首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of pentoxifylline (PTX) on spontaneous pseudopod formation in neutrophils in response to the tripeptide formyl-Met-Leu-Phe (fMLP), endotoxin, human complement C5a, and leukotriene B4 (LTB4) were examined in autologous plasma. Unseparated supernatant leukocyte suspensions from fresh heparinized venous human blood were incubated with PTX (0-5 mM) for 25 min and then stimulated for 5-25 min within a range of concentrations of fMLP, endotoxin, complement C5a, and LTB4. The cell suspensions were fixed with glutaraldehyde and stained with crystal violet in acetic acid; the percentage of neutrophils with pseudopods was determined under high-resolution light microscope. The results show that PTX significantly decreases formation of pseudopods in the presence of all four stimulators. The mechanism of pseudopod suppression appears to be independent of the adenosine receptor. PTX and its analogues, HWA 138 and HWA 448, decreased pseudopod formation by similar amounts when stimulated with 10(-8)M fMLP. These results suggest that PTX may improve microvascular perfusion and attenuate neutrophil-mediated injury by reducing the degree of neutrophil pseudopod formation in free suspension and microvascular entrapment.  相似文献   

2.
Interactions of human platelets with neutrophils were studied in suspensions of [3H]arachidonate-labeled platelets and unlabeled neutrophils stimulated with ionophore A23187. Several radioactive arachidonate metabolites, not produced by platelets alone, were detected, including [3H]-labeled leukotriene B4 (LTB4), dihydroxyeicosatetraenoic acid (DHETE) and 5-hydroxyeicosatetraenoic acid (5-HETE). When [3H]12-HETE, a platelet product, was added to stimulated neutrophils, DHETE was formed. Similarly, when [3H]5-HETE, a neutrophil product, was added to stimulated platelets, DHETE was the major product. These results suggest that upon stimulation: 1) platelet-derived arachidonate may serve as precursor for the neutrophil-derived eicosanoids LTB4 and 5-HETE, and 2) that platelet-derived 12-HETE can be converted to DHETE by human neutrophils. The present investigation documents cell-cell interactions via the lipoxygenase pathway, which may be important in hemostasis, thrombosis and inflammation.  相似文献   

3.
Monosodium urate (MSU) crystals stimulate the production of arachidonic acid metabolites by human neutrophils and platelets. Neutrophils exposed to MSU generated leukotriene B4(LTB4). 6- -LTB4, 12- -6- -LTB4, and 5S, 12S DHETE from endogenous sources of arachidonate. In addition to these metabolites both monohyroxyeicosatetraenoic acids (i.e., 5-HETE) and w-oxidation products (i.e., 20-COOH LTB4) were formed by neutrophils exposed to MSU. Addition of exogenous arachidonic acid led to increased formation of each of these metabolites. When neutrophils were treated with colchicine (10 uM), LTB4 but 5-HETE formation was impaired. (1-14C) Arachidonate-labeled platelets exposed to MSU released (1-14C)-arachidonate. (14C)-12 HETE, (14C)-HHT and (14C)-thromboxane B2. Results indicate that MSU stimulates arachidonic acid metabolism in both human neutrophils and platelets. Moreover, they suggest not only that metabolites of arachidonate may be considered as possible candidates for mediators of inflammation in crystal-associated diseases, but that colchicine blocks the formation of LTB4.  相似文献   

4.
Inflammation plays a pivotal role in the pathophysiology of cardiovascular disease, (CVD) and leukotrienes may play a role in atherogenesis. Statins reduce mortality from CVD by reducing LDL cholesterol and potentially by other (pleiotropic) mechanisms. The aim of this study was to investigate if atorvastatin exerts an anti-inflammatory effect by reducing leukotriene B4 (LTB4) formation from stimulated neutrophils in patients treated with coronary artery bypass grafting.The study was a randomized, placebo-controlled, double-blinded crossover study. Patients (n=80) were allocated to 80 mg atorvastatin or placebo for 6 weeks before crossing over to the opposite treatment for another 6 weeks. There was no significant correlation between baseline LDL cholesterol levels on formation of LTB4, and atorvastatin had no effect on LTB4 formation. Hence, this study does not support any effect of atorvastatin on LTB4 formation as part of the explanation for its beneficial effect on CVD.  相似文献   

5.
A leukotriene B4 (LTB4) analog, 20-trifluoromethyl LTB4 (20CF3−LTB4), has been synthesized and evaluated with human neutrophils for effects on chemotaxis and degranulation. 20CF3−LTB4 was equipotent to LTB4 as a chemoattractant (EC50, 3 nM), produced 50% of maximal activity of LTB4, and competed with [H] LTB4 for binding to intact human neutrophil LTB4 receptors. In contrast to chemotactic activity, 20CF3−LTB4 in nanomolar concentrations exhibited antagonist activity without agonist activity up to 10 μM on LTB4-induced degranulation. The analog had no significant effect on degranulation induced by the chemoattractant peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP). Like LTB4, 20CF3−LTB4 induced neutrophil desensitization to degranulation by LTB4. The results indicate that hydrogen atoms at C-20 of LTB4 are critical for its intrinsic chemotactic and degranulation activities. The fact that 20CF3−LTB4 is a partial agonist for chemotaxis and an antagonist for degranulation syggests that different LTB4 receptor subtypes are coupled to these neutrophil functions. Desensitization of the neutrophil degranulation response to LTB4 can result from receptor occupancy by an antagonist, and therefore, the desensitization is not specific for an agonist.  相似文献   

6.
The formation of pseudopods and lamellae after ligation of chemoattractant sensitive G-protein coupled receptors (GPCRs) is essential for chemotaxis. Here, pseudopod extension was stimulated with chemoattractant delivered from a micropipet. The chemoattractant diffusion and convection mass transport were considered, and it is shown that when the delivery of chemoattractant was limited by diffusion there was a strong chemoattractant gradient along the cell surface. The diffusion-limited delivery of chemoattractant from a micropipet allowed for maintaining an almost constant chemoattractant concentration at the leading edge of single pseudopods during their growth. In these conditions, the rate of pseudopod extension was dependent on the concentration of chemoattractant in the pipet delivering chemoattractant. The pseudopod extension induced using micropipets was oscillatory even in the presence of a constant delivery of chemoattractant. This oscillatory pseudopod extension was controlled by activated RhoA and its downstream effector kinase ROCK and was abolished after the inhibition of RhoA activation with Clostridium botulinium C3 exoenzyme (C3) or the blocking of ROCK activation with Y-27632. The ability of the micropipet assay to establish a well-defined chemoattractant distribution around the activated cell over a wide range of molecular weights of the used chemoattractants allowed for comparison of the effect of chemoattractant stimulation on the dynamics of pseudopod growth. Pseudopod growth was stimulated using N-formylated peptide (N-formyl-methionyl-leucyl-phenylalanine (fMLP)), platelet activating factor (PAF), leukotriene B4 (LTB(4)), C5a anaphylotoxin (C5a), and interleukin-8 (IL-8), which represent the typical ligands for G-protein coupled chemotactic receptors. The dependence of the rate of pseudopod extension on the concentration of these chemoattractants and their equimolar mixture was measured and shown to be similar for all chemoattractants. The inhibition of the activity of phosphoinositide-3 kinase (PI3K) with wortmannin showed that 72%-80% of the rate of pseudopod extension induced with N-formyl-methionyl-leucyl-phenylalanine, platelet activating factor, and leukotriene B4 was phosphoinositide-3 kinase-dependent, in contrast to 55% of the rate of pseudopod extension induced with interleukin-8. The dependence of the rate of pseudopod extension on the concentration of individual chemoattractants and their equimolar mixture suggests that there is a common rate-limiting mechanism for the polymerization of cytoskeletal F-actin in the pseudopod region induced by G-protein coupled chemoattractant receptors.  相似文献   

7.
Monosodium urate (MSU)-induced synovitis in the dog's stifle (knee joint) is similar to an acute gouty attack in man in which a loss of function of the joint correlates with massive influx of neutrophils and the release of an assortment of inflammatory mediators (e.g. histamine, bradykinin, lysosomal enzymes, complement and eicosanoids) into the synovial space. We found in the urate-induced inflammatory exudates 3 hr post MSU the following: 88 million leukocytes/ml (95% neutrophils) and eicosanoid concentrations of LTB4, LTC4, and PGE2 of < 0.1, 1.4 and 20 ng/ml, respectively. Isotonic saline injected knee joints at 3 hr contained 5 million leukocytes/ml (95% neutrophils) and concentrations of LTB4, LTC4, and PGE2 of < 0.1, 0.7 and 0.2 ng/ml, respectively. Intrasynovial injections of 1 μg LTB4, 10 μg PGE2 or the combination of LTB4 and PGE2 produced no reduction of paw pressure for up to 3 hr. Leukocyte concentrations measured at 3 hr in joints injected with these arachidonic acids metabolites were similar to saline controls. These results question the role of LTB4 as a chemotactic and inflammatory mediator in urate-induced synovitis in the dog but confirm the importance of PGE2 and possibly LTC4 in this model.  相似文献   

8.
Several studies indicate that increased intake of eicosapentaenoic acid (EPA) in the diet may lead to decreased incidence of thrombotic events. Most investigators agree that this is achieved by competitively inhibiting the conversion of arachidonic acid (AA) to thromboxane A2 in the platelets. The effect of high EPA-intake on the formation of prostacyclin is less clear. However, EPA is a good substrate for lipoxygenase enzymes which results in formation of hydroperoxy- and hydroxy-acids, and, in some cases, leukotrienes. The biological activities of the leukotrienes derived from arachidonic acid suggest that they mediate or modulate some symptoms associated wth inflammatory and hypersensitivity reactions. In order to clarify the possible effect of dietary manipulation of inflammatory processes, leukotriene B5 (LTB5) was prepared and its biological activities assessed. LTB5 was biosynthesised by incubating EPA with glycogen-elicited polymorphonuclear neutrophils (PMN) from rabbits in the presence of the divalent cation ionophore, A23187. The LTB5 was extracted from the incubate using minireverse phase extraction columns (Sep-pak) and purified by reverse-phase high pressure liquid chromatography (RP-HPLC). The purity of the product assessed by repeat RP-HPLC and straight phase (SP) HPLC was greater than 95%. Ultra-violet spectrophotometry of the product confirmed its purity and also provided assessment of the yield. The biological activity of LTB5 was assessed and compared with that of LTB4 in the following tests: aggregation of rat neutrophils, chemokinesis of human PMN, lysosomal enzyme release from human PMN and potentiation of bradykinin-induced plasma exudation. In all these tests. LTB5 was considerably less active (at least 30 times) than LTB4.  相似文献   

9.
We have examined the effects of very pure (> 99.8%) chemically synthesized leukotriene B4 of verifeid structuer on the chemotactc and secretry behavior of human polymphonuclear leukocytes (PMN). The synthetic material is highly chemotactic and shows the same concentration dependence of this activity as does natural LTB4. Synthetic LTB4 is also a weak degranulating agnet in cytochalasin B treated PMN. Maximally it released 11%, 17% and 26% as much N-acetyl-β-D-dlucosaminidise, myeloperoxidase and lysozyme as did N-formyl-methionine-leucine-phneylalanine (fMLP). Thus LTB4 differs significantly from other chemotaxisn, as such as C5a and fMLP, in that it is a poor secretagogue for enzymes of the specific adn azurophilic granules of human PMN.  相似文献   

10.
Control of neutrophil pseudopods by fluid shear: role of Rho family GTPases   总被引:1,自引:0,他引:1  
Blood vessels and blood cells are under continuous fluid shear. Studies on vascular endothelium and smooth muscle cells have shown the importance of this mechanical stress in cell signal transduction, gene expression, vascular remodeling, and cell survival. However, in circulating leukocytes, shear-induced signal transduction has not been investigated. Here we examine in vivo and in vitro the control of pseudopods in leukocytes under the influence of fluid shear stress and the role of the Rho family small GTPases. We used a combination of HL-60 cells differentiated into neutrophils (1.4% dimethyl sulfoxide for 5 days) and fresh leukocytes from Rac knockout mice. The cells responded to shear stress (5 dyn/cm2) with retraction of pseudopods and reduction of their projected cell area. The Rac1 and Rac2 activities were decreased by fluid shear in a time- and magnitude-dependent manner, whereas the Cdc42 activity remained unchanged (up to 5 dyn/cm2). The Rho activity was transiently increased and recovered to static levels after 10 min of shear exposure (5 dyn/cm2). Inhibition of either Rac1 or Rac2 slightly but significantly diminished the fluid shear response. Transfection with Rac1-positive mutant enhanced the pseudopod formation during shear. Leukocytes from Rac1-null and Rac2-null mice had an ability to form pseudopods in response to platelet-activating factor but did not respond to fluid shear in vitro. Leukocytes in wild-type mice retracted pseudopods after physiological shear exposure, whereas cells in Rac1-null mice showed no retraction during equal shear. On leukocytes from Rac2-null mice, however, fluid shear exerted a biphasic effect. Leukocytes with extended pseudopods slightly decreased in length, whereas initially round cells increased in length after shear application. The disruption of Rac activity made leukocytes nonresponsive to fluid shear, induced cell adhesion and microvascular stasis, and decreased microvascular density. These results suggest that deactivation of Rac activity by fluid shear plays an important role in stable circulation of leukocytes. microcirculation; mechanotransduction; actin polymerization; transgenic mouse; leukocyte  相似文献   

11.
The proinflammatory leukotriene B4 (LTB4) may be of importance in the progression of chronic kidney disease (CKD). We investigated whether n-3 polyunsaturated fatty acids (PUFA) decrease LTB4 and increase the formation of the less inflammatory leukotriene B5 (LTB5) in patients with CKD.Fifty-six patients with CKD stage 2-5 were randomised to 2.4 g n-3 PUFA or olive oil for 8 weeks. Compared to controls, n-3 PUFA significantly decreased release of LTB4 (p<0.001) and 5-hydroxyeicosatetraenoic acid (5-HETE) (p<0.01) and significantly increased release of LTB5 (p<0.001) and 5-hydroxyeicosapentaenoic acid (5-HEPE) (p<0.001) from stimulated neutrophil granulocytes. Kidney function evaluated by creatinine clearance and proteinuria did not improve. In conclusion, n-3 PUFA supplementation for 8 weeks in patients with CKD stage 2-5 significantly decreased LTB4 and 5-HETE and significantly increased LTB5 and 5-HEPE. No effect was seen on kidney function.  相似文献   

12.
Molecules that simultaneously inhibit independent or co-dependent proinflammatory pathways may have advantages over conventional monotherapeutics. OmCI is a bifunctional protein derived from blood-feeding ticks that specifically prevents complement (C)-mediated C5 activation and also sequesters leukotriene B4 (LTB4) within an internal binding pocket. Here, we examined the effect of LTB4 binding on OmCI structure and function and investigated the relative importance of C-mediated C5 activation and LTB4 in a mouse model of immune complex-induced acute lung injury (IC-ALI). We describe two crystal structures of bacterially expressed OmCI: one binding a C16 fatty acid and the other binding LTB4 (C20). We show that the C5 and LTB4 binding activities of the molecule are independent of each other and that OmCI is a potent inhibitor of experimental IC-ALI, equally dependent on both C5 inhibition and LTB4 binding for full activity. The data highlight the importance of LTB4 in IC-ALI and activation of C5 by the complement pathway C5 convertase rather than by non-C proteases. The findings suggest that dual inhibition of C5 and LTB4 may be useful for treatment of human immune complex-dependent diseases.  相似文献   

13.
The application of fluid shear stress on leukocytes is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. The formyl peptide receptor (FPR) on neutrophils, which binds to formyl-methionyl-leucyl-phenylalanine (fMLP) and plays a role in neutrophil chemotaxis, has been implicated as a fluid shear stress sensor that controls pseudopod formation. The role of shear forces on earlier indicators of neutrophil activation, such as L-selectin shedding and α(M)β(2) integrin activation, remains unclear. Here, human neutrophils exposed to uniform shear stress (0.1-4.0 dyn/cm(2)) in a cone-and-plate viscometer for 1-120 min showed a significant reduction in both α(M)β(2) integrin activation and L-selectin shedding after stimulation with 0.5 nM of fMLP. Neutrophil resistance to activation was directly linked to fluid shear stress, as the response increased in a shear stress force- and time-dependent manner. Significant shear-induced loss of FPR surface expression on neutrophils was observed, and high-resolution confocal microscopy revealed FPR internalized within neutrophils. These results suggest that physiological shear forces alter neutrophil activation via FPR by reducing L-selectin shedding and α(M)β(2) integrin activation in the presence of soluble ligand.  相似文献   

14.
Orientation of nucleus, centriole, microtubules, and microfilaments within human neutrophils in a gradient of chemoattractant (5 percent Escherichia coli endotoxin-activated serum) was evaluated by electron microscopy. Purified neutropils (hypaque-Ficoll) were placed in the upper compartment of chemotactic chambers. Use of small pore (0.45 μm) micropore filters permitted pseudopod penetration, but impeded migration. Under conditions of chemotaxis with activated serum beneath the filter, the neutrophil population oriented at the filter surface with nuclei located away from the stimulus, centrioles and associated radial array of microtubules beneath the nuclei, and microfilament-rich pseudopods penetrating the filter pores. Reversal of the direction of the gradient of the stimulus (activated serum above cells) resulted in a reorientation of internal structure which preceded pseudopod formation toward the activated serum and migration off the filter. Coordinated orientation of the entire neutrophil population did not occur in buffer (random migration) or in a uniform concentration of activated serum (activated random migration). Conditions of activated random migration resulted in increased numbers of cells with locomotory morphology, i.e. cellular asymmetry with linear alignment of nucleus, centriole, microtubule array, and pseudopods. Thus, activated serum increased the number of neutrophils exhibiting locomotory morphology, and a gradient of activated serum induced the alignment of neutrophils such that this locomotory morphology was uniform in the observed neutrophil populayion. In related studies, cytochalasin B and colchicines were used to explore the role of microfilaments and microtubules in the neutrophil orientation and migration response to activated serum. Cytochalasin B (3.0 μg/ml) prevented migration and decreased the microfilaments seen, but allowed normal orientation of neutrophil structures. In an activated serum gradient, colchicines, but not lumicolchicine, decreased the orientation of nuclei and centrioles, and caused a decrease in centriole-associated microtubules in concentrations as low as 10(-8) to 10(-7) M. These colchicines effects were associated with the rounding of cells and impairment of pseudopod formation. The impaired pseudopod formation was characterized by an inability to form pseudopods in the absence of a solid substrate, a formation of narrow pseudopods within a substrate, and a defect in pseudopod orientation in an activated serum gradient. Functional studies of migration showed that colchicines, but not lumicolchicine, minimally decreased activated random migration and markedly inhibited directed migration, but had not effect on random migration. These studies show that, although functioning microfilaments are probably necessary for neutrophil migration, intact microtubules are essential for normal pseudopod formation and orientation, and maximal unidirectional migration during chemotaxis.  相似文献   

15.
Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies, which, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in an LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments.  相似文献   

16.
Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments.  相似文献   

17.
Pholasin, the photoprotein of the common piddock Pholas dactylus, emits an intense luminescence upon oxidation. The contribution of superoxide anion radicals and myeloperoxidase (MPO) to Pholasin luminescence in stimulated neutrophils was investigated. Data on Pholasin luminescence were compared with results of superoxide anion radical generation detected by the cytochrome c test as well as with the release of elastase and MPO. In N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated neutrophils, most of the luminescence is caused by superoxide anion radicals, whereas MPO shows only a small effect as shown by coincubation with superoxide dismutase (SOD) as well as potassium cyanide (KCN), an inhibitor of MPO. However, both, O2- and MPO contribute to light emission in fMLP/cytochalasin B and phorbol myristoyl acetate (PMA) stimulated cells. Thus, the kinetics of O2- generation and MPO release can be very well detected by Pholasin luminescence in stimulated neutrophils.

Degranulation of azurophilic granules was assessed using an ELISA test kit for released MPO or detection of elastase activity with MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide in the supernatant of stimulated cells. Both approaches revealed concurrently similar results concerning the amount and kinetics of enzyme release with data of Pholasin luminescence. Both, cytochrome c measurements and Pholasin luminescence indicate that fMLP/cytochalasin B and PMA stimulated neutrophils produce more O2- than fMLP stimulated cells. Thus, Pholasin luminescence can be used to detect, sensitively and specifically, O2- production and MPO release from stimulated neutrophils.  相似文献   

18.
A23187, a calcium ionophore, stimulated a time-dependent generation of 5(S), 12(R)-dihydroxy-6,8,10,14-eicosatetraenoic acid (leukotriene B4), production of superoxide anion (O2?) and release of granule-associated β-glucuronidase and lysozyme by human neutrophils. Leukotriene B4 also elicited the selective release of granule enzymes from cytochalasin B-treated neutrophils. U-60,257, a recently identified inhibitor of leukotriene (LT) C4 and D4 synthesis, caused a dose-related (1–10 μM) suppression of LTB4 production by A23187-activated neutrophils. Degranulation and O2? generation by neutrophils exposed to A23187 and the chemotactic oligopeptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP), were also inhibited with U-60,257.  相似文献   

19.
Leukotriene B4 (5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid, LTB4) is released from neutrophils exposed to calcium ionophores. To determine whether LTB4 might be produced by ligand-receptor interactions at the plasmalemma, we treated human neutrophils with serum-treated zymosan (STZ), heat-aggregated IgG and fMet-Leu-Phe (fMLP), agonists at the C3b, Fc and fMLP receptors respectively. STZ (10 mg/ml) provoked the formation of barely detectable amounts of LTB4 (0.74 ng/10(7) cells); no omega-oxidized metabolites of LTB4 were found. Adding 10 microM-arachidonate did not significantly increase production of LTB4 or its metabolites. Addition of 50 microM-arachidonate (an amount which activates protein kinase C) before STZ caused a 40-fold increase in the quantity of LTB4 and its omega-oxidation products. Neither phorbol myristate acetate (PMA, 200 ng/ml) nor linoleic acid (50 microM), also activators of protein kinase C, augmented generation of LTB4 by cells stimulated with STZ. Neither fMLP (10(-6) M) nor aggregated IgG (0.3 mg/ml) induced LTB4 formation (less than 0.01 ng/10(7) cells). Moreover, cells exposed to STZ, fMLP, or IgG did not form all-trans-LTB4 or 5-hydroxyeicosatetraenoic acid; their failure to make LTB4 was therefore due to inactivity of neutrophil 5-lipoxygenase. However, adding 50 microM-arachidonate to neutrophil suspensions before fMLP or IgG triggered LTB4 production, the majority of which was metabolized to its omega-oxidized products (fMLP, 20.2 ng/10(7) cells; IgG, 17.1 ng/10(7) cells). The data show that neutrophils exposed to agonists at defined cell-surface receptors produce significant quantities of LTB4 only when treated with non-physiological concentrations of arachidonate.  相似文献   

20.
Many amoeboid cells move by extending pseudopods. Here I present a new stochastic model for chemotaxis that is based on pseudopod extensions by Dictyostelium cells. In the absence of external cues, pseudopod extension is highly ordered with two types of pseudopods: de novo formation of a pseudopod at the cell body in random directions, and alternating right/left splitting of an existing pseudopod that leads to a persistent zig-zag trajectory. We measured the directional probabilities of the extension of splitting and de novo pseudopods in chemoattractant gradients with different steepness. Very shallow cAMP gradients can bias the direction of splitting pseudopods, but the bias is not perfect. Orientation of de novo pseudopods require much steeper cAMP gradients and can be more precise. These measured probabilities of pseudopod directions were used to obtain an analytical model for chemotaxis of cell populations. Measured chemotaxis of wild-type cells and mutants with specific defects in these stochastic pseudopod properties are similar to predictions of the model. These results show that combining splitting and de novo pseudopods is a very effective way for cells to obtain very high sensitivity to stable gradient and still be responsive to changes in the direction of the gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号