首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously described the structure of phellamurin, a plant flavonoid, as 3,4',5,7-tetrahydroxy-8-isoprenylflavanone-7-O-glucoside (17). Degradation of phellamurin by Aspergillus niger using modified Czapek-Dox medium as well as phellamurin or one of its degradation products as a sole carbon source, is reported here. Eleven compounds are identified from phellamurin degradation products. A. niger apparently decomposes phellamurin by first removing glucose with beta-glucosidase; neophellamuretin is the first degradation product. Fission of the heterocyclic ring of (5'-hydroxyisopropyl-4',5'-dihydrofurano)[2',3'-h]3,4',5-trihydroxyflavanone, which is obtained from neophellamuretin through a few alterations of the side chain, is followed by cleavage of a C--C bond between C=O and carbon at alpha-position and conversion of (5'-hydroxyisopropyl-4',5'-dihydrofurano)[2',3'-d]-2',4,6',alpha-tetrahydroxychalcone to rho-hydroxymandelic acid (B-ring) and 2,4,6-trihydroxy-5-carboxyphenylacetic acid (A-ring). It is suggested that rho-hydroxymandelic acid is oxidized to rho-hydroxybenzoic acid. 2,4,6-Trihydroxy-5-carboxyphenylacetic acid is metabolized to phloroglucinol carboxylic acid, which subsequently is decarboxylated to phloroglucinol. These results provided new information on the isoprene unit metabolism of the side chain of phellamurin and firmly established the degradation pathway of phellamurin by A. niger.  相似文献   

2.
A new acylated form of a phloroglucinol with significant antimicrobial properties was isolated by bioactivity guided fractionation from Helichrysum caespititium (Asteraceae). The structure elucidation, and conformation of the new phloroglucinol, 2-methyl-4-[2',4',6'-trihydroxy-3'-(2-methylpropanoyl) phenyl]but-2-enyl acetate, was established by high field NMR spectroscopic and MS data. The compound inhibited growth of Bacillus cereus, B. pumilus, B. subtilis and Micrococcus kristinae at the very low concentration of 0.5 microg/ml and Staphylococcus aureus at 5.0 microg/ml. Six fungi tested were similarly inhibited at low MICs, Aspergillus flavus and A. niger (1.0 microg/ml), Cladosporium chladosporioides (5 microg/ml), C. cucumerinum and C. sphaerospermum (0.5 microg/ml) and Phylophthora capsici at 1.0 microg/ml.  相似文献   

3.
A new series of acyclic C-nucleosides 1',2'-O-isopropylidene-D-ribo-tetritol-1-yl)[1,2,4] triazolo[3,4-b][1,3,4]thiadiazoles bearing arylsulfonamide (5-8) and arylcarboxamide (9-12) residues have been synthesized under microwave irradiation. Thiadiazines 13-15 have been analogously prepared, and upon acid hydrolysis, afforded the free nucleosides 16-18. The new synthesized compounds were assayed against HIV-1 and HIV-2 in MT-4 cells. Compound 7 was also screened against a panel of tumor cell lines consisting of CD4 human T-cells.  相似文献   

4.
A bacterium growing on papaverine as sole carbon and nitrogen source was isolated by incubation of soil with papaverine. The bacterium could be identified as a Nocardia strain by morphological and physiological tests. When growing on papaverine, this strain excretes metabolites into the medium. Based on the structure of the metabolites 1--9 a degradation pathway is proposed. 1 = 1-(3,4-Dimethoxybenzyl)-3,4-dihydro-6,7-dimethoxy-3,4-isoquinolinediol; 2 = 1-(3,4-dimethoxybenzyl)-6,7-dimethoxy-3,4-isoquinolinediol; 3 = 2-(3,4-dimethoxyphenyl)-1-[2-(2-hydroxyethyl)-4,5-dimethoxyphenly]ethanone; 4 = 2-hydroxy-4,5-dimethoxybenzeneethanol; 5 = 3,4-dimethoxybenzeneacetic acid; 6 = 2-hydroxy-4,5-dimethyoxybenzeneacetic acid; 7 = 4-hydroxy-3-methoxybenzeneacetic acid; 8 = 3,4-dimethoxybenzaldehyde; 9 = 2-(hydroxymethyl)-4,5-dimethoxybenzeneethanol.  相似文献   

5.
The metabolism of 11 substituted dibenzofurans by the dibenzofuran-degrading Sphingomonas sp. strain HH69 was investigated. Strain HH69 utilizes 2-, 3-, and 4-acetoxydibenzofuran as well as 2-, 3-, and 4-hydroxydibenzofuran as sole sources of carbon and energy. The degradation of acetoxydibenzofurans is initiated by hydrolysis of the ester bonds, yielding the corresponding hydroxydibenzofurans and acetate. Strain HH69 grew on 2-methoxydibenzofuran only after it was adapted to the utilization of 5-methoxysalicylic acid, whereas 3- and 4-methoxydibenzofuran as well as 2- and 3-nitrodibenzofuran were only cooxidized. During the breakdown of all eight hydroxy-, methoxy-, and nitrodibenzofurans studied here, the corresponding substituted salicylic acids accumulated in the culture broth. In the cases of 2- and 3-hydroxydibenzofuran as well as 2- and 3-nitrodibenzofuran, salicylic acid was also formed. Those four dibenzofurans which did not serve as carbon sources for strain HH69 were converted to a nonutilizable salicylic acid derivative. From turnover experiments with the mutant HH69/II, which is deficient in meta-cleavage, 2,2(prm1),3,4(prm1)-tetrahydroxybiphenyl, 2,2(prm1),3-trihydroxy-5(prm1)-methoxybiphenyl, 2,2(prm1),3-trihydroxy-5(prm1)-nitrobiphenyl, and 2,2(prm1),3-trihydroxy-4(prm1)-nitrobiphenyl were isolated as the main products formed from 3-hydroxydibenzofuran, 2-methoxydibenzofuran, and 2- and 3-nitrodibenzofuran, respectively. These results indicate significant regioselectivity for the dioxygenolytic cleavage of the ether bond of these monosubstituted dibenzofurans, with a preference for the nonsubstituted aromatic nucleus. Substituted trihydroxybiphenyls are converted further by meta-cleavage followed by the removal of the side chain of the resulting product. A stepwise degradation of this side chain was found to be involved in the metabolism of 2-hydroxydibenzofuran.  相似文献   

6.
Acinetobacter calcoaceticus MTC 127 was able to grow on catechin and protocatechuic acid (PCA) as sole carbon source. Cells induced with catechin oxidized catechin and PCA at rates higher than cells of uninduced cultures. Two aromatic compounds, PCA and phloroglucinol carboxylic acid (PGCA) were isolated from culture filtrate of cells grown in catechin and characterized by infrared spectrometry and high performance thin-layer chromatography. Moreover, A. calcoaceticus MTC 127 produced high levels of PCA compared to PGCA in the degradation of catechin. Based upon these results, a pathway for the degradation of (+)-catechin in A. calcoaceticus MTC 127 is proposed. Enzymes extracted from catechin-induced culture showed catechin oxygenase (cox) and protocatechuate 3,4-dioxygenase (pcd) activities. Catechin oxygenase was purified by column chromatography and SDS-PAGE analysis showed a single band with an apparent molecular weight of 47 kDa.  相似文献   

7.
Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. L-dehydroascorbic acid (DHA, 5), the oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. Identification is reported for the lysine-arginine cross-links N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(2-hydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (9), N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(1,2-dihydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (11), and N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2S)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (13). The formation pathways could be established starting from dehydroascorbic acid (5), the degradation products 1,3,4-trihydroxybutan-2-one (7, L-erythrulose), 3,4-dihydroxy-2-oxobutanal (10, L-threosone), and L-threo-pentos-2-ulose (12, L-xylosone) were proven as precursors of the lysine-arginine cross-links 9, 11, and 13. Products 9 and 11 were synthesized starting from DHA 5, compound N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2R)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (16) via the precursor D-erythro-pentos-2-ulose (15). The present study revealed that the modification of lysine and arginine side chains by DHA 5 is a complex process and could involve a number of reactive carbonyl species.  相似文献   

8.
Anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin (1,2,3,4-tetrahydronaphthalene) was investigated with a sulfate-reducing enrichment culture obtained from a contaminated aquifer. Degradation studies with tetralin revealed 5,6,7,8-tetrahydro-2-naphthoic acid as a major metabolite indicating activation by addition of a C(1) unit to tetralin, comparable to the formation of 2-naphthoic acid in anaerobic naphthalene degradation. The activation reaction was specific for the aromatic ring of tetralin; 1,2,3,4-tetrahydro-2-naphthoic acid was not detected. The reduced 2-naphthoic acid derivatives tetrahydro-, octahydro-, and decahydro-2-naphthoic acid were identified consistently in supernatants of cultures grown with either naphthalene, 2-methylnaphthalene, or tetralin. In addition, two common ring cleavage products were identified. Gas chromatography-mass spectrometry (GC-MS) and high-resolution GC-MS analyses revealed a compound with a cyclohexane ring and two carboxylic acid side chains as one of the first ring cleavage products. The elemental composition was C(11)H(16)O(4) (C(11)H(16)O(4)-diacid), indicating that all carbon atoms of the precursor 2-naphthoic acid structure were preserved in this ring cleavage product. According to the mass spectrum, the side chains could be either an acetic acid and a propenic acid, or a carboxy group and a butenic acid side chain. A further ring cleavage product was identified as 2-carboxycyclohexylacetic acid and was assumed to be formed by beta-oxidation of one of the side chains of the C(11)H(16)O(4)-diacid. Stable isotope-labeling growth experiments with either (13)C-labeled naphthalene, per-deuterated naphthalene-d(8), or a (13)C-bicarbonate-buffered medium showed that the ring cleavage products derived from the introduced carbon source naphthalene. The series of identified metabolites suggests that anaerobic degradation of naphthalenes proceeds via reduction of the aromatic ring system of 2-naphthoic acid to initiate ring cleavage in analogy to the benzoyl-coenzyme A pathway for monoaromatic hydrocarbons. Our findings provide strong indications that further degradation goes through saturated compounds with a cyclohexane ring structure and not through monoaromatic compounds. A metabolic pathway for anaerobic degradation of bicyclic aromatic hydrocarbons with 2-naphthoic acid as the central intermediate is proposed.  相似文献   

9.
In order to target specific DNA sequences >or=10 base pairs in size by minor groove binding ligands, a search for the optimal linker in dimers of hairpin polyamides was initiated. Two series of tandem polyamides ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPy-L](HN)gamma-PyPyPy-beta-Dp (1a-e), where L represents a series of 4-8 carbon long aliphatic amino acid linkers, and ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPyIm-L](HN)gamma-PyPyPy-beta-Dp (2a-e), where L represents a series of 2-6 carbon long aliphatic amino acid linkers, were synthesized and characterized by quantitative DNase I footprinting. beta, gamma and Dp represents beta-alanine, gamma-aminobutyric acid, and 3-(dimethylamino)propylamine, respectively. It was found that the five-carbon 5-aminovaleric acid (delta), is suitable to span one base-pair (bp) of DNA when incorporated into a tandem polyamide. ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPy-delta](HN)gamma-PyPyPy-beta-Dp (1b) binds the 10 bp binding-site 5'-AGTGAAGTGA-3' with equilibrium association constant K(a)=3.2 x 10(10) M(-1) and ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPyIm-delta](HN)gamma-PyPyPy-beta-Dp (2d) binds the 11 bp binding-site 5'-AGTGATAGTGA-3' with K(a)=9.7 x 10(9) M(-1). Tandem 1b also bind the 11 bp site but with lower affinity affording a 15-fold specificity for the shorter binding site. Replacing a methylene group in the amino acid linker with an oxygen atom to form tandem polyamide ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPy-E](HN)gamma-PyPyPy-beta-Dp (4) where E represents the ether linker, resulted in that an 80-fold specificity for the 10 bp binding site over the 11 bp site.  相似文献   

10.
Quercetinase is produced by various filamentous fungi when grown on rutin as sole carbon and energy source. We investigated on the effect of 10 phenolics and two sugars, structurally related to substrates and products of the rutin catabolic pathway, on the induction of a quercetinase activity in Penicillium olsonii. Neither the sugars (glucose and rhamnose, two constituents of rutin), nor phenolics such as protocatechuic acid, salicylic acid, 4-hydroxy-benzoic acid and phloroglucinol were inducers. Rutin (maximum activity 150 nmol/min/mL after 5 days), quercetin (70 nmol/min/mL, 3 days), phloroglucinol carboxylic acid (60 nmol/min/mL, 3 days), 2-protocatechuoylphloroglucinolcarboxylic acid (50 nmol/min/mL, 5 days), 2,6-dihydroxy-carboxylic acid (90 nmol/min/mL, 7 days) and 2,4-dihydroxy-carboxylic acid (30 nmol/min/mL, 7 days) were demonstrated to be quercetinase inducers. We propose that rutin, quercetin and 2-protocatechuoyl-phloroglucinol carboxylic acid, the product of the reaction catalysed by quercetinase, act as inducers after their catabolic transformation in phloroglucinol carboxylic acid.  相似文献   

11.
The work was aimed at studying the transformation of 2,4-diamino-6-nitrotoluene (2,4-DA), an intermediate product in 2,4,6-trinitrotoluene catabolism by microorganisms. The results allow one to propose the following scheme for the terminal steps of TNT preparatory metabolism: 2,4-DA----[phloroglucinol carboxylic acid]----phloroglucinol----pyrogallol----ring cleavage.  相似文献   

12.
A lipase-producing strain of Pseudomonas cepacia isolated from a soil sample was found to produce five compounds when oleic acid was added to the culture medium as lipase inducer. The five compounds were isolated by solvent extraction, silicagel column chromatography and preparative HPLC, and their structural elucidation was performed by mass spectrometry, and infrared and nuclear magnetic resonance spectroscopies. The products were identified as dec-3-ene-1,3,4-tricarboxylic acid 3,4-anhydride (product 1 ), undec-3-ene-1,3,4-tricarboxylic acid 3,4-anhydride (product 2 ), dodec-3-ene-I,3,4-tricarboxylic acid 3,4-anhydride (product 3 ), dodec-3,8-diene-1,3,4-tricarboxylic acid 3,4-anhydride (product 4 ) and dodec-3,6-diene-I,3,4-tricarboxylic acid 3,4-anhydride (product 5 ). Accumulation of these compounds in the culture medium started after oleic acid consumption and followed a pattern similar to that found for cell growth and for lipase production. The five compounds were radioactively labeled when [U- 14 C]oleic acid was supplied to the culture medium, thus showing that they were produced by transformation of the acid. When isolated from cultures containing [1,2- 13 C]acetic acid and oleic acid as the sole sources of carbon, the compounds showed to contain the 13 C isotope only in the first five atoms of carbon of the molecule. Several long chain fatty acids also acted as precursors of these compounds, with maximal yields for chain lengths between 11 and 18 atoms of carbon. None of the five compounds acted as lipase inducer when added to the culture medium instead of oleic acid. The compounds showed moderate antibacterial and antifungal activities when tested in solid media bioassays.  相似文献   

13.
A lipase-producing strain of Pseudomonas cepacia isolated from a soil sample was found to produce five compounds when oleic acid was added to the culture medium as lipase inducer. The five compounds were isolated by solvent extraction, silicagel column chromatography and preparative HPLC, and their structural elucidation was performed by mass spectrometry, and infrared and nuclear magnetic resonance spectroscopies. The products were identified as dec-3-ene-1,3,4-tricarboxylic acid 3,4-anhydride (product 1 ), undec-3-ene-1,3,4-tricarboxylic acid 3,4-anhydride (product 2 ), dodec-3-ene-I,3,4-tricarboxylic acid 3,4-anhydride (product 3 ), dodec-3,8-diene-1,3,4-tricarboxylic acid 3,4-anhydride (product 4 ) and dodec-3,6-diene-I,3,4-tricarboxylic acid 3,4-anhydride (product 5 ). Accumulation of these compounds in the culture medium started after oleic acid consumption and followed a pattern similar to that found for cell growth and for lipase production. The five compounds were radioactively labeled when [U- 14 C]oleic acid was supplied to the culture medium, thus showing that they were produced by transformation of the acid. When isolated from cultures containing [1,2- 13 C]acetic acid and oleic acid as the sole sources of carbon, the compounds showed to contain the 13 C isotope only in the first five atoms of carbon of the molecule. Several long chain fatty acids also acted as precursors of these compounds, with maximal yields for chain lengths between 11 and 18 atoms of carbon. None of the five compounds acted as lipase inducer when added to the culture medium instead of oleic acid. The compounds showed moderate antibacterial and antifungal activities when tested in solid media bioassays.  相似文献   

14.
The stereochemistry of the bovine plasma amine oxidase catalyzed oxidation of 2-(3,4-dihydroxyphenyl)-ethylamine (domapine) has been investigated by comparing 3H/14C ratios of 3,4-dibenzyloxyphenethyl alcohols, derived from 3,4-dihydroxyphenylacetaldehydes, to starting dopamines chirally labeled at C-1 and C-2. The oxidation of [2RS-3H]-, [2R-3H]-, and [2S-3H]dopamine leads to products which have retained 53, 59, and 47% of their tritium. Similarly, oxidation of [1RS-3H]-, [1R-3H]-, and [1S-3H]dopamine leads to an 80, 80, and 92% retention of tritium. The configurational purity of tritium at C-2 of dopamine and C-1 of the dopamine precursor 3-methoxy-4-hydroxyphenethylamine has been confirmed employing dopamine-beta-hydroxylase (specific for the pro-R hydrogen at C-2) and pea seedling amine oxidase (specific for the pro-S hydrogen at C-1). In addition, chromatographically resolved isozymes of bovine plasma amine oxidase have been demonstrated to lead to the same stereochemical result as pooled enzyme fractions. We have been able to rule out carbon interchange and tritium transfer in the ethylamine side chain of dopamine as the source of the apparent nonstereospecificity. Estimated primary tritium isotope effects are 1 for [2-3H]dopamines and 5--6 and 26--34 for [1R-3H]- and [1S-3H]dopamine, respectively. We propose the presence of alternate dopamine binding modes, characterized by absolute but opposing stereochemistries and differential primary tritium isotope effects at C-1.  相似文献   

15.
The problem of whether phloroglucinol is a direct biosynthetic precursor of flavonoids was reinvestigated. Phloroglucinol-2,4,6-14C was found to be incorporated into rutin in Buckwheat (Fagopyrum esculentum) but most of the activity was found in the sugar moiety, the remainder being approximately equally distributed among the A- and B-rings of the aglycone, quercetin. This indicates extensive degradation of the added phloroglucinol prior to its utilization in the biosynthesis of the flavonoid. The hypothesis of a bio-Fries rearrangement of phloroglucinyl cinnamate to a chalcone, and hence to flavonoids, was also eliminated by comparing the efficiency of incorporation of 14C-labelled phloroglucinyl cinnamate and those of labelled phloroglucinol and cinnamic acid.  相似文献   

16.
Seven estradiol (E2) derivatives with an alkynylamide side chain at the 17 alpha position were synthesized starting from ethynylestradiol (EE2). The main chemical step was the coupling reaction of the acetylide ion of EE2 with carbon dioxide, glutaric anhydride or bromoalkyl ortho ester. The synthesis of these compounds is fast (3-6 steps according to the compound) and is easily achieved with good yield. Five compounds with different side chain lengths were evaluated for uterotrophic and antiuterotrophic activity in the CD-1 mouse. None of the tested compounds shows estrogenic activity in this sensitive in vivo system. At low doses (1 and 3 micrograms), a 14-57% inhibition of E2-induced uterine growth was observed while no additional inhibition was observed at the 10, 20 and 30 micrograms doses. In human breast carcinoma cells in culture, all compounds show estrogenic activity at high concentrations while only compound 39 (N-butyl,N-methyl-8-[3',17' beta-dihydroxy estra-1',3',5'(10')-trien-17' alpha-yl]-7-octynamide) possesses antiproliferative or antiestrogenic effects. No significant correlation could be demonstrated between alkynylamide side chain length and estrogenic or antiestrogenic activity. Among the compounds tested, the derivative of EE2 possessing a five-methylene (CH2) side chain (compound 39) possesses the best antiestrogenic activity (44 +/- 7% in the CD-1 mouse uterus assay at the 3 micrograms dose and 57 +/- 4% at 0.1 nM in human ZR-75-1 cancer cells in culture.  相似文献   

17.
The metabolism of n-alkyleyclohexanes with an even number of carbon atoms (6, 8, 10, 12, 14) in the side chain by Micrococcus sp. RCO-4M was investigated. Evidence for the formation of cyclohexanecarboxylic acid (I), cyclohexaneacetic acid (II), 1-cyclohexenecarboxylic acid (III), 6-hydroxyhexanoic acid (IV), adipic acid (V), and trans-4-hydroxycyclohexaneacetic acid (VI) is presented. The presence of products (II), (IV) and (V) especially represent the complete degradation of n-alkylcyclohexanes with an even number of carbon atoms in the side chain by a single organism. The occurrence of a newly-identified product (VI) suggests that a new metabolic pathway for n-alkylcyclohexanes with even-carbon-number side chain operates in this organism.  相似文献   

18.
A facile test system based on the accumulation of benzo[c]phenanthridine alkaloids in Eschscholzia californica cell suspension culture (an indicator of defense gene activation) has been used to analyze a series of synthetic compounds for elicitor-like activity. Of the 200 jasmonic acid and coronatine analogs tested with this system, representative results obtained with 49 of them are presented here. The following can be summarized concerning structure-activity relationships: there is a large degree of plasticity allowed at the C-3 of jasmonic acid in the activation of defense genes. The carbonyl moiety is not strictly required, but exocyclic double bond character appears necessary. The pentenyl side chain at C-2 cannot tolerate bulky groups at the terminal carbon and still be biologically active. Substitutions to the C-1' position are tolerated if they can potentially undergo beta-oxidation. Either an alkanoic acid or methyl ester is required at C-1, or a side chain that can be shortened by beta-oxidation or by peptidase hydrolysis. Coronatine and various derivatives thereof are not as effective as jasmonic acid, and derivatives in inducing benzo[c]phenanthridine alkaloid accumulation. Jasmonic acid rather than the octadecanoic precursors is therefore considered to be a likely signal transducer of defense gene activation in planta.  相似文献   

19.
The polymerization reaction of rabbit muscle actin was completely inhibited by reaction of one amino acid side chain per protein monomer with 5-diazonium-(1H)[14C]tetrazole. A tryptic peptide fingerprint showed a single peptide labeled by the reagent. The peptide was isolated and the labeled amino acid identified by amino acid analysis as Tyr-53. This side chain is not accessible to the reagent in F-actin. The modification is compared to similar inhibitions by other reagents.  相似文献   

20.
Anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin (1,2,3,4-tetrahydronaphthalene) was investigated with a sulfate-reducing enrichment culture obtained from a contaminated aquifer. Degradation studies with tetralin revealed 5,6,7,8-tetrahydro-2-naphthoic acid as a major metabolite indicating activation by addition of a C1 unit to tetralin, comparable to the formation of 2-naphthoic acid in anaerobic naphthalene degradation. The activation reaction was specific for the aromatic ring of tetralin; 1,2,3,4-tetrahydro-2-naphthoic acid was not detected. The reduced 2-naphthoic acid derivatives tetrahydro-, octahydro-, and decahydro-2-naphthoic acid were identified consistently in supernatants of cultures grown with either naphthalene, 2-methylnaphthalene, or tetralin. In addition, two common ring cleavage products were identified. Gas chromatography-mass spectrometry (GC-MS) and high-resolution GC-MS analyses revealed a compound with a cyclohexane ring and two carboxylic acid side chains as one of the first ring cleavage products. The elemental composition was C11H16O4 (C11H16O4-diacid), indicating that all carbon atoms of the precursor 2-naphthoic acid structure were preserved in this ring cleavage product. According to the mass spectrum, the side chains could be either an acetic acid and a propenic acid, or a carboxy group and a butenic acid side chain. A further ring cleavage product was identified as 2-carboxycyclohexylacetic acid and was assumed to be formed by β-oxidation of one of the side chains of the C11H16O4-diacid. Stable isotope-labeling growth experiments with either 13C-labeled naphthalene, per-deuterated naphthalene-d8, or a 13C-bicarbonate-buffered medium showed that the ring cleavage products derived from the introduced carbon source naphthalene. The series of identified metabolites suggests that anaerobic degradation of naphthalenes proceeds via reduction of the aromatic ring system of 2-naphthoic acid to initiate ring cleavage in analogy to the benzoyl-coenzyme A pathway for monoaromatic hydrocarbons. Our findings provide strong indications that further degradation goes through saturated compounds with a cyclohexane ring structure and not through monoaromatic compounds. A metabolic pathway for anaerobic degradation of bicyclic aromatic hydrocarbons with 2-naphthoic acid as the central intermediate is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号