首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When grown under conditions of phosphate limitation, Bacillus subtilis W23 lacked wall teichoic acid and did not adsorb phage SP50. During transition from growth under conditions of phosphate limitation to those of potassium limitation, the bacteria developed an ability to adsorb phage which increased exponentially in relation to their content of wall teichoic acid. During transition in the reverse direction, the bacteria retained near-maximum phage-binding properties until their content of wall teichoic acid had fallen to a fairly low level. These observations suggest that newly incorporated wall material does not immediately appear at the cell surface in a structure to which phage can adsorb. Examination of the location of adsorbed phage particles showed that recently incorporated receptor material appeared at the cell surface first along the length of the cylindrical portion of the cell. The results are consistent with models of wall assembly in which newly synthesized wall material is intercalated at a large number of sites that are distributed along the length of the cell. This newly incorporated material may be located initially at a level underlying the surface of the cell and may become exposed at the surface only during subsequent growth. Incorporation of new material may also proceed rapidly into the developing septa, but new wall material is incorporated into existing polar caps more slowly, or perhaps not at all.  相似文献   

2.
Beachey, Edwin H. (National Institute of Allergy and Infectious Diseases, Bethesda, Md.), and Roger M. Cole. Cell wall replication in Escherichia coli, studied by immunofluorescence and immunoelectron microscopy. J. Bacteriol. 92:1245-1251. 1966.-Cell wall components of four different strains of Escherichia coli (B; B/r, try(-); O5; and O86:B7) were labeled with homologous fluorescent antibodies (FLG); the way the label was dispersed on further growth in media free of antibody was followed by fluorescence microscopy. Fluorescence diminished diffusely along longitudinal wall but remained bright at cell poles (or cross walls); newly formed cross walls did not fluoresce. In agreement, reverse labeling (preincubation in unlabeled antibody, followed by staining on the slide with homologous FLG) showed that stainability of longitudinal wall increased gradually and diffusely with increased time of incubation, whereas polar wall remained nonfluorescent or stained only faintly; newly formed poles (or cross walls), on the other hand, stained brightly. These observations were confirmed by electron microscopy, after immunoferritin labeling. Although the mode of cross-wall formation remained unclear, our findings refuted reported ideas of segmental or polar growth of cell wall in E. coli and supported the idea of wall replication by diffuse intercalation, as described for Salmonella.  相似文献   

3.
When grown in a complex peptone-yeast extract culture medium, Seliberia stellata and related morphologically similar aquatic bacterial strains typically divided asymmetrically, giving rise to a motile swarmer and a longer sessile rod. Indirect immunoferritin labeling of these bacteria, followed by incubation during which cell growth occurred, has provided evidence that antigenic cell-surface components are synthesized de novo in a sharply demarcated zone at one pole of the growing parent cells. Cell elongation occurred unidirectionally from the pole showing the de novo surface synthesis; it was this end of the elongating, helically sculptured (i.e., screw-like) rod that became the daughter swarmer cell. The daughter swarmers, produced after polar growth and division of the immunoferritinlabeled parent cells, were not labeled. The immunoferritin label remaining on the parent cell did not appear to be diluted or disturbed by the cell growth and division process. Under the cultural conditions used in this study, the growth and division events which led to production of swarmer cells in the seliberia strains examined met two major criteria of accepted definitions of budding (de novo cell surface synthesis and transverse asymmetry of division). However, the developing daughter cell was not initially narrower than the parent and thus did not increase in cell diameter during growth.In memory: R. Y. Stanier  相似文献   

4.
Insertion and fate of the cell wall in Bacillus subtilis   总被引:12,自引:4,他引:8       下载免费PDF全文
Cell wall assembly was studied in autolysin-deficient and -sufficient strains of Bacillus subtilis. Two independent probes, one for peptidoglycan and the other for surface-accessible teichoic acid, were employed to monitor cell surface changes during growth. Cell walls were specifically labeled with N-acetyl-D-[3H]glucosamine, and after growth, autoradiographs were prepared for both cell types. The locations of silver grains revealed that label was progressively lost from numerous sites on the cell cylinders, whereas label was retained on the cell poles, even after several generations. In the autolysin-deficient and chain-forming strain, it was found that the distance between densely labeled poles approximately doubled after each generation of growth. In the autolysin-sufficient strain, it was found that the numbers of labeled cell poles remained nearly constant for several generations, supporting the premise that completed septa and poles are largely conserved during growth. Fluorescein-conjugated concanavalin A was also used to determine the distribution of alpha-D-glucosylated teichoic acid on the surfaces of growing cells. Strains with temperature-sensitive phosphoglucomutase were used because in these mutants, glycosylation of cell wall teichoic acids can be controlled by temperature shifts. When the bacteria were grown at 45 degrees C, which stops the glucosylation of teichoic acid, the cells gradually lost their ability to bind concanavalin A on their cylindrical surfaces, but they retained concanavalin A-reactive sites on their poles. Discrete areas on the cylinder, defined by the binding of fluorescent concanavalin A, were absent when the synthesis of glucosylated teichoic acid was inhibited during growth for several generations at the nonpermissive temperature. When the mutant was shifted from a nonpermissive to a permissive temperature, all areas of the cylinder became able to bind the labeled concanavalin A after about one-half generation. Old cell poles were able to bind the lectin after nearly one generation at the permissive temperature, showing that new wall synthesis does occur in the cell poles, although it occurs slowly. These data, based on both qualitative and quantitative experiments, support a model for cell wall assembly in B. subtilis, in which cylinders elongate by inside-to-outside growth, with degradation of the stress-bearing old wall in wild-type organisms. Loss of wall material, by turnover, from many sites on the cylinder may be necessary for intercalation of new wall and normal length extension. Poles tend to retain their wall components during division and are turned over much more slowly.  相似文献   

5.
The outermost layer of the cell wall of Bacillus sphaericus strain P-1 is a tetragonally arrayed structure (T-layer) which is assembled from a single polypeptide. No turnover of T-layer was detected during growth of cultures. In contrast, the turnover of peptidoglycan was between 20 and 25% per generation. The sites of deposition of new T-layer on the cell surface were identified by the indirect fluorescent antibody technique, which labeled old T-layer, and by the reverse technique, which labeled new T-layer. These experiments demonstrated that the major area of T-layer deposition was a band at the site of an incipient cell division. This band subsequently split and covered the new pole of each progeny cell. Little or no T-layer was inserted into existing poles. In addition, multiple bands of new T-layer, which probably accommodate cell elongation, were inserted along the lateral surface of the cell.  相似文献   

6.
Structural information on intracellular fusions of the green fluorescent protein (GFP) of the jellyfish Aequorea victoria with endogenous proteins is required as they are increasingly used in cell biology and biochemistry. We have investigated the dynamic properties of GFP alone and fused to a single chain antibody raised against lipopolysaccharide of the outer cell wall of gram-negative bacteria (abbreviated as scFv-GFP). The scFv moiety was functional as was proven in binding assays, which involved the use of both fluorescence correlation spectroscopy observing the binding of scFv-GFP to gram-negative bacteria and a surface plasmon resonance cell containing adsorbed lipopolysaccharide antigen. The rotational motion of scFv-GFP has been investigated with time-resolved fluorescence anisotropy. However, the rotational correlation time of scFv-GFP is too short to account for globular rotation of the whole protein. This result can only be explained by assuming a fast hinge motion between the two fused proteins. A modeled structure of scFv-GFP supports this observation.  相似文献   

7.
Mechanism of polarization of Listeria monocytogenes surface protein ActA   总被引:3,自引:0,他引:3  
The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActA-RFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth.  相似文献   

8.
Covalent bonding of purified antibodies to polymeric microspheres of 0.4 to 0.8 μm diameter yields conjugates which can be used to label lymphocytes in the light microscope. Nonadherent microspheres can be separated by means of a discontinuous density gradient and quantitative measurements of adherent microsphere distributions can be made through examination of Wright's stained dry mounts or through fluorescent microscopic examination of cells in suspension.In general the distributions of adherent microspheres on mouse splenic and thymic lymphocytes in direct or indirect labelling assays show good agreement with results obtained from fluorescent antibody techniques. In comparison to fluorescent antibody the use of these antibody-microsphere conjugates has the advantage of allowing direct correlations between the surface antigens of cells and their histologie morphology.  相似文献   

9.
The ionotropic 5HT(3) receptor was expressed in transiently transfected mammalian cells, yielding an unprecedented high concentration of up to 12 million receptors per cell. Receptor traffic in the plasma membrane of live cells was observed continuously over 24 h by fluorescence scanning confocal microscopy. This was possible by using 5HT(3) receptor-specific fluorescent ligands with high binding affinity and low off-rate to pulse label receptors at any time after appearance on the cell surface, and label subsequently those receptors expressed later by another, spectrally distinguishable, high-affinity fluorescent ligand. Having reached a critical cell surface concentration of approximately 3000 receptors/microm(2), the receptors started to aggregate in patches with a 4-fold increased surface concentration. The clusters were constantly delivered from a pool of freshly expressed receptors isotropically distributed within the basolateral region of the cell membrane. From there, they migrated to and accumulated on the apical cell surface approximately 9 h after transfection. Individual clusters grew until they reached a critical size of 1-2 microm when they merged to form with 3-5 microm large macroclusters. Clustered receptors were immobile on the minute time scale but always coexisted with monomeric receptors in the regions surrounding the clusters as revealed by fluorescence correlation spectroscopy. Because the receptor density of 12 000 receptors/microm(2) in the patches is as high as that found in two-dimensional crystals of certain membrane proteins, such patches might be a proper source for direct crystallization of membrane proteins without prior purification.  相似文献   

10.
D Gally  K Bray    S Cooper 《Journal of bacteriology》1993,175(10):3121-3130
A modified procedure for determining the pattern of peptidoglycan synthesis during the division cycle has allowed the measurement of the rate of side wall synthesis during the division cycle without the contribution due to pole formation. As predicted by a model proposing that the surface growth of the cell is regulated by mass increase, we find a decrease in side wall synthesis in the latter half of the division cycle. This supports the proposal that, upon invagination, pole growth accommodates a significant proportion of the increasing cell mass and that residual side wall growth occurs in response to the residual mass increase not accommodated by pole volume. The observed side wall synthesis patterns support the proposal that mass increase is a major, and possibly sole, regulator of bacterial surface increase. Membrane synthesis during the division cycle of the gram-negative, rod-shaped bacteria Escherichia coli and Salmonella typhimurium has also been measured with similar methods. The rate of membrane synthesis--measured by incorporation of radioactive glycerol or palmitate relative to simultaneous labeling with radioactive leucine--exhibits the same pattern as peptidoglycan synthesis. The results are compatible with a model of cell surface growth containing the following elements. (i) During the period of the division cycle prior to invagination, growth of the cell occurs predominantly in the side wall and the cell grows only in length. (ii) When invagination begins, pole growth accommodates some cytoplasmic increase, leading to a concomitant decrease in side wall synthesis. (iii) Surface synthesis increases relative to mass synthesis during the last part of the division cycle because of pole formation. It is proposed here that membrane synthesis passively follows the pattern of peptidoglycan synthesis during the division cycle.  相似文献   

11.
We have targeted two foreign B cell antigenic determinants to different locations in the Escherichia coli cell to examine what effect this had on antibody responses elicited by the recombinant bacteria. The two epitopes were the 132-145 peptide from the PreS2 region of hepatitis B virus and the C3 neutralization epitope of poliovirus type 1. They were each expressed in two forms either on the surface, as part of the outer-membrane protein LamB, or soluble in the periplasm, as part of the periplasmic protein MalE. When live bacteria expressing the foreign epitope at the cell surface were used for immunization of mice, they induced T cell-independent antibody responses characterized by a rapid induction of IgM and IgG antibodies. In contrast, when the same foreign epitope was inserted into the MalE protein, the antibody response was only detectable after 3 wk, belonged only to the IgG class and was strictly T cell dependent. This study has therefore identified two major pathways by which epitopes expressed by bacterial cells can stimulate specific antibody responses. The first pathway is mediated by direct activation of B cells by bacterial cell-surface Ag and does not require T cell help. The second pathway is T cell dependent and concerns Ag that can be released from the bacteria in a soluble form. We have also studied the effect of the exact position of the B cell antigenic determinant within the LamB protein and with respect to the outer membrane by comparing the immunogenicity of the PreS epitope inserted at three different permissive sites of LamB. The data indicated that to obtain an antibody response with intact bacteria, the epitope must be protruding sufficiently from the outside of the outer membrane. In contrast, when semipurified hybrid proteins were used as immunogen, the exact position of the B cell antigenic determinant within solubilized LamB protein does not influence its immunogenicity.  相似文献   

12.
利用胶体金免疫电镜定位技术对蚕豆叶肉细胞中ABA定位的研究表明,在以ABA抗体处理的切片中,叶绿体有大量的金颗粒标记,细胞质和细胞核也有金颗粒标记,但液泡和细胞壁中没有金颗粒标记。免疫染色前用胰蛋白酶处理可显著增强金颗粒标记密度,而不用EDC固定或以免疫前兔血清处理的切片中几乎没有金颗粒标记。本实验为蚕豆叶肉细胞中ABA的分布提供了直接的证据并说明了该技术是研究ABA定位的一种可靠的方法。  相似文献   

13.
Discontinuity of charge on cell wall poles of Bacillus subtilis   总被引:6,自引:0,他引:6  
When cell wall poles of Bacillus subtilis were treated with dilute cationized ferritin, label was found only at discrete patches. Since cationized ferritin binds to negatively charged groups, the pole regions that retain label most likely represent localized surface sites of high electronegativity, indicating that the cell wall of B. subtilis is, at least, partially differentiated.  相似文献   

14.
Summary An antibody to the inner wall layer ofGloeomonas kupfferi was isolated and used in a developmental analysis of cell wall processing, secretion and extracellular assembly. The focus of the processing of this matrix layer is the endomembrane system, in particular the Golgi apparatus (GA) and contractile vacuole (CV). During interphase, inner wall materials are processed in the GA, packaged in trans face vesicles and transported to the CV, the final internal depository of wall precursors until release to the cell surface. During cell division, significant changes occur in the inner wall layer processing. Early on in cytokinesis, the GA does not label with our antibody, suggesting that other wall layers are being processed. In later stages of cytokinesis, the GA changes in morphology and begins to produce inner wall layer materials. These wall precursors are shuttled to the CV where they are released around the daughter cell protoplasts. The first wall layer that is formed around daughter cells is the crystalline median wall layer. Once assembled, the inner wall layer condenses upon the crystalline layer and grows in size.  相似文献   

15.
Freeze-fracture studies of short, nonswarming Proteus mirabilis revealed the characteristic gram-negative profile of fractured inner membrane with densely packed particles and sectioned outer membrane with little or no fracture plane. Long swarming cells, however, fractured easily along both the inner membrane and a second membrane, probably the outer membrane. The inner membrane had a typical profile, whereas the outer membrane had fewer but more prominent particles. Isolation and purification of the inner and outer membranes of the short and long bacteria and examination of them with electron paramagnetic resonance measurements after spinlabeling supported the above observations. The outer membrane of swarmer cells allowed higher mobility of the spin label than did the outer membrane of the nonswarming short cells, which showed a typical rigid profile. These results suggest that regions of lipid bilayer appear in the outer membrane during swarmer formation. Previous observation of the behavior and biochemistry of P. mirabilis during swarming are discussed in light of these results.  相似文献   

16.
Proteus mirabilis is a common opportunistic Gram-negative uropathogen that infects the upper urinary tract. We have examined the role of the nonagglutinating fimbriae (NAF) of P. mirabilis in mediating bacterial adhesion to cell surface receptors. Purified NAF of P. mirabilis were demonstrated to bind to a number of glycolipids, including asialo-GM1, asialo-GM2, and lactosyl ceramide (LacCer) in solid-phase binding assays and in thin layer chromatography (TLC) overlay assays. Furthermore, preincubation of the biotinylated NAF (Bt-NAF) with anti-NAF monoclonal antibodies resulted in inhibition of NAF binding to immobilized asialo-GM1, asialo-GM2, and LacCer. In adherence assays, P. mirabilis binding to Madin-Darby canine kidney (MDCK) cells was inhibited by murine anti-asialo-GM1 monoclonal antibodies H2G10 to about 50% of the binding level in the absence of the antibody, specific for the terminal beta-galactopyranosyl residue of asialo-GM1 (Harrison et al. 1998). The results of this study suggest that NAF of P. mirabilis recognize a GalNAc beta 1-4Gal moiety present in the ganglio-series of asialoglycolipids, and that the terminal beta-galactopyranosyl-containing glycoconjugates play a role in NAF-mediated adherence of P. mirabilis to MDCK cells. Similarly to other bacteria, P. mirabilis NAF was also shown to express the LacCer specificity.  相似文献   

17.
With excellent optical properties, quantum dots (QDs) have been made as attractive molecular probes for labelling cells in biological research. In this study high‐quality CdSe QDs prepared in a paraffin–oleic acid system were used as fluorescent labels in direct and indirect detection of carcinoembryonic antigen (CEA), a cancer marker expressed on the surface of HeLa cells. The primary antibody (Ab) (rabbit anti‐CEA8) and secondary Ab (goat anti‐rabbit IgG) were covalently linked to carboxyl‐functioned CdSe QDs, and both the QDs–antibody and QDs–IgG probes were successfully used to label HeLa cells. The present study demonstrates the practicability of CdSe QDs as an attractive type of fluorescent labels for biological applications such as protein probes and cell imaging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The endocytosis of a monoclonal antibody recognising a cell surface glycoprotein antigen has been investigated using several different fluorescent conjugates. These conjugates have been employed for both fluorescence microscopy to show the qualitative changes in distribution of antibody conjugates during endocytosis, and also flow cytofluorimetry to show the quantitative changes in fluorescence intensity associated with this redistribution. Using an antibody directly labelled with fluorescein it was difficult to demonstrate endocytosis due to the inability to distinguish clearly between internal and external fluorescence. However, a fluorescein-HSA-antibody conjugate which was heavily quenched at the cell surface was endocytosed and degraded during incubation at 37 degrees C for 4 h and was then visualised in a perinuclear distribution by the addition of agents to modify intracellular pH. This experiment demonstrated that such conjugates became localised within an acidic internal compartment. A tetramethylrhodamine-HSA-conjugate also demonstrated a similar perinuclear distribution but without the addition of endosomal pH modifiers. When used in conjunction with a fluorescein rabbit anti-HSA second label this conjugate also showed that not all conjugate was endocytosed during a 4-h period; some conjugate remained bound to the cell surface. These experiments suggested that endocytosis in this system differs from receptor-mediated endocytosis via coated pits which is reported to be more rapid and complete.  相似文献   

19.
The compatible interaction between the model plant, Arabidopsis thaliana, and the GMI1000 strain of the phytopathogenic bacterium, Ralstonia solanacearum, was investigated in an in vitro pathosystem. We describe the progression of the bacteria in the root from penetration at the root surface to the xylem vessels and the cell type-specific, cell wall-associated modifications that accompanies bacterial colonization. Within 6?days post inoculation, R. solanacearum provoked a rapid plasmolysis of the epidermal, cortical, and endodermal cells, including those not directly in contact with the bacteria. Plasmolysis was accompanied by a global degradation of pectic homogalacturonanes as shown by the loss of JIM7 and JIM5 antibody signal in the cell wall of these cell types. As indicated by immunolabeling with Rsol-I antibodies that specifically recognize R. solanacearum, the bacteria progresses through the root in a highly directed, centripetal manner to the xylem poles, without extensive multiplication in the intercellular spaces along its path. Entry into the vascular cylinder was facilitated by cell collapse of the two pericycle cells located at the xylem poles. Once the bacteria reached the xylem vessels, they multiplied abundantly and moved from vessel to vessel by digesting the pit membrane between adjacent vessels. The degradation of the secondary walls of xylem vessels was not a prerequisite for vessel colonization as LM10 antibodies strongly labeled xylem cell walls, even at very late stages in disease development. Finally, the capacity of R. solanacearum to specifically degrade certain cell wall components and not others could be correlated with the arsenal of cell wall hydrolytic enzymes identified in the bacterial genome.  相似文献   

20.
Summary Two fluorescent compounds, scopoletin and carboxyfluorescein, have been used to label both tissue culture and leaf mesophyll cells and protoplasts. The compounds localized within the vacuoles of cells in approximately 15 hours. They remained in the vacuole during cell wall digestion, and fluorescence was observable for several hours after protoplast release. A one day pulse of these fluorescent labels had no deleterious effect on the growth of cells or protoplasts. When morphologically indistinguishable protoplasts were labeled and treated with polyethylene glycol, multicolored fluorescent fusion products were observable. These fluorescent labels provide a convenient method for selection of heterokaryon fusion products of whole plant and tissue culture cell protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号