首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pancreatic acini loaded with the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to examine the effect of Ca2(+)-mobilizing agonists on the activity of acid-base transporters in these cells. In the accompanying article (Muallen, S., and Loessberg, P. A. (1990) J. Biol. Chem. 265, 12813-12819) we showed that in 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES)-buffered medium the main pHi regulatory mechanism is the Na+/H+ exchanger, a while in HCO3(-)-buffered medium pHi is determined by the combined activities of a Na+/H+ exchanger, a Na(+)-HCO3- cotransporter and a Cl-/HCO3- exchanger. In this study we found that stimulation of acini with Ca2(+)-mobilizing agonists in HEPES or HCO3(-)-buffered media is followed by an initial acidification which is independent of any identified plasma membrane-located acid-base transporting mechanism, and thus may represent intracellularly produced acid. In HEPES-buffered medium there was a subsequent large alkalinization to pHi above that in resting cells, which could be attributed to the Na+/H+ exchanger. Measurements of the rate of recovery from acid load indicated that the Na+/H+ exchanger was stimulated by the agonists. In HCO3(-)-buffered medium the alkalinization observed after the initial acidification was greatly attenuated. Examination of the activity of each acid-base transporting mechanism in stimulated acini showed that in HCO3(-)-buffered medium: (a) recovery from acid load in the presence of H2-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2DIDS) (Na+/H+ exchange) was stimulated similar to that found in HEPES-buffered medium; (b) recovery from acid load in the presence of amiloride and acidification due to removal of external Na+ in the presence of amiloride (HCO3- influx and efflux, respectively, by Na(+)-HCO3- cotransport) were inhibited; and (c) HCO3- influx and efflux due to Cl-/HCO3- exchange, which was measured by changing the Cl- or HCO3- gradients across the plasma membrane, were stimulated. Furthermore, the rate of Cl-/HCO3- exchange in stimulated acini was higher than the sum of H+ efflux due to Na+/H+ exchange and HCO3- influx due to Na(+)-HCO3- cotransport. Use of H2DIDS showed that the latter accounted for the attenuated changes in pHi in HCO3(-)-buffered medium, as much as treating the acini with H2DIDS resulted in similar agonist-mediated pHi changes in HEPES- and HCO3(-)-buffered media. The effect of agonists on the various acid-base transporting mechanisms is discussed in terms of their possible role in transcellular NaCl transport, cell volume regulation, and cell proliferation in pancreatic acini.  相似文献   

2.
The pancreatic duct secretes alkaline fluid that is rich in HCO3- and poor in Cl-. The molecular mechanisms that mediate ductal secretion and are responsible for the axial gradients of Cl- and HCO3- along the ductal tree are not well understood because H+ and HCO3- transport by duct cells have not been characterized or localized. To address these questions, we microdissected the intralobular, main, and common segments of the rat pancreatic duct. H+ and HCO3- transporters were characterized and localized by following intracellular pH while perfusing the bath and the lumen of the ducts. In intralobular ducts, Na(+)-dependent and amiloride-sensitive recovery from acid load in the absence of HCO3- was used to localize a Na+/H+ exchanger to the basolateral membrane (BLM). Modification of Cl- gradients across the luminal (LM) and BLM in the presence of HCO3- showed the presence of Cl- /HCO3- exchangers on both membranes of intralobular duct cells. Measurement of the effect of Cl- on one side of the membrane on the rate and extent of pHi changes caused by removal and addition of Cl- to the opposite side suggested that both exchangers are present in the same cell. In the presence of HCO3-, intralobular duct cells used three separate mechanisms to extrude H+: (a) BLM-located Na+/H+ exchange, (b) Na(+)-independent vacuolar-type H+ pump, and (c) BLM-located, Na(+)- dependent, amiloride-insensitive, and 4',4'-diisothiocyanatostilbene- 2,2'-disulfonic acid sensitive mechanism, possibly a Na(+)-dependent HCO3- transporter. The main and common segments of the duct displayed similar mechanisms and localization of H+ and HCO3- transporters to the extent studied in the present work. In addition to the transporters found in intralobular ducts, the main and common ducts showed Na+/H+ exchange activity in the LM. Three tests were used to exclude a significant luminal to basolateral Na+ leak as the cause for an apparent luminal Na+/H+ exchange in an HCO3- secreting cells: (a) addition of amiloride and removal of Na+ from the LM had a profound effect on Na+/H+ exchange activity on the BLM and vice versa; (b) inhibition of all transporters in the BLM by bathing the duct in the inert hydrocarbon Fluorinert FC-75 did not prevent cytosolic acidification caused by removal of luminal Na+; and (c) luminal Na+ did not activate the basolateral Na(+)-dependent HCO3- transporter. An Na(+)-independent, bafilomycin-sensitive H+ pumping activity was marginal in the absence of HCO3-.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
The intracellular pH (pHi) of a rat parotid acinar preparation was monitored using the pH-sensitive fluorescent dye, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Under resting (unstimulated) conditions both Na+/H+ exchange and CO2/HCO3- buffering contribute to the regulation of pHi. Muscarinic stimulation (carbachol) of the acini produced a gradual rise in pHi (approximately 0.1 unit by 10 min) possibly due to activation of the Na+/H+ exchanger. When the exchanger was blocked by amiloride or sodium removal, carbachol induced a dramatic (atropine inhibitable) decrease in pHi (approximately 0.4 pH unit with t1/2 approximately 0.5 min at 1 mM carbachol). The rate of this acidification was reduced by removal of exogenous HCO3- and by the carbonic anhydrase inhibitor methazolamide. Also, acini stimulated with carbachol in Cl- -free solutions showed a more pronounced acidification than in the corresponding Cl- -replete media. Taken together, these data indicate that the carbachol-induced acidification of rat parotid acinar cells unmasked by inhibition of the Na+/H+ exchanger is due to a rapid loss of intracellular HCO3-. Carbachol induced acidification was inhibited by the Cl- channel blocker diphenylamine 2-carboxylate but not by 4-acetomido-4'-isothiocyanostilbene-2,2'-disulfonic acid, an inhibitor of Cl-/HCO3- exchange. In addition, this acidification could not be sustained in Ca2+-free media and was totally blocked by chelation of intracellular Ca2+. Interpreted in terms of HCO3- loss, these results closely parallel the pattern of carbachol-induced Cl- release from this same preparation and indicate that HCO3- is secreted in response to muscarinic stimulation via the same or a very similar exit pathway, presumably an apical anion channel. Under normal physiological conditions the intracellular acidification resulting from HCO3- secretion is buffered by the Na+/H+ exchanger.  相似文献   

5.
Summary In microsomal vesicles, as isolated from exocrine pancreas cells, MgATP-driven H+ transport was evaluated by measuring H+-dependent accumulation of acridine orange (AO). Active H+ uptake showed an absolute requirement for ATP with simple Michaelis-Menten kinetics (K m for ATP 0.43 mmol/liter) with a Hill coefficient of 0.99. H+ transport was maximal at an external pH of 6.7, generating an intravesicular pH of 4.8. MgATP-dependent H+ accumulatioin was abolished by protonophores. such as nigericin (10–6 mol/liter) or CCCP (10–5 mol/liter), and by inhibitors of nonmitochondria H+ ATPase, such as NEM or NBD-Cl, at a concentration of 10–5 mol/liter. Inhibitors of both mitochondrial and nonmitochondrial H+ pumps, such as DCCD (10–5 mol/liter) or Dio 9 (0.25 mg/ml), reduced microsomal H+ transport by about 90%. Vanadate (2×10–3 mol/liter). a blocker of those ATPases, which form a phosphorylated intermediate, did not inhibit H+ transport. The stilbene derivative DIDS (10–4 mol/liter), which inhibits anion transport systems, abolished H+ transport completely. MgATP-dependent H+ transport was found to be anion dependernt in the sequence Cl>Br>gluconate; in the presence of SO 4 –2 . CH3COO or No 3 , no H+ transport was observed. MgATP-dependent H+ accumulation was also cation dependent in the sequence K+>Li+>Na+=choline+, As shown by dissipation experiments in the presence of different ion gradients and ionophores, both a Cl and a K+ conductance, as well as a small H+ conductance. were found in the microsomal membranes. When membranes containing the H+ pump wer further purified by Percoll gradient centrifugatin (ninefold enrichment comparad to homogenate), no correlation with markers for endoplasmic reticulum., mitochondria, plasma membranes, zymogen graules or Golgi membranes was found.The present data indicate that the H+ pump located in microsomes from rat exocrine pancreas is a vacuolar-or V-type H+ ATPase and has most similarities to that described in endoplasmic reticulum. Golgi apparatus or endosomes.  相似文献   

6.
The effect of serum, phorbol-12-myristate-13-acetate (TPA), and forskolin on the activity Na+/H+ antiport and the Na(+)-coupled and Na(+)-independent Cl-/HCO3- antiport was studied in Vero cells by measuring 22Na+ and 36Cl- fluxes and changes in cytosolic pH (pHi). The Na(+)-independent Cl-/HCO3- antiport, which acts as an acidifying mechanism, is strongly pH-sensitive. In serum-starved cells it is activated at alkaline cytosolic pH, with a half-maximal activity at pHi approximately 7.20. Incubation with serum increased the activity of the Na(+)-independent Cl-/HCO3- antiport at pHi values from 6.8 to 7.2. Thus serum appeared to alter the pHi sensitivity of this antiporter such that the threshold value for activation of the antiport was shifted to a more acidic value. Na+/H+ antiport was somewhat stimulated initially by addition of serum, but further incubation with serum (greater than 45 min) decreased its activity. The activity of the Na(+)-coupled Cl-/HCO3- antiport, which is the major alkalinizing antiport in Vero cells, was not altered by short-term incubation with serum (less than 10 min) but decreased after prolonged incubation (greater than 45 min). Our findings with TPA and forskolin indicate that the effect of serum is partly mediated by the protein kinase C pathway, whereas the cyclic adenosine monophosphate pathway does not appear to play an important role. The net effect of serum on the pHi-regulating antiports was a slight decrease in intracellular pH.  相似文献   

7.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

8.
Evidence for a primary role for intracellular Ca2+ in the stimulation of pancreatic enzyme secretion is reviewed. Measurements of cytoplasmic free Ca2+ concentration have allowed direct demonstration of its importance in triggering enzyme secretion and defined the concentration range over which membrane Ca2+ pumps must work to regulate intracellular Ca2+. Current evidence suggests a key role for the Ca2+ Mg-ATPase of rough endoplasmic reticulum in regulating intracellular Ca2+ and accumulating a Ca2+ store which is released by the action of inositol-l,4,5 trisphosphate following stimulation of secretion.Abbreviations Used EGTA (ethylene dioxy) diethylene-dinitrilotetraacetic acid - BAPTA 1,2-bis (2-aminophenoxy) ethane NNN,N-tetracetic acid - InsP3 inositol trisphosphate - Ins-1,4,5P3 and Ins-1,3,4P3 isomers of inositol trisphosphate with the position of phosphate groups assigned - Ins-1,3,4,5P4 inositol tetrakisphosphate  相似文献   

9.
Stimulus-secretion coupling in pancreatic exocrine cells was studied using dissociated acini, prepared from mouse pancreas, and chlorotetracycline (CTC), a fluorescent probe which forms highly fluorescent complexes with Ca2+ and Mg2+ ions bound to membranes. Acini, preloaded by incubation with CTC (100 microM), displayed a fluorescence having spectral properties like that of CTC complexed to calcium (excitation and emission maxima at 398 and 527 nm, respectively). Stimulation with either bethanechol or caerulein resulted in a rapid loss of fluorescence intensity and an increase in outflux of CTC from the acini. After 5 min of stimulation, acini fluorescence had been reduced by 40% and appeared to be that of CTC complexed to Mg2+ (excitation and emission maxima at 393 and 521 nm, respectively). The fluorescence loss induced by bethanechol was blocked by atropine and was seen at all agonist concentrations that elicited amylase release. Maximal fluorescence loss, however, required a bethanechol concentration three times greater than that needed for maximal amylase release. In contrast, acini preloaded with ANS or oxytetracycline, probes that are relatively insensitive to membrane-bound divalent cations, displayed no secretagogue-induced fluorescence changes. These results are consistent with the hypothesis that CTC is able to probe some set of intracellular membranes which release calcium during secretory stimulation and that this release results in dissociation of Ca(2+)-complexed CTC.  相似文献   

10.
Intracellular pH (pHi) of the squid axon is regulated by a stilbenesensitive transporter that couples the influx of Na+ and HCO3- (or the equivalent) to the efflux of Cl-. According to one model, the extracellular ion pair NaCO3- exchanges for intracellular Cl-. In the present study, the ion-pair model was tested by examining the interaction of the reversible stilbene derivative 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) with extracellular Na+ and HCO3-. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, as measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. In the presence of both external Na+ and HCO3- (pHo = 8.0, 22 degrees C), pHi increased due to the pHi-regulating mechanism. At a fixed [Na+]o of 425 mM and [HCO3-]o of 12 mM, DNDS reversibly reduced the equivalent acid-extrusion rate (JH) calculated from the rate of pHi recovery. The best-fit value for maximal inhibition was 104%, and for the [DNDS]o at half-maximal inhibition, 0.3 mM. At a [Na+]o of 425 mM, the [HCO3-]o dependence of JH was examined at 0, 0.1, and 0.25 mM DNDS. Although Jmax was always approximately 20 pmol cm-2 s-1, Km(HCO3-) was 2.6, 5.7, and 12.7 mM, respectively. Thus, DNDS is competitive with HCO3-. At a [HCO3-]o of 12 mM, the [Na+]o dependence of JH was examined at 0 and 0.1 mM DNDS. Although Jmax was approximately 20 pmol cm-2 s-1 in both cases, Km(Na+) was 71 and 179 mM, respectively. At a [HCO3-]o of 48 mM, Jmax was approximately 20 pmol cm-2 s-1 at [DNDS]o levels of 0, 0.1, and 0.25 mM. However, Km(Na+) was 22, 45, and 90 mM, respectively. Thus, DNDS (an anion) is also competitive with Na+. The results are consistent with simple competition between DNDS and NaCO3-, and place severe restrictions on other kinetic models.  相似文献   

11.
An increase in cytosolic Ca2+ often begins as a Ca2+ wave, and this wave is thought to result from sequential activation of Ca(2+)-sensitive Ca2+ stores across the cell. We tested that hypothesis in pancreatic acinar cells, and since Ca2+ waves may regulate acinar Cl- secretion, we examined whether such waves also are important for amylase secretion. Ca2+ wave speed and direction was determined in individual cells within rat pancreatic acini using confocal line scanning microscopy. Both acetylcholine (ACh) and cholecystokinin-8 induced rapid Ca2+ waves which usually travelled in an apical-to-basal direction. Both caffeine and ryanodine, at concentrations that inhibit Ca(2+)-induced Ca2+ release (CICR), markedly slowed the speed of these waves. Amylase secretion was increased over 3-fold in response to ACh stimulation, and this increase was preserved in the presence of ryanodine. These results indicate that 1) stimulation of either muscarinic or cholecystokinin-8 receptors induces apical-to-basal Ca2+ waves in pancreatic acinar cells, 2) the speed of such waves is dependent upon mobilization of caffeine- and ryanodine-sensitive Ca2+ stores, and 3) ACh-induced amylase secretion is not inhibited by ryanodine. These observations provide direct evidence that Ca(2+)-induced Ca2+ release is important for propagation of cytosolic Ca2+ waves in pancreatic acinar cells.  相似文献   

12.
13.
Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca(2+)-activated Cl(-) secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca(2+)-activated Cl(-) secretion was accompanied by secretion of HCO(3)(-), possibly a critical ASL component, by simultaneous measurements of intracellular pH (pH(i)) and cell volume. Resting pH(i) was 7.17 +/- 0.01 in physiological medium (5% CO(2)-25 mM HCO(3)(-)). During carbachol (CCh) stimulation, pH(i) fell transiently by 0.08 +/- 0.01 U concomitantly with a fall in Cl(-) content revealed by cell shrinkage, reflecting Cl(-) secretion. A subsequent alkalinization elevated pH(i) to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO(2)-HCO(3)(-)-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO(3)(-) efflux by ion substitution or exposure to the Cl(-) channel inhibitor niflumic acid (100 microM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na(+)/H(+) exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1-4 and 6-9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pH(i) recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO(3)(-) during Ca(2+)-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl(-) channel, with HCO(3)(-) secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na(+)-dependent pH(i) regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na(+)-free media.  相似文献   

14.
Although the role of calcium (Ca2+) in the signal transduction and pathobiology of the exocrine pancreas is firmly established, the role of magnesium (Mg2+) remains unclear. We have characterized the intracellular distribution of Mg2+ in response to hormone stimulation in isolated mouse pancreatic acinar cells and studied the role of Mg2+ in modulating Ca2+ signaling using microspectrofluorometry and digital imaging of Ca2+- or Mg2+-sensitive fluorescent dyes as well as Mg2+-sensitive intracellular microelectrodes. Our results indicate that an increase in intracellular Mg2+ concentrations reduced the cholecystokinin (CCK) -induced Ca2+ oscillations by inhibiting the capacitive Ca2+ influx. An intracellular Ca2+ mobilization, on the other hand, was paralleled by a decrease in [Mg2+]i, which was reversible upon hormone withdrawal independent of the electrochemical gradients for Mg2+, Ca2+, Na+, and K+, and not caused by Mg2+ efflux from acinar cells. In an attempt to characterize possible Mg2+ stores that would explain the reversible, hormone-induced intracellular Mg2+ movements, we ruled out mitochondria or ATP as potential Mg2+ buffers and found that the CCK-induced [Mg2+]i decrease was initiated at the basolateral part of the acinar cells, where most of the endoplasmic reticulum (ER) is located, and progressed from there toward the apical pole of the acinar cells in an antiparallel fashion to Ca2+ waves. These experiments represent the first characterization of intracellular Mg2+ movements in the exocrine pancreas, provide evidence for possible Mg2+ stores in the ER, and indicate that the spatial and temporal distribution of intracellular Mg concentrations profoundly affects acinar cell Ca2+ signaling.  相似文献   

15.
16.
Ion transporters such as Na(+)/H(+) exchanger (NHE), Cl(-)/HCO(3)(-) exchanger (AE), and Na(+)/HCO(3)(-) cotransporter (NBC) are known to contribute to the intracellular pH (pH(i)) regulation during agonist-induced stimulation. This study examined the mechanisms for the pH(i) regulation in the mouse parotid and sublingual acinar cells using the fluorescent pH-sensitive probe, BCECF. The pH(i) recovery from agonist-induced acidification in the sublingual acinar cells was completely blocked by EIPA, a NHE inhibitor. However, the parotid acinar cells required DIDS, a NBC1 inhibitor, in addition to EIPA in order to block the pH(i) recovery. Moreover, RT-PCR analysis detected the expression of pancreatic NBC1 (pNBC1) only in the parotid acinar cells. These results provide strong evidence that the mechanisms for the pH(i) regulation are different in the two types of acinar cells, and pNBC1 contributes to pH(i) regulation in the parotid acinar cells, whereas NHE is likely to be the exclusive pH(i) regulator in the sublingual acinar cells.  相似文献   

17.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

18.
19.
Triggering the CD3/TCR complex of T lymphocytes induces a rapid rise in cytosolic free calcium followed by a slowly declining plateau. The level of this plateau depends on external pH, the more alkalinized media leading to higher values. Neither a pH-dependent binding of mAb, nor a perturbation of internal pH can account for this effect. In a sodium-free medium, or in the presence of dimethylamiloride Ca2+, elevation is accompanied by an acidification of the cells; both of them depend, to the same extent, on external calcium concentration. TPA inhibits CD3-, but not ionomycin-induced Ca2+ and H+ raises, indicating that it acts more probably on Ca2+ influx, rather than on its efflux. These results suggest that intracellular calcium could be regulated by a Ca2+/H+ ATPase which drives H+ in and Ca2+ out. In the presence of external Na+, H+ should return to the medium by the Na+/H+ exchanger.  相似文献   

20.
The pancreatic acinar carcinoma established in rat by Reddy and Rao (1977, Science 198:78-80) demonstrates heterogeneity of cytodifferentiation ranging from cells containing abundant well- developed secretory granules to those with virtually none. We examined the synthesis intracellular transport and storage of secretory proteins in secretory granule-enriched (GEF) and secretory granule-deficient (GDF) subpopulations of neoplastic acinar cells separable by Percoll gradient centrifugation, to determine the secretory process in cells with distinctly different cytodifferentiation. The cells pulse-labeled with [3H]leucine for 3 min and chase incubated for up to 4 h were analyzed by quantitative electron microscope autoradiography. In GEF neoplastic cells, the results of grain counts and relative grain density estimates establish that the label moves successively from rough endoplasmic reticulum (RER) leads to the Golgi apparatus leads to post-Golgi vesicles (vacuoles or immature granules) leads to mature secretory granules, in a manner reminiscent of the secretory process in normal pancreatic acinar cells. The presence of approximately 40% of the label in association with secretory granules at 4 h postpulse indicates that GEF neoplastic cells retain (acquire) the essential regulatory controls of the secretory process. In GDF neoplastic acinar cells the drainage of label from RER is slower, but the peak label of approximately 20% in the Golgi apparatus is reached relatively rapidly (10 min postpulse). The movement of label from the Golgi to the post- Golgi vesicles is evident; further delineation of the secretory process in GDF neoplastic cells, however, was not possible due to lack of secretory granule differentiation. The movement of label from RER leads to the Golgi apparatus leads to the post-Golgi vesicles suggests that GDF neoplastic cells also synthesize secretory proteins, but to a lesser extent than the GEF cells. The reason(s) for the inability of GDF cells to concentrate and store exportable proteins remain to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号