首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomal elongases are proteins catalyzing the condensation of malonyl-CoA with acyl-CoA chains, the first and rate-limiting step in microsomal fatty acid elongation. Here we report the measurement of elongase activity of a microsomal enriched fraction from the marine microalga Pavlova lutheri (P. lutheri). By directly monitoring the production of C2 elongated acyl-CoA from a range of saturated and monounsaturated acyl-CoA substrates, we found that saturated 16:0-CoA is the preferred substrate for this elongase complex. Analysis of an EST database prepared from the exponential stage of growth of P. lutheri revealed the most abundant identifiable enzyme as a cDNA, Plelo1, encoding a protein similar to the plant β-ketoacyl-coenzyme A synthases (KCS, also known as elongases). Plelo1 is a single copy gene in the algal genome and gene expression analysis showed it to be highly expressed during the exponential phase of growth. It is suggested that microsomal elongation of 16:0-CoA represents a key intermediate step in the biosynthesis of the health beneficial very long chain polyunsaturated fatty acids eicosapentaenoic (20:5n3) and docosahexaenoic (22:6n3) acids.  相似文献   

2.
倪郁  郭彦军 《遗传》2008,30(5):561-567
超长链脂肪酸(very long chain fatty acids, VLCFAs)在生物体中具有广泛的生理功能, 它们参与种子甘油酯、生物膜膜脂及鞘脂的合成, 并为角质层蜡质的生物合成提供前体物质。角质层是覆盖在植物地上部分最表层的保护层, 由角质和蜡质组成, 其中蜡质又分为角质层表皮蜡和内部蜡, 在植物生长发育、适应外界环境方面起重要作用。VLCFAs的合成由脂肪酰-CoA延长酶催化, 该酶是由b-酮脂酰-CoA合酶、b-酮脂酰-CoA还原酶、b-羟脂酰-CoA脱水酶和反式烯脂酰-CoA还原酶组成的多酶体系。合成后的VLCFAs通过脱羰基与酰基还原作用进入角质层蜡质合成途径, 形成各种蜡质组分。文章就VLCFAs及角质层蜡质合成代谢途径中相关酶基因研究进展方面做了综述, 并对植物蜡质基因研究中存在的问题提出一些看法。  相似文献   

3.
An Arabidopsis fatty acid elongase gene, KCS1, with a high degree of sequence identity to FAE1, encodes a 3-ketoacyl-CoA synthase which is involved in very long chain fatty acid synthesis in vegetative tissues, and which also plays a role in wax biosynthesis. Sequence analysis of KCS1 predicted that this synthase was anchored to a membrane by two adjacent N-terminal, membrane-spanning domains. Analysis of a T-DNA tagged kcs1-1 mutant demonstrated the involvement of the KCS1 in wax biosynthesis. Phenotypic changes in the kcs1-1 mutant included thinner stems and less resistance to low humidity stress at a young age. Complete loss of KCS1 expression resulted in decreases of up to 80% in the levels of C26 to C30 wax alcohols and aldehydes, but much smaller effects were observed on the major wax components, i.e. the C29 alkanes and C29 ketones on leaves, stems and siliques. In no case did the loss of KCS1 expression result in complete loss of any individual wax component or significantly decrease the total wax load. This indicated that there was redundancy in the elongase KCS activities involved in wax synthesis. Furthermore, since alcohol, aldehyde, alkane and ketone levels were affected to varying degrees, involvement of the KCS1 synthase in both the decarbonylation and acyl-reduction wax synthesis pathways was demonstrated.  相似文献   

4.
The Arabidopsis FAE1 beta-ketoacyl-CoA synthase (FAE1 KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoAs. Sequence analysis of FAE1 KCS predicted that this condensing enzyme is anchored to a membrane by two adjacent N-terminal membrane-spanning domains. In order to characterize the FAE1 KCS and analyze its mechanism, FAE1 KCS and its mutants were engineered with a His6-tag at their N-terminus, and expressed in Saccharomyces cerevisiae. The membrane-bound enzyme was then solubilized and purified to near homogeneity on a metal affinity column. Wild-type recombinant FAE1 KCS was active with several acyl-CoA substrates, with highest activity towards saturated and monounsaturated C16 and C18. In the absence of an acyl-CoA substrate, FAE1 KCS was unable to carry out decarboxylation of [3-(14)C]malonyl-CoA, indicating that it requires binding of the acyl-CoA for decarboxylation activity. Site-directed mutagenesis was carried out on the FAE1 KCS to assess if this condensing enzyme was mechanistically related to the well characterized soluble condensing enzymes of fatty acid and flavonoid syntheses. A C223A mutant enzyme lacking the acylation site was unable to carry out decarboxylation of malonyl-CoA even when 18:1-CoA was present. Mutational analyses of the conserved Asn424 and His391 residues indicated the importance of these residues for FAE1-KCS activity. The results presented here provide the initial analysis of the reaction mechanism for a membrane-bound condensing enzyme from any source and provide evidence for a mechanism similar to the soluble condensing enzymes.  相似文献   

5.
6.
Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production.  相似文献   

7.
The aliphatic waxes sealing plant surfaces against environmental stress are generated by fatty acid elongase complexes, each containing a β‐ketoacyl‐CoA synthase (KCS) enzyme that catalyses a crucial condensation forming a new C─C bond to extend the carbon backbone. The relatively high abundance of C35 and C37 alkanes derived from C36 and C38 acyl‐CoAs in Arabidopsis leaf trichomes (relative to other epidermis cells) suggests differences in the elongation machineries of different epidermis cell types, possibly involving KCS16, a condensing enzyme expressed preferentially in trichomes. Here, KCS16 was found expressed primarily in Arabidopsis rosette leaves, flowers and siliques, and the corresponding protein was localized to the endoplasmic reticulum. The cuticular waxes on young leaves and isolated leaf trichomes of ksc16 loss‐of‐function mutants were depleted of C35 and C37 alkanes and alkenes, whereas expression of Arabidopsis KCS16 in yeast and ectopic overexpression in Arabidopsis resulted in accumulation of C36 and C38 fatty acid products. Taken together, our results show that KCS16 is the sole enzyme catalysing the elongation of C34 to C38 acyl‐CoAs in Arabidopsis leaf trichomes and that it contributes to the formation of extra‐long compounds in adjacent pavement cells.  相似文献   

8.
beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils.  相似文献   

9.
10.
The fatty acid elongase-1 β-ketoacyl-CoA synthase, FAE1 KCS, a seed-specific elongase condensing enzyme from Arabidopsis, is involved in the production of eicosenoic (C20:1) and erucic (C22:1) acids. Alignment of the amino acid sequences of FAE1 KCS, KCS1, and five other putative elongase condensing enzymes (KCSs) revealed the presence of six conserved cysteine and four conserved histidine residues. Each of the conserved cysteine and histidine residues was individually converted by site-directed mutagenesis to both alanine and serine, and alanine and lysine respectively. After expression in yeast cells, the mutant enzymes were analyzed for their fatty acid elongase activity. Our results indicated that only cysteine 223 is an essential residue for enzyme activity, presumably for acyl chain transfer. All histidine substitutions resulted in complete loss of elongase activity. The loss of activity of these mutants was not due to their lower expression level since immunoblot analysis confirmed each was expressed to the same extent as the wild type FAE1 KCS.  相似文献   

11.
12.
13.
14.
The mammalian enzyme involved in the final elongation of de novo fatty acid biosynthesis following the building of fatty acids to 16 carbons by fatty acid synthase has yet to be identified. In the process of searching for genes activated by sterol regulatory element-binding protein 1 (SREBP-1) by using DNA microarray, we identified and characterized a murine cDNA clone that is highly similar to a fatty acyl-CoA elongase gene family such as Cig30, Sscs, and yeast ELOs. Studies on the cells overexpressing the full-length cDNA indicate that the encoded protein, designated fatty acyl-CoA elongase (FACE), has a FACE activity specific for long-chains; C12-C16 saturated- and monosaturated-fatty acids. Hepatic expression of this identified gene was consistently activated in the livers of transgenic mice overexpressing nuclear SREBP-1a, -1c, or -2. FACE mRNA levels are markedly induced in a refed state after fasting in the liver and adipose tissue. This refeeding response is significantly reduced in SREBP-1 deficient mice. Dietary PUFAs caused a profound suppression of this gene expression, which could be restored by SREBP-1c overexpression. Hepatic FACE expression was also highly up-regulated in leptin-deficient ob/ob mice. Hepatic FACE mRNA was markedly increased by administration of a pharmacological agonist of liver X-activated receptor (LXR), a dominant activator for SREBP-1c expression. These data indicated that this elongase is a new member of mammalian lipogenic enzymes regulated by SREBP-1, playing an important role in de novo synthesis of long-chain saturated and monosaturated fatty acids in conjunction with fatty acid synthase and stearoyl-CoA desaturase.  相似文献   

15.
16.
A family of acyl-CoA oxidase isozymes catalyse the first step in the peroxisomal fatty acid beta-oxidation spiral. Our group and others have recently characterized four genes from this family in the model oilseed Arabidopsis. These genes encode isozymes with different acyl-CoA substrate specificities, which together encompass the full range of fatty acid chain lengths that exist in vivo. Here we review the biochemical properties and physiological roles of the acyl-CoA oxidase isozymes.  相似文献   

17.
18.
The protein encoded by the Arabidopsis At3g55360 gene was selected as a candidate for the enoyl reductase of the microsomal elongase system based on its homology to the Tsc13p protein of S. cerevisiae. The studies presented here demonstrate that heterologous expression of At3g55360 functionally complements the temperature-sensitive phenotype of a yeast tsc13 mutant that is deficient in enoyl reductase activity. Furthermore, AtTSC13 is shown to interact physically with the Elo2p and Elo3p components of the yeast elongase complex. At3g55360 apparently encodes the sole enoyl reductase activity associated with microsomal fatty acid elongation in Arabidopsis. Consistent with this conclusion, AtTSC13 is ubiquitously expressed in Arabidopsis.  相似文献   

19.
Comparative genomics-based synteny analysis has proved to be an effective strategy to understand evolution of genomic regions spanning a single gene (micro-unit) to large segments encompassing hundreds of kilobases to megabases. Brassicaceae is in a unique position to contribute to understanding genome and trait evolution through comparative genomics because whole genome sequences from as many as nine species have been completed and are available for analysis. In the present work, we compared genomic loci surrounding the KCS17-KCS18 cluster across these nine genomes. KCS18 or FAE 1 gene encodes beta-ketoacyl synthase, (β-KCS) a membrane-bound enzyme that catalyses the key rate-limiting step during synthesis of VLCFAs such as erucic acid (C22) present in seed oil in Brassicaceae by elongating carbon chain from C18 to C22; knowledge on role of KCS17 in plant development is however lacking. Synteny across the genomic segments harbouring FAE1 showed variable levels of gene retention ranging between 26% (Arabidopsis thaliana and Brassica napus C03) and 89% (between A. thaliana and Brassica rapa A01), and gene density ranged between 1 gene/2.86 kb and 1 gene/4.88 kb. Interestingly, in diploid Brassica species, FAE1 was retained in only one of the sub-genomes in spite of the presence of three sub-genomes created as a result of genome triplication; in contrast, FAE1 was present at three loci, with four copies in Camellina sativa which is also known to have experienced a recent genome triplication revealing contrasting fates upon duplication. The organization of KCS17 and KCS18 as head-to-tail cluster was conserved across most of the species, except the C genome containing Brassicas, namely B. oleracea and B. napus, where disruptions because of other genes were observed. Even in the conserved blocks, the distance between KCS17 and KCS18 varied; the functional implication of the organization of KCS17-KCS18 as a cluster vis-à-vis fatty acid biosynthesis needs to be dissected, as the cis-regulatory region is expected to be present in the intergenic space. Phylogenetic analysis of KCS gene family along with KCS17-KCS18 from members of Brassicaceae reveals their ancestral relationship with KCS8-KCS9 block. Further comparative functional analysis between KCS8, KCS9, KCS16, KCS17 and KCS18 across evolutionary time-scale will be required to understand the conservation or diversification of roles of these members of KCS family in fatty acid biosynthesis during course of evolution.  相似文献   

20.
The gl8 gene is required for the normal accumulation of cuticular waxes on maize (Zea mays) seedling leaves. The predicted GL8 protein exhibits significant sequence similarity to a class of enzymes that catalyze the reduction of a ketone group to a hydroxyl group. Polyclonal antibodies raised against the recombinant Escherichia coli-expressed GL8 protein were used to investigate the function of this protein in planta. Subcellular fractionation experiments indicate that the GL8 protein is associated with the endoplasmic reticulum membranes. Furthermore, polyclonal antibodies raised against the partially purified leek (Allium porrum) microsomal acyl-coenzyme A (CoA) elongase can react with the E. coli-expressed GL8 protein. In addition, anti-GL8 immunoglobulin G inhibited the in vitro elongation of stearoyl-CoA by leek and maize microsomal acyl-CoA elongase. In combination, these findings indicate that the GL8 protein is a component of the acyl-CoA elongase. In addition, the finding that anti-GL8 immunoglobulin G did not significantly inhibit the 3-ketoacyl-CoA synthase, 3-ketoacyl-CoA dehydrase, and (E) 2,3-enoyl-CoA reductase partial reactions of leek or maize acyl-CoA elongase lends further support to our previous hypothesis that the GL8 protein functions as a beta-ketoacyl reductase during the elongation of very long-chain fatty acids required for the production of cuticular waxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号