首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Although the regulation of amino acid synthesis has been studied extensively at the biochemical level, it is still not known how genes encoding amino acid biosynthesis enzymes are regulated during plant development. In the present report, we have used the [beta]-glucuronidase (GUS) reporter gene to study the regulation of expression of an Arabidopsis thaliana aspartate kinase-homoserine dehydrogenase (AK/HSD) gene in transgenic tobacco plants. The polypeptide encoded by the AK/HSD gene comprises two linked key enzymes in the biosynthesis of aspartate-family amino acids. AK/HSD-GUS gene expression was highly stimulated in apical and lateral meristems, lateral buds, young leaves, trichomes, vascular and cortical tissues of growing stems, tapetum and other tissues of anthers, pollen grains, various parts of the developing gynoecium, developing seeds, and, in some transgenic plants, also in stem and leaf epidermal trichomes. AK/HSD-GUS gene expression gradually dimished upon maturation of leaves, stems, floral tissues, and embryos. GUS expression was relatively low in roots. During seed development, expression of the AK/HSD gene in the embryo was coordinated with the initiation and onset of storage protein synthesis, whereas in the endosperm it was coordinated with the onset of seed desiccation. Upon germination, AK/HSD-GUS gene expression in the hypocotyl and the cotyledons was significantly affected by light. The expression pattern of the A. thaliana AK/HSD-GUS reporter gene positively correlated with the levels of aspartate-family amino acids and was also very similar to the expression pattern of the endogenous tobacco AK/HSD mRNA as determined by in situ hybridization.  相似文献   

4.
Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological conditions, and in both short-term cigarette smoke exposure models characterized by airway inflammation and hyperresponsiveness and chronic cigarette smoke exposure models. Pcdh1 gene-structure was investigated by Rapid Amplification of cDNA Ends. Pcdh1 mRNA and protein expression was investigated by qRT-PCR, western blotting using isoform-specific antibodies. We observed 87% conservation of the Pcdh1 nucleotide sequence, and 96% conservation of the Pcdh1 protein sequence between men and mice. We identified a novel Pcdh1 isoform encoding only the intracellular signalling motifs. Cigarette smoke exposure for 4 consecutive days markedly reduced Pcdh1 mRNA expression in lung tissue (3 to 4-fold), while neutrophilia and airway hyperresponsiveness was induced. Moreover, Pcdh1 mRNA expression in lung tissue was reduced already 6 hours after an acute cigarette-smoke exposure in mice. Chronic exposure to cigarette smoke induced loss of Pcdh1 protein in lung tissue after 2 months, while Pcdh1 protein levels were no longer reduced after 9 months of cigarette smoke exposure. We conclude that Pcdh1 is highly homologous to human PCDH1, encodes two transmembrane proteins and one intracellular protein, and is regulated by cigarette smoke exposure in vivo.  相似文献   

5.
Many auxin responses are dependent on redistribution and/or polar transport of indoleacetic acid. Polar transport of auxin can be inhibited through the application of phytotropins such as 1-naphthylphthalamic acid (NPA). When Arabidopsis thaliana seedlings were grown in the light on medium containing 1.0 μm NPA, hypocotyl and root elongation and gravitropism were strongly inhibited. When grown in darkness, however, NPA disrupted the gravity response but did not affect elongation. The extent of inhibition of hypocotyl elongation by NPA increased in a fluence-rate-dependent manner to a maximum of about 75% inhibition at 50 μmol m−2 s−1 of white light. Plants grown under continuous blue or far-red light showed NPA-induced hypocotyl inhibition similar to that of white-light-grown plants. Plants grown under continuous red light showed less NPA-induced inhibition. Analysis of photoreceptor mutants indicates the involvement of phytochrome and cryptochrome in mediating this NPA response. Hypocotyls of some auxin-resistant mutants had decreased sensitivity to NPA in the light, but etiolated seedlings of these mutants were similar in length to the wild type. These results indicate that light has a significant effect on NPA-induced inhibition in Arabidopsis, and suggest that auxin has a more important role in elongation responses in light-grown than in dark-grown seedlings.  相似文献   

6.
7.
Dark-grown Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings had approximately 30% of the major polypeptide of the light-harvesting chlorophyll a/b binding protein, 30% of cab mRNA, 54% of psbA mRNA, and 14% of total chlorophyll, in comparison with amounts in light-grown seedlings. Seedlings entrained under a 24-hour photoperiod of light and dark showed small diurnal fluctuations in cab and psbA mRNA levels and, when transferred to continuous conditions, no circadian rhythms in mRNA levels were apparent. These results suggest that regulation of cab gene expression in Douglas-fir differs from regulation in angiosperms, because in the latter, both light and circadian factors strongly influence the expression of cab genes.  相似文献   

8.
1. Neurotrophins are very good candidates which relate electrical activity to molecular changes in activity-dependent phenomena. They exert their action through binding to specific tyrosine-kinase receptors: Trk receptors. It is important to consider Trk distribution in order to understand better the role of neurotrophins in the Central Nervous System (CNS). We focused our attention on brain-derived neurotrophic factor (BDNF) Trk receptors (TrkB) during development of the rat visual cortex, since this neurotrophin has been shown to play an important role in visual system development and plasticity.2. We investigated the full length form of TrkB receptors considering both its total amount and its cellular distribution. To address this issue we used an antibody that recognizes the full length form of TrkB and we used it both in Western blot and immunohistochemistry.3. We found that the expression of TrkB receptor increases during development, but that there is no effect on visual experience, since dark-reared animals show the same protein level and pattern of TrkB expression compared to age-matched, normally reared controls.  相似文献   

9.
10.
Mutation screens in model organisms have helped identify the foundation of many fundamental organismal phenotypes. An emerging question in evolutionary and behavioral biology is the extent to which these “developmental” genes contribute to the subtle individual variation that characterizes natural populations. A related question is whether individual differences arise from static differences in gene expression that arose during previous life stages, or whether they are due to dynamic regulation of expression during the life stage under investigation. Here, we address these questions using genes that have been discovered to control the development of normal courtship behavior in male Drosophila melanogaster. We examined whether these genes have static or dynamic expression in the heads of adult male flies of different ages and with different levels of social experience. We found that 16 genes of the 25 genes examined were statically expressed, and 9 genes were dynamically expressed with changes related to adult age. No genes exhibited rapid dynamic expression changes due to social experience or age*experience interaction. We therefore conclude that a majority of fly “courtship” genes are statically expressed, while a minority are regulated in adults with respect to age, but not with respect to relevant social experience. These results are consistent with those from a recent microarray analysis that found none of the canonical courtship genes changed expression in male flies after brief exposure to females.  相似文献   

11.
A cDNA encoding the Arabidopsis thaliana uridine 5′-monophosphate (UMP)/cytidine 5′-monophosphate (CMP) kinase was isolated by complementation of a Saccharomyces cerevisiae ura6 mutant. The deduced amino acid sequence of the plant UMP/CMP kinase has 50% identity with other eukaryotic UMP/CMP kinase proteins. The cDNA was subcloned into pGEX-4T-3 and expressed as a glutathione S-transferase fusion protein in Escherichia coli. Following proteolytic digestion, the plant UMP/CMP kinase was purified and analyzed for its structural and kinetic properties. The mass, N-terminal sequence, and total amino acid composition agreed with the sequence and composition predicted from the cDNA sequence. Kinetic analysis revealed that the UMP/CMP kinase preferentially uses ATP (Michaelis constant [Km] = 29 μm when UMP is the other substrate and Km = 292 μm when CMP is the other substrate) as a phosphate donor. However, both UMP (Km = 153 μm) and CMP (Km = 266 μm) were equally acceptable as the phosphate acceptor. The optimal pH for the enzyme is 6.5. P1, P5-di(adenosine-5′) pentaphosphate was found to be a competitive inhibitor of both ATP and UMP.  相似文献   

12.
The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1) (E.C.: 4.4.1.5) and 2 (E.C.3.1.2.6), has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s) in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.  相似文献   

13.
The HOXB1 gene plays a critical role as an oncogene in diverse tumors. However, the functional role of HOXB1 and the mechanism regulating HOXB1 expression in glioma are not fully understood. A preliminary bioinformatics analysis showed that HOXB1 is ectopically expressed in glioma, and that HOXB1 is a possible target of miR-3175. In this study, we investigated the function of HOXB1 and the relationship between HOXB1 and miR-3175 in glioma. We show that HOXB1 expression is significantly downregulated in glioma tissues and cell lines, and that its expression may be closely associated with the degree of malignancy. Reduced HOXB1 expression promoted the proliferation and invasion of glioma cells, and inhibited their apoptosis in vitro, and the downregulation of HOXB1 was also associated with worse survival in glioma patients. More importantly, HOXB1 was shown experimentally to be a direct target of miR-3175 in this study. The downregulated expression of miR-3175 inhibited cell proliferation and invasion, and promoted apoptosis in glioma. The oncogenicity induced by low HOXB1 expression was prevented by an miR-3175 inhibitor in glioma cells. Our results suggest that HOXB1 functions as a tumor suppressor, regulated by miR-3175 in glioma. These results clarify the pathogenesis of glioma and offer a potential target for its treatment.  相似文献   

14.
15.
16.
Pathogens have developed diverse strategies to infect their hosts and evade the host defense systems. Many pathogens reside within host phagocytic cells, thus evading much of the host immune system. For dimorphic fungal pathogens which grow in a multicellular hyphal form, a central attribute which facilitates growth inside host cells without rapid killing is the capacity to switch from the hyphal growth form to a unicellular yeast form. Blocking this transition abolishes or severely reduces pathogenicity. Host body temperature (37°C) is the most common inducer of the hyphal to yeast transition in vitro for many dimorphic fungi, and it is often assumed that this is the inducer in vivo. This work describes the identification and analysis of a new pathway involved in sensing the environment inside a host cell by a dimorphic fungal pathogen, Penicillium marneffei. The pakB gene, encoding a p21-activated kinase, defines this pathway and operates independently of known effectors in P. marneffei. Expression of pakB is upregulated in P. marneffei yeast cells isolated from macrophages but absent from in vitro cultured yeast cells produced at 37°C. Deletion of pakB leads to a failure to produce yeast cells inside macrophages but no effect in vitro at 37°C. Loss of pakB also leads to the inappropriate production of yeast cells at 25°C in vitro, and the mechanism underlying this requires the activity of the central regulator of asexual development. The data shows that this new pathway is central to eliciting the appropriate morphogenetic response by the pathogen to the host environment independently of the common temperature signal, thus clearly separating the temperature- and intracellular-dependent signaling systems.  相似文献   

17.
18.
19.
The Eph receptor tyrosine kinases interact with their ephrin ligands on adjacent cells to facilitate contact-dependent cell communication. Ephrin B ligands are expressed on T cells and have been suggested to act as co-stimulatory molecules during T cell activation. There are no detailed reports of the expression and modulation of EphB receptors on dendritic cells, the main antigen presenting cells that interact with T cells. Here we show that mouse splenic dendritic cells (DC) and bone-marrow derived DCs (BMDC) express EphB2, a member of the EphB family. EphB2 expression is modulated by ligation of TLR4 and TLR9 and also by interaction with ephrin B ligands. Co-localization of EphB2 with MHC-II is also consistent with a potential role in T cell activation. However, BMDCs derived from EphB2 deficient mice were able to present antigen in the context of MHC-II and produce T cell activating cytokines to the same extent as intact DCs. Collectively our data suggest that EphB2 may contribute to DC responses, but that EphB2 is not required for T cell activation. This result may have arisen because DCs express other members of the EphB receptor family, EphB3, EphB4 and EphB6, all of which can interact with ephrin B ligands, or because EphB2 may be playing a role in another aspect of DC biology such as migration.  相似文献   

20.
We show that loss-of-function mutations in kinases of the MLK-1 pathway (mlk-1, mek-1, and kgb-1/jnk) function cell-autonomously in neurons to suppress defects in synapse formation and axon termination caused by rpm-1 loss of function. Our genetic analysis also suggests that the phosphatase PPM-1, like RPM-1, is a potential inhibitor of kinases in the MLK-1 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号