distant from it (D = 0.038). No reliable isolation of the eastern European and southern European chromosomal forms, representing the European race of S. uralensis, as well as of their presumptive hybrids from the outskirts of the city of Sal'sk, Rostov region, at the COI gene was revealed. A hybrid origin of the populations of pygmy wood mouse from the outskirts of the Talapker railway station, Novovarshavsky district, Omsk region, was confirmed. In preliminary studies, based on karyotypic characters, these populations were diagnosed as distant hybrids of the eastern European chromosomal form and the Asian race. In yellow-necked wood mouse S. flavicollis from the territory of Russia and Ukraine, weak differentiation into northern and southern lineages (with mean genetic distance between them of 0.020) was observed. Considerably different relative genetic distances between the races of S. uralensis and the S. flavicollis--S. ponticus species pair, inferred from the mitochondrial cytochrome oxidase and cytochrome b gene data, indicated that the rates of evolution of different mitochondrial genome regions could be very different. It is suggested that transformations of the cytochrome b gene, or at least its part, were irregular in time and/or in different phyletic lineages (i.e., accelerated upon the formation of pygmy wood mouse races, and delayed upon the establishment of S. flavicollis and S. ponticus).  相似文献   

3.
Using karyological, allozyme, and molecular genetic analysis, habitation of the four Sylvaemus wood mice species, pygmy wood mouse (S. uralensis), wood mouse (S. sylvaticus), yellow-necked mouse (S. flavicollis), and yellow-bellied mouse (S. fulvipectus) in Rostov oblast was demonstrated. Sylvaemus uralensis was distributed nearly over nearlythe whole territory of the oblast; S. sylvaticus was found in the central and western parts of the oblast on the right bank area of Don River; S. flavicollis inhabited northern and central parts of the right bank area of Don River; S. fulvipectus was found in the southern parts of the oblast, in the left bank area of Don River. Using the chromosome C-banding technique, it was demonstrated that the pygmy wood mice living in Rostov oblast in the right bank areas of Manych River and Don River in its low course, belonged to the eastern European chromosomal form of S. uralensis. The mice from the outskirts of the town of Salsk, the left bank area of Manych River, were probably hybrids between eastern European and southern European chromosomal forms. Based on the mitochondrial DNA cytochrome b gene fragment sequencing and chromosome C-banding, it was suggested that the wood mice inhabiting Rostov oblast belonged to the southern lineage of S. sylvaticus, living on Apennine Peninsula, Balkan Peninsula, and nearly throughout Ukraine.  相似文献   

4.
To ascertain intra- and interspecific differentiation patterns of some Sylvaemus wood mice species (S. uralensis, S. sylvaticus, S. ponticus, S. flavicollis, and S. fulvipectus), sequence variation of the fragment (654 bp) of the mitochondrial cytochrome oxidase subunit I gene (COI) was analyzed and the data obtained using several molecular genetic markers were compared. Distinct isolation of all Sylvaemus species (including closely related allopatric S. flavicollis and S. ponticus), as well as of the European and Asian races of pygmy wood mouse S. uralensis at the COI gene was demonstrated. However, genetic differences of the Sylvaemus species were 1.5 times and more higher than the distance (D) between the races of S. uralensis. This finding provides no ample grounds to treat them as the independent species. The only examined specimen of Pamir-Alay subspecies S. uralensis pallipes showed closest relatedness to to the Asian race, although was rather distant from it (D = 0.038). No reliable isolation of the eastern European and southern European chromosomal forms, representing the European race of S. uralensis, as well as of their presumptive hybrids from the out-skirts of the city of Sal’sk, Rostov region, at the COI gene was revealed. A hybrid origin of the population of pygmy wood mouse from the outskirts of the Talapker railway station, Novovarshavsky district, Omsk region, was confirmed (in preliminary studies, based on karyotypic characters, these specimens were diagnosed as distant hybrids of the eastern European chromosomal form and the Asian race). In yellow-necked wood mouse S. flavicollis from the territory of Russia and Ukraine, weak differentiation into northern and southern lineages (with mean genetic distance between them of 0.020) was observed. Considerably different relative genetic distances between the races of S. uralensis and the S. flavicollis-S. ponticus species pair, inferred from the mitochondrial cytochrome oxidase and cytochrome b genes data, indicated that the rates of evolution of the mitochondrial genome regions could be very dissimilar. It is suggested that transformations of the cytochrome b gene, or at least its part, were irregular in time and/or in different phyletic lineages (i.e., accelerated upon the formation of pygmy wood mouse races, and delayed upon the establishment of S. flavicollis and S. ponticus).  相似文献   

5.
6.
Using karyological, allozyme, and molecular genetic analysis, habitation of the four Sylvaemus wood mice species, pygmy wood mouse (S. uralensis), wood mouse (S. sylvaticus), yellow-necked mouse (S. flavicollis), and yellow-bellied mouse (S. fulvipectus) in Rostov oblast was demonstrated. Sylvaemus uralensis was distributed nearly over the whole territory of the oblast; S. sylvaticus was found in the central and western parts of the oblast on the right bank area of Don River; S. flavicollis inhabited northern and central parts of Rostov oblast on the right bank area of Don River; S. fulvipectus was found in the southern parts of the oblast, in the left bank area of Don River. Using the chromosome C-banding technique, it was demonstrated that the pygmy wood mice living in Rostov oblast in the right bank areas of Manych River and Don River in its low course, belonged to the eastern European chromosomal form of S. uralensis. The pygmy wood mice from the outskirts of the town of Salsk, the left bank area of Manych River, were probably hybrids between eastern European and southern European chromosomal forms. Based on the mitochondrial DNA cytochrome b gene fragment sequencing and chromosome C-banding, it was suggested that the wood mice inhabiting Rostov oblast belonged to the southern lineage of S. sylvaticus, living on Apennine Peninsula, Balkan Peninsula, and nearly throughout Ukraine.  相似文献   

7.
Mitochondrial DNA (mtDNA) restriction polymorphism was examined in Turkmens, Eastern Iranians, and Ukrainians. The gene pools of all populations studied were characterized by the presence of European mtDNA lineages. Mongoloid component observed in Turkmen and Iranian populations with the frequencies of about 20% was represented by groups C, D, and E/G in Turkmens, and by M*, D, A, and B in Iranians. The relative positions of the populations studied, of populations from the Caucasus, Western Iran, and Russian populations from the Krasnodar krai and Belgorod oblast in the space of principal components revealed a geographically specific pattern of the population clustering. The data on mtDNA polymorphism indicated pronounced differentiation of Eastern and Western Iranians. The latter were characterized by a mtDNA group composition similar to that in Eastern Slavs. The historical role of the Caspian populations in the formation of the population of Southeastern Europe is discussed.  相似文献   

8.
Bogdanov AS 《Genetika》2004,40(8):1099-1112
The genetic divergence between the eastern European, southern European, and Asian chromosome forms of the pygmy wood mouse Sylvaemus uralensis, whose karyotypes differ from one another in the amount of pericentromeric heterochromatin, has been reevaluated using allozyme analysis. In general, Asian S. uralensis living in eastern Kazakhstan, eastern Turkmenistan (the Kugitang Ridge), and Uzbekistan are more monomorphic than European populations of this species. However, the allozyme differences between all chromosome forms of the pygmy wood mouse is comparable with the interpopulation differences within each form and are an order of magnitude smaller than those between "good" species of the genus Sylvaemus. Thus, the chromosome forms of S. uralensis cannot be considered to be separate species. The concept of races as large population groups that have not diverged enough to regard them as species but differ from one another in some genetic characters is used to describe the differentiation of S. uralensis forms more adequately. The currently available evidence suggests the existence of two S. uralensis races, the Asian and the European ones, and two chromosome forms (eastern and western) of the European race. The possible historical factors that have determined the formation of the races of the pygmy wood mouse are considered. According to the most plausible hypothesis, the shift and fragmentation of the broad-leaved forest zone during the most recent glacial period (late Pleistocene) were the crucial factors of the formation of these races, because they resulted in a prolonged isolation of the European and Asian population groups of S. uralensis from each other.  相似文献   

9.
Mitochondrial DNA (mtDNA) restriction polymorphism was examined in Turkmens, Eastern Iranians, and Ukrainians. The gene pools of all populations studied were characterized by the presence of European mtDNA lineages. Mongoloid component observed in Turkmen and Iranian populations with the frequencies of about 20% was represented by groups C, D, and E/G in Turkmens, and by M*, D, A, and B in Iranians. The relative positions of the populations studied, of populations from the Caucasus, Western Iran, and Russian populations from the Krasnodar krai and Belgorod oblast in the space of principal components revealed a geographically specific pattern of the population clustering. The data on mtDNA polymorphism indicated pronounced differentiation of Eastern and Western Iranians. The latter were characterized by a mtDNA group composition similar to that in Eastern Slavs. The historical role of the Caspian populations in the formation of the population of Southeastern Europe is discussed.  相似文献   

10.
Petrovskaia AV 《Genetika》2007,43(4):530-536
Restriction polymorphism of the mtDNA cytochrome b gene was studied in nine sable Martes zibellina L. populations from three introduction foci of Khabarovsk and Kamchatka sables in Magadan oblast: Olya, Kolyma, and Omolon. For comparison, similar studies were performed with the populations of central Kamchatka and Khabarovsk krai. In total, 444 DNA specimens were examined. Three mtDNA haplotypes (A, B, and C) proved to occur at various frequencies in the populations under study. The sable population system displayed high differentiation (FST = 22.3%). The populations of the Olya focus were most similar genetically to the populations of Kamchatka; those of the Omolon focus were similar to the Khabarovsk populations, and those of the Kolyma focus occupied an intermediate place. The observed spatial heterogeneity of the sable populations of Magadan oblast was explained in terms of the formation of the introduction foci of Kamchatka and Khabarovsk sables, starting from the 1950s.  相似文献   

11.
Analysis of the diversity of monogenic hereditary diseases in eight raions (districts) of Rostov oblast (region) of Russia (Tsimlyansk, Volgodonskoi, Tselina, Egorlykskaya, Millerovo, Tarasovskaya, Rodionovo-Nesvetaiskaya, and Matveevo-Kurgan raions) has been summarized. The total sample size was 320925 subjects. The spectrum of hereditary diseases detected in the eight districts comprises 187 diseases, including 99 autosomal dominant (AD), 72 autosomal recessive (AR), and 16 X-linked diseases. The mean prevalence rate of each disease in the total population has been calculated. Accumulation of individual diseases in different regions of Rostov oblast has been calculated; the disease accumulation has been compared with that in some populations of Russia examined earlier. Cluster analysis using the data on the frequencies of genes of hereditary diseases has shown the gene geographic position of the Rostov oblast population among the following ethnic populations of Russia: Russians (Kostroma, Kirov, and Rostov oblasts and Krasnodar krai), Chuvashes (Chuvashia), Adygeans (Adygea), Maris (Marii El), and Udmurts (Udmurtia).  相似文献   

12.
Restriction polymorphism of the mtDNA cytochrome b gene was studied in nine sable Martes zibellina L. populations from three introduction foci of Khabarovsk and Kamchatka sables in Magadan oblast: Olya, Kolyma, and Omolon. For comparison, similar studies were performed with the populations of central Kamchatka and Khabarovsk krai. In total, 444 DNA specimens were examined. Three mtDNA haplotypes (A, B, and C) proved to occur at various frequencies in the populations under study. The sable population system displayed high differentiation (F ST = 22.3%). The populations of the Olya focus were most similar genetically to the populations of Kamchatka; those of the Omolon focus were similar to the Khabarovsk populations, and those of the Kolyma focus occupied an intermediate place. The observed spatial heterogeneity of the sable populations of Magadan oblast was explained in terms of the formation of the introduction foci of Kamchatka and Khabarovsk sables, starting from the 1950s.  相似文献   

13.
Mitochondrial DNA (mtDNA) polymorphism was examined in three Russian populations from the European part of Russia (Stavropol krai, Orel oblast, and Saratov oblast). This analysis showed that mitochondrial gene pool of Russians was represented by the mtDNA types belonging to haplogroups H, V, HV*, J, T, U, K, I, W, and X. A mongoloid admixture (1.5%) was revealed in the form of mtDNA types of macrohaplogroup M. Comparative analysis of the mtDNA haplogroup frequency distribution patterns in six Russian populations from the European part of Russia indicated the absence of substantial genetic differences between them. However, in Russian populations from the southern and central regions the frequency of haplogroup V (average frequency 8%) was higher than in the populations from more northern regions. Based on the data on mtDNA HVS1 sequence variation, it was shown that the diversity of haplogroup V in Russians (h = 0.72) corresponded to the highest h values observed in Europe. The reasons for genetic differentiation of the Russian population (historical, ecological, and adaptive) are discussed.  相似文献   

14.
Mitochondrial DNA (mtDNA) polymorphism was examined in three Russian populations from the European part of Russia (Krasnodar Krai, Belgorod, and Nizhnii Novgorod oblast). This analysis revealed that mitochondrial gene pool of Russians was represented by the mtDNA types belonging to groups H, V, pre-V, HV*, J, T, U, K, I, W, and X. The major groups (average frequency over 5%) were H, V, J, T, and U. Mongoloid admixture in Russians, constituting only 1%, was revealed in the form of mtDNA types of groups C and D. Analysis of the frequency distribution of the mtDNA type groups indicated the absence of genetic differences between the Russian populations studied.  相似文献   

15.
Mitochondrial DNA (mtDNA) polymorphism was examined in three Russian populations from the European part of Russia (Stavropol krai, Orel oblast, and Saratov oblast). This analysis showed that mitochondrial gene pool of Russians was represented by the mtDNA types belonging to haplogroups H, V, HV*, J, T, U, K, I, W, and X. A mongoloid admixture (1.5%) was revealed in the form of mtDNA types of macrohaplogroup M. Comparative analysis of the mtDNA haplogroup frequency distribution patterns in six Russian populations from the European part of Russia indicated the absence of substantial genetic differences between them. However, in Russian populations from the southern and central regions the frequency of haplogroup V (average frequency 8%) was higher than in the populations from more northern regions. Based on the data on mtDNA HVS1 sequence variation, it was shown that the diversity of haplogroup V in Russians (h= 0.742) corresponded to the highest h values observed in Europe. The reasons for genetic differentiation of the Russian population (historical, ecological, and adaptive) are discussed.  相似文献   

16.
Haplotype frequencies and allele distributions at 11 STR loci of the Y chromosome were evaluated in 180 unrelated individuals from Russian population of Southern Federal district of the Russian Federation (Rostov oblast, Krasnodar krai, and Stavropol krai). Among 153 Y-chromosomal haplotypes discovered, 62 were unique. In the sample of Russian population, the most frequent haplotype (frequency of 5.56%) was 16-11,14-13-30-25-11-11-13-14-11-10 (for the loci DYS19, DYS385a,b, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, and DYS439, respectively). Despite the high diversity of Y-chromosomal haplotypes in the Russian populations from the south of Russia (the h value was 0.997, 0.995, and 0.994 in Rostov, Krasnodar, and Stavropol samples, respectively), analysis of molecular variance (AMOVA) showed the absence of differentiation between the populations (ΦST = 0.1%, P = 0.36). Comparative differentiation analysis performed for 13 Russian populations from the European part of Russia pointed to low among-population differentiation in Y-chromosomal lineages (ΦST = 0.52%, P = 0.03).  相似文献   

17.
Mitochondrial DNA (mtDNA) polymorphism was examined in three Russian populations from the European part of Russia (Krasnodar Krai, Belgorod, and Nizhnii Novgorod oblast). This analysis revealed that mitochondrial gene pool of Russians was represented by the mtDNA types belonging to groups H, V, pre-V, HV*, J, T, U, K, I, W, and X. The major groups (average frequency over 5%) were H, V, J, T, and U. Mongoloid admixture in Russians, constituting only 1%, was revealed in the form of mtDNA types of groups C and D. Analysis of the frequency distribution of the mtDNA type groups indicated the absence of genetic differences between the Russian populations studied.  相似文献   

18.
New data on mitochondrial DNA polymorphism among Russian population from five oblasts, located within the main ethnic area of Russians, specifically, Ryazan' oblast, Ivanovo oblast, Vologda oblast, Orel oblast, and Tambov oblast (N = 177) are presented. RFLP analysis of the mtDNA coding region showed that most of the mtDNA diversity in the populations examined could be described by main European haplogroups H, U, T, J, K, I, V, W, and X. Haplogroup frequency distribution patterns in the populations of interest were analyzed in comparison with the European and Uralic populations. Based on the haplogroup frequencies, the indices of intraethnic population diversity, Wright's F(st) statistics, and the values of squared deviation from the mean, as well as genetic distances between Russians and European and Uralic populations were estimated. Analysis of these indices along with the anthropological data provided identification of a number of regional groups within the populations examined, which could either result from the interaction of ancient Slavs with different non-Slavic tribes, or could be caused by the ethnic heterogeneity of the ancient Slavs themselves.  相似文献   

19.
The homology of DNA of C-positive centromeric regions of chromosomes in wood mice of the genus Sylvaemus (S. uralensis, S. fulvipectus, S. sylvaticus, S. flavicollis, and S. ponticus) was estimated for the first time. DNA probes were generated by microdissection from the centromeric regions of individual autosomes of each species, and their fluorescence in situ hybridization (FISH) with metaphase chromosomes of representatives of all studied wood mouse species was carried out. Unlike in the chromosomal forms and races of S. uralensis, changes in the DNA composition of the chromosomal centromeric regions in the wood mouse species of the genus Sylvaemus (including closely related S. flavicollis and S. ponticus) are both quantitative and qualitative. The patterns of FISH signals after in situ hybridization of the microdissection DNA probes with chromosomes of the species involved in the study demonstrate significant differences between C-positive regions of wood mouse chromosomes in the copy number and the level of homology of repetitive sequences as well as in the localization of homologous repetitive sequences. It was shown that C-positive regions of wood mouse chromosomes can contain both homologous and distinct sets of repetitive sequences. Regions enriched with homologous repeats were detected either directly in C-positive regions of individual chromosomes or only on the short arms of acrocentrics, or at the boundary of C-positive and C-negative regions.  相似文献   

20.
Bogdanov AS  Rozanov IuM 《Genetika》2005,41(10):1369-1376
Earlier, in an integral genetic study, the Asian and European races were distinguished within the species Sylvaemus uralensis (pygmy wood mouse) and the European race was divided into the East European and South European forms. Each of these groups differed from the others, in particular, in the quantity of the centromeric heterochromatin in karyotypes of the animals. To establish the pattern of its changes in S. uralensis, in the present study the DNA content in splenocyte nuclei in all races and forms of pygmy wood mice was assessed using DNA flow cytometry. The heterochromatin amount in karyotypes and genome size were shown to be correlated. The East European chromosomal race of S. uralensis (Central Chernozem and Non-Chernozem regions of Russia, Crimea Peninsula, Middle Volga region, and Southern Ural) and the Asian race of this species (East Kazakhstan, Uzbekistan, and East Turkmenistan), which have respectively the highest and the lowest amounts of centromeric heterochromatin in the karyotype, exhibit the greatest difference in the DNA content in the genome. On average, the difference is approximately 8% in males and 6.7% in females; in both cases, the ranges of variability were distinctly different. Against the general background of the trait variation, the Asian race, whose members have the smallest DNA amount in their cells, looks homogeneous. The genome of the South European chromosomal form of S. uralensis (Caucasus, Transcaucasia, Carpathians, and Balkan Peninsula), which exhibits an intermediate content of the centromeric heterochromatin in the karyotype, is smaller that the genome of the East European race (by 3.2% in the group of males and by 1.9%, in the group of females), but larger than that of the Asian race (by 5% in either sex). Thus, the variability of size of centromeric C-blocks in pygmy wood mouse is likely to be associated with elimination (or, conversely, an increase in the amount) of the genetically inert chromatin. It is suggested that a significant contribution to the variability of genome size in S. uralensis is made by heterochromosomes, or, more precisely, their variable regions, which seem to be largely heterochromatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号