首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The aim of this study was to evaluate the potential mechanisms underlying the improved contractility of the diaphragm (Dia) in adult intact male hamsters after nandrolone (Nan) administration, given subcutaneously over 4 wk via a controlled-release capsule (initial dose: 4.5 mg. kg-1. day-1; with weight gain, final dose: 2.7 mg. kg-1. day-1). Control (Ctl) animals received blank capsules. Isometric contractile properties of the Dia were determined in vitro after 4 wk. The maximum velocity of unloaded shortening (Vo) was determined in vitro by means of the slack test. Dia fibers were classified histochemically on the basis of myofibrillar ATPase staining and fiber cross-sectional area (CSA), and the relative interstitial space was quantitated. Ca2+-activated myosin ATPase activity was determined by quantitative histochemistry in individual diaphragm fibers. Myosin heavy chain (MHC) isoforms were identified electrophoretically, and their proportions were determined by using scanning densitometry. Peak twitch and tetanic forces, as well as Vo, were significantly greater in Nan animals compared with Ctl. The proportion of type IIa Dia fibers was significantly increased in Nan animals. Nan increased the CSA of all fiber types (26-47%), whereas the relative interstitial space decreased. The relative contribution of fiber types to total costal Dia area was preserved between the groups. Proportions of MHC isoforms were similar between the groups. There was a tendency for increased expression of MHC2B with Nan. Ca2+-activated myosin ATPase activity was increased 35-39% in all fiber types in Nan animals. We conclude that, after Nan administration, the increase in Dia specific force results from the relatively greater Dia CSA occupied by hypertrophied muscle fibers, whereas the increased ATPase activity promotes a higher rate of cross-bridge turnover and thus increased Vo. We speculate that Nan in supraphysiological doses have the potential to offset or ameliorate conditions associated with enhanced proteolysis and disordered protein turnover.  相似文献   

2.
To further elucidate the pattern of MHC isoform expression in skeletal muscles of large mammals, in this study the skeletal muscles of brown bear, one of the largest mammalian predators with an extraordinary locomotor capacity, were analyzed. Fiber types in longissimus dorsi, triceps brachii caput longum, and rectus femoris muscles were determined according to the myofibrillar ATPase (mATPase) histochemistry and MHC isoform expression, revealed by a set of antibodies specific to MHC isoforms. The oxidative (SDH) and glycolytic enzyme (α‐GPDH) capacity of fibers was demonstrated as well. By mATPase histochemistry five fiber types, i.e., I, IIC, IIA, IIAX, IIX were distinguished. Analyzing the MHC isoform expression, we assume that MHC‐I, ‐IIa, and ‐IIx are expressed in the muscles of adolescent bears. MHC‐I isoform was expressed in Type‐I fibers and coexpressed with presumably ‐IIa isoform, in Type‐IIC fibers. Surprisingly, two antibodies specific to rat MHC‐IIa stained those fast fibers, that were histochemically and immunohistochemically classified as Type IIX. This assumption was additionally confirmed by complete absence of fiber staining with antibody specific to rat MHC‐IIb and all fast fiber staining with antibody that according to our experience recognizes MHC‐IIa and ‐IIx of rat. Furthermore, quite high‐oxidative capacity of all fast fiber types and their weak glycolytic capacity also imply for MHC‐IIa and ‐IIx isoform expression in fast fibers of bear. However, in adult, full‐grown animal, only MHC‐I and MHC‐IIa isoforms were expressed. The expression of only two fast isoforms in bear, like in many other large mammals (humans, cat, dog, goat, cattle, and horse) obviously meets the weight‐bearing and locomotor demands of these mammals. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and α-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.  相似文献   

4.
The aim of this project was to develop a method to assess fiber type specific protein content across the continuum of human skeletal muscle fibers. Individual vastus lateralis muscle fibers (n = 264) were clipped into two portions: one for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) fiber typing and one for Western blot protein identification. Following fiber type determination, fiber segments were combined into fiber type specific pools (~20 fibers/pool) and measured for total protein quantity, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), citrate synthase (CS), and total p38 content. GAPDH content was 64, 54, 160, and 138% more abundant in myosin heavy chain (MHC) I/IIa, MHC IIa, MHC IIa/IIx, and MHC IIx fibers, respectively, when compared with MHC I. Inversely, CS content was 528, 472, 242, and 47% more abundant in MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fibers, respectively, when compared with MHC IIx. Total p38 content was 87% greater in MHC IIa versus MHC I fibers. These data and this approach establish a reliable method for human skeletal muscle fiber type specific protein analysis. Initial results show that particular proteins exist in a hierarchal fashion throughout the continuum of human skeletal muscle fiber types, further highlighting the necessity of fiber type specific analysis.  相似文献   

5.
This study compared human muscles following long-term reduced neuromuscular activity to those with normal functioning regarding single fiber properties. Biopsies were obtained from the vastus lateralis of 5 individuals with chronic (>3 yr) spinal cord injury (SCI) and 10 able-bodied controls (CTRL). Chemically skinned fibers were tested for active and passive mechanical characteristics and subsequently classified according to myosin heavy chain (MHC) content. SCI individuals had smaller proportions of type I (11 +/- 7 vs. 34 +/- 5%) and IIa fibers (11 +/- 6 vs. 31 +/- 5%), whereas type IIx fibers were more frequent (40 +/- 13 vs. 7 +/- 3%) compared with CTRL subjects (P < 0.05). Cross-sectional area and peak force were similar in both groups for all fiber types. Unloaded shortening velocity of fibers from paralyzed muscles was higher in type IIa, IIa/IIx, and IIx fibers (26, 65, and 47%, respectively; P < 0.01). Consequently, absolute peak power was greater in type IIa (46%; P < 0.05) and IIa/IIx fibers (118%; P < 0.01) of the SCI group, whereas normalized peak power was higher in type IIa/IIx fibers (71%; P < 0.001). Ca(2+) sensitivity and passive fiber characteristics were not different between the two groups in any fiber type. Composite values (average value across all fibers analyzed within each study participant) showed similar results for cross-sectional area and peak force, whereas maximal contraction velocity and fiber power were more than 100% greater in SCI individuals. These data illustrate that contractile performance is preserved or even higher in the remaining fibers of human muscles following reduced neuromuscular activity.  相似文献   

6.
In the present study, we assessed the reproducibility and responsiveness of transcutaneous electromyography (EMG) of the respiratory muscles in patients with chronic obstructive pulmonary disease (COPD) and healthy subjects during breathing against an inspiratory load. In seven healthy subjects and seven COPD patients, EMG signals of the frontal and dorsal diaphragm, intercostal muscles, abdominal muscles, and scalene muscles were derived on 2 different days, both during breathing at rest and during breathing through an inspiratory threshold device of 7, 14, and 21 cm H2O. For analysis, we used the logarithm of the ratio of the inspiratory activity during the subsequent loads and the activity at baseline [log EMG activity ratio (EMGAR)]. Reproducibility of the EMG was assessed by comparing the log EMGAR values measured at test days 1 and 2 in both groups. Responsiveness (sensitivity to change) of the EMG was assessed by comparing the log EMGAR values of the COPD patients to those of the healthy subjects at each load. During days 1 and 2, log EMGAR values of the diaphragm and the intercostal muscles correlated significantly. For the scalene muscles, significant correlations were found for the COPD patients. Although inspiratory muscle activity increased significantly during the subsequent loads in all participants, the COPD patients displayed a significantly greater increase in intercostal and left scalene muscle activity compared with the healthy subjects. In conclusion, the present study showed that the EMG technique is a reproducible and sensitive technique to assess breathing patterns in COPD patients and healthy subjects.  相似文献   

7.
Cross-sectional area (CSA), peak Ca2+-activated force (Po), fiber specific force (Po/CSA), and unloaded shortening velocity (Vo) were measured in slow-twitch [containing type I myosin heavy chain (MHC)] and fast-twitch (containing type II MHC) chemically skinned soleus muscle fiber segments obtained from three strains of weight-bearing and 7-day hindlimb-suspended (HS) mice. HS reduced soleus slow MHC content (from approximately 50 to approximately 33%) in CBA/J and ICR strains without affecting slow MHC content in C57BL/6 mice ( approximately 20% of total MHC). Two-way ANOVA revealed HS-induced reductions in CSA, Po, and Po/CSA of slow and fast fibers from all strains. Fiber Vo was elevated post-HS, but not consistently across strains. No MHC x HS treatment interactions were observed for any variable for C57BL/6 and CBA/J mice, and the two significant interactions found for the ICR strain (CSA, Po) appeared related to inherent pre-HS differences in slow vs. fast fiber CSA. In the mouse HS models studied here, fiber atrophy and contractile dysfunction were partially dependent on animal strain and generally independent of fiber MHC isoform content.  相似文献   

8.
Van Balkom, Roland H. H., Wen-Zhi Zhan, Y. S. Prakash, P. N. Richard Dekhuijzen, and Gary C. Sieck. Corticosteroid effects on isotonic contractile properties of rat diaphragm muscle. J. Appl. Physiol. 83(4):1062-1067, 1997.The effects of corticosteroids (CS) on diaphragmmuscle (Diam) fiber morphologyand contractile properties were evaluated in three groups of rats:controls (Ctl), surgical sham and weight-matched controls (Sham), andCS-treated (6 mg · kg1 · day1prednisolone at 2.5 ml/h for 3 wk). In the CS-treatedDiam, there was a selectiveatrophy of type IIx and IIb fibers, compared with a generalized atrophyof all fibers in the Sham group. Maximum isometric force was reduced by20% in the CS group compared with both Ctl and Sham. Maximumshortening velocity in the CS Diam was slowed by ~20% compared with Ctl and Sham. Peak power output ofthe CS Diam was only 60% of Ctland 70% of Sham. Endurance to repeated isotonic contractions improvedin the CS-treated Diam comparedwith Ctl. We conclude that the atrophy of type IIx and IIb fibers inthe Diam can only partiallyaccount for the CS-induced changes in isotonic contractile properties.Other factors such as reduced myofibrillar density or alteredcross-bridge cycling kinetics are also likely to contribute to theeffects of CS treatment.

  相似文献   

9.
The aim of this study was to assess the relationships between human muscle fiber hypertrophy, protein isoform content, and maximal Ca(2+)-activated contractile function following a short-term period of resistance exercise training. Six male subjects (age 27 +/- 2 yr) participated in a 12-wk progressive resistance exercise training program that increased voluntary lower limb extension strength by >60%. Single chemically skinned fibers were prepared from pre- and posttraining vastus lateralis muscle biopsies. Training increased the cross-sectional area (CSA) and peak Ca(2+)-activated force (P(o)) of fibers containing type I, IIa, or IIa/IIx myosin heavy chain by 30-40% without affecting fiber-specific force (P(o)/CSA) or unloaded shortening velocity (V(o)). Absolute fiber peak power rose as a result of the increase in P(o), whereas power normalized to fiber volume was unchanged. At the level of the cross bridge, the effects of short-term resistance training were quantitative (fiber hypertrophy and proportional increases in fiber P(o) and absolute power) rather than qualitative (no change in P(o)/CSA, V(o), or power/fiber volume).  相似文献   

10.
The purpose of this investigation was to examine the effects of 12 wk of progressive resistance training (PRT) on single muscle fiber myosin heavy chain (MHC; I, I/IIa, I/IIa/IIx, IIa, IIa/IIx, IIx) isoform proportions in young individuals. Young, untrained men (YM; n = 6) and women (YW; n = 6) (age = 22 +/- 1 and 25 +/- 2 yr for YW and YM, respectively) received pre- and post-PRT muscle biopsies from the right vastus lateralis for single muscle fiber MHC distribution by electrophoretic analysis (192 +/- 5 pre- and 183 +/- 6 post-fibers/subject analyzed; 4,495 fibers total). Data are presented as percentages of the total fibers analyzed per subject. The PRT protocol elicited an increase in the pure MHC IIa (Delta = + 24 and + 27; YW and YM, respectively; P < 0.05) with no change in the pure MHC I distribution. The hybrid MHC distributions decreased I/IIa/IIx (Delta = -2; YM and YW; P < 0.05), IIa/IIx (Delta = -13 and -19 for YM and YW, respectively; P < 0.05), and total hybrid fiber proportion (I/IIa + I/IIa/IIx + IIa/IIx) decreased (Delta = -19 and -30 for YM and YW, respectively; P < 0.05) with the training, as did the MHC IIx distribution (Delta = -2; YW only; P < 0.05). Alterations in the predominance of MHC isoforms within hybrid fibers (decrease in MHC I-dominant I/IIa and nondominant MHC IIa/IIx, increase in MHC IIa-dominant IIa/IIx; P < 0.05) appeared to contribute to the increase in the MHC IIa proportion. Electrophoresis of muscle cross sections revealed an approximately 7% increase (P < 0.05) in MHC IIa proportion in both groups, whereas the MHC IIx decrease by 7.5 and 11.6% post-PRT in YW and YM, respectively. MHC I proportions increase in YM by 4.8% (P < 0.05) post-PRT. These findings further support previous resistance training data in young adults with respect to the increase in the MHC IIa proportions but demonstrate that a majority of the change can be attributed to the decrease in single-fiber hybrid proportions.  相似文献   

11.
12.
13.
This study evaluated the impact of varying degrees of prolonged malnutrition on the local insulin-like growth factor-I (IGF-I) system in the costal diaphragm muscle. Adult rats were provided with either 60 or 40% of usual food intake over 3 wk. Nutritionally deprived (ND) animals (i.e., ND60 and ND40) were compared with control (Ctl) rats fed ad libitum. Costal diaphragm fiber types and cross-sectional areas were determined histochemically. Costal diaphragm muscle IGF-I mRNA levels were determined by RT-PCR. Serum and muscle IGF-I peptide levels were determined by using a rat-specific radioimmunoassay. The body weights of Ctl rats increased by 5%, whereas those of ND60 and ND40 animals decreased by 16 and 26%, respectively. Diaphragm weights were reduced by 17 and 27% in ND60 and ND40 animals, respectively, compared with Ctl. Diaphragm fiber proportions were unaffected by either ND regimen. Significant atrophy of both type IIa and IIx fibers was noted in the ND60 group, whereas atrophy of all three fiber types was observed in the diaphragm of ND40 rats. Serum IGF-I levels were reduced by 62 and 79% in ND60 and ND40 rats, respectively, compared with Ctl. Diaphragm muscle IGF-I mRNA levels in both ND groups were similar to those noted in Ctl. In contrast, IGF-I concentrations were reduced by 36 and 42% in the diaphragm muscle of ND60 and ND40 groups, respectively, compared with Ctl. We conclude that the local (autocrine/paracrine) muscle IGF-I system is affected in our models of prolonged ND. We propose that this contributes to disordered muscle protein turnover and muscle cachexia with atrophy of muscle fibers. This is particularly so in view of recent data demonstrating the importance of the autocrine/paracrine system in muscle growth and maintenance of fiber size.  相似文献   

14.
The effects of 10 wk of functional overload (FO), with and without daily treadmill endurance training, on the cross-sectional area, myonuclear number, and myonuclear domain size of mechanically isolated single fiber segments of the adult rat plantaris were determined. The fibers were typed on the basis of high-resolution gel electrophoresis for separation of specific myosin heavy chain (MHC) isoforms and grouped as type I(+) (containing some type I MHC with or without any combination of fast MHCs), type IIa(+) (containing some type IIa with or without some type IIx and/or IIb but no type I MHC), and type IIx/b (containing only type IIx and/or IIb MHCs). Type I(+) fibers had a higher myonuclear number than did both fast types of fibers in the control and FO, but not in the FO and treadmill trained, rats. All fiber types in both FO groups had a significantly larger (36-90%) cross-sectional area and a significantly higher (61-109%) myonuclear number than did control. The average myonuclear domain size of each fiber type was similar among the three groups, except for a smaller domain size in the type IIx/b fibers of the FO compared with control. In general, these data indicate that during hypertrophy the number of myonuclei increase proportionally to the increase in fiber volume. The maintenance of myonuclear domain size near control values suggests that regulatory mechanisms exist that ensure a tight coupling between the quantity of genetic machinery and the protein requirements of a fiber.  相似文献   

15.
The effects of spinal cord injury (SCI) on the profile of sarco(endo) plasmic reticulum calcium-ATPase (SERCA) and myosin heavy chain (MHC) isoforms in individual vastus lateralis (VL) muscle fibers were determined. Biopsies from the VL were obtained from SCI subjects 6 and 24 wk postinjury (n = 6). Biopsies from nondisabled (ND) subjects were obtained at two time points 18 wk apart (n = 4). In ND subjects, the proportions of VL fibers containing MHC I, MHC IIa, and MHC IIx were 46 +/- 3, 53 +/- 3, and 1 +/- 1%, respectively. Most MHC I fibers contained SERCA2. Most MHC IIa fibers contained SERCA1. All MHC IIx fibers contained SERCA1 exclusively. SCI resulted in significant increases in fibers with MHC IIx (14 +/- 4% at 6 wk and 16 +/- 2% at 24 wk). In addition, SCI resulted in high proportions of MHC I and MHC IIa fibers with both SERCA isoforms (29% at 6 wk and 54% at 24 wk for MHC I fibers and 16% at 6 wk and 38% at 24 wk for MHC IIa fibers). Thus high proportions of VL fibers were mismatched for SERCA and MHC isoforms after SCI (19 +/- 3% at 6 wk and 36 +/- 9% at 24 wk) compared with only ~5% in ND subjects. These data suggest that, in the early time period following SCI, fast fiber isoforms of both SERCA and MHC are elevated disproportionately, resulting in fibers that are mismatched for SERCA and MHC isoforms. Thus the adaptations in SERCA and MHC isoforms appear to occur independently.  相似文献   

16.
 Myofibrillar ATPase (mATPase), succinate dehydrogenase (SDH) and α-glycerophosphate dehydrogenase (GPD) activities and cross-sectional area (CSA) were measured in fibres of rat medial gastrocnemius muscle using quantitative histochemistry. The same fibres were typed immunohistochemically using monoclonal antibodies specific to selected myosin heavy chain (MHC) isoforms. The values of mATPase, SDH, GPD and CSA formed a continuum, but significant differences in mean values were observed among fibre types of presumed homogeneous MHC content. Type I fibres had the lowest mATPase activity, followed in rank order by type IIA<type IID/X<type IIB. Type IIA fibres had the highest SDH activity, followed in rank order by type IID/X>type I>type IIB. The mean GPD activity was consistently ranked according to fibre type such that type IIB>type IID/X >type IIA>type I. Type IIA fibres were the smallest, type IIB fibres were the largest and types I and IID/X were of intermediate size. Significant interrelationships between mATPase, SDH, GPD and CSA values were found on a fibre-to-fibre basis. Consequently, discrimination of fibres according to their MHC content was possible on the basis of their mATPase, SDH, GPD and CSA profiles. These intrafibre interrelationships suggest that the MHC isoform is associated with phenotypic differences in contractile, metabolic and size properties of muscle fibre types. Accepted: 30 November 1998  相似文献   

17.
Skeletal muscle adaptations to microgravity exposure in the mouse.   总被引:4,自引:0,他引:4  
To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.  相似文献   

18.
Fournier, Mario, and Michael I. Lewis. Functional roleand structure of the scalene: an accessory inspiratory muscle inhamster. J. Appl. Physiol. 81(6):2436-2444, 1996.Although the scalene muscle (Sca) is a primaryinspiratory muscle in humans, its respiratory function in other speciesis less clear. The electromyographic (EMG) activity of the Sca wasstudied during resting ventilation (eupnea) in both the awake andanesthetized hamster and after a variety of respiratory challenges inthe anesthetized animal. The EMG activities of the medial Sca and thecostal diaphragm were compared. The medial Sca, the major component ofthe Sca, originates from cervical transverse processes 2 to 5 andinserts primarily onto rib 4, with a small segment onto rib 3. In both the anesthetized and awake animal, the Sca was always silent during quiet breathing. WithCO2-stimulated hyperpnea, the Scawas always recruited during inspiration in phase with the diaphragm.Active recruitment of the Sca was also observed after resistive loading and total airway occlusion. After ipsilateral phrenicotomy, the Sca waspersistently recruited during eupnea. The specificity of the EMGsignals was tested both by excluding cross contamination from other ribcage muscles and by selective denervation studies. Muscle spindles wereidentified in the medial Sca histochemically, suggesting that therespiratory activity of the Sca can also be modulated by changes inmuscle length and/or load. These results indicate that the Scafunctions as an accessory inspiratory muscle in the hamster and mayplay an important role in conditions of chronic load.

  相似文献   

19.
Skeletal muscle fibers are multinucleated. Each myonucleus regulates gene products and protein expression in only a restricted portion of the muscle fiber, the myonuclear domain (MND). In the rat diaphragm muscle (DIAm), corticosteroid (CoS) treatment causes atrophy of fibers containing myosin heavy chain (MHC): MHC2X and/or MHC2B. We hypothesized that DIAm fiber MND size is maintained during CoS-induced atrophy. Adult male rats received methylprednisolone for 11 days at 1 (CoS-Low, n = 8) or 8 mg x kg(-1) x day(-1) (CoS-High, n = 8). Age-matched (CTL-AgeM, n = 8), sham-operated (SHAM-AgeM, n = 8), and weight-matched (CTL-WtM, n = 8) animals served as controls. In single DIAm fibers, cross-sectional area (CSA), MND size, and MHC expression were determined. Fiber CSA and MND size were similar in CTL-AgeM and SHAM-AgeM groups. Only fibers containing MHCslow or MHC2A displayed smaller CSA in CTL-WtM than in CTL-AgeM and SHAM-AgeM groups, and MND size was reduced in all fibers. Thus fibers containing MHCslow and MHC2A maintain the number of myonuclei, whereas MHC2X or MHC2B fibers show loss of myonuclei during normal muscle growth. Both CoS groups displayed smaller CSA and MND size than CTL-AgeM and SHAM-AgeM groups. However, compared with CTL-WtM DIAm fibers, only fibers containing MHC2X or MHC2B displayed reduced CSA and MND size after CoS treatment. Thus little, if any, loss of myonuclei was associated with CoS-induced atrophy of MHC2X or MHC2B DIAm fibers. In summary, MND size does not appear to be regulated during CoS-induced DIAm atrophy.  相似文献   

20.
Developmental effects on myonuclear domain size of rat diaphragm fibers.   总被引:1,自引:0,他引:1  
During early postnatal development in rat diaphragm muscle (Diam), significant fiber growth and transitions in myosin heavy chain (MHC) isoform expression occur. Similar to other skeletal muscles, Diam fibers are multinucleated, and each myonucleus regulates the gene products within a finite volume: the myonuclear domain (MND). We hypothesized that postnatal changes in fiber cross-sectional area (CSA) are associated with increased number of myonuclei so that the MND size is maintained. The Diam was removed at postnatal days 14 (P-14) and 28 (P-28). MHC isoform expression was determined by SDS-PAGE. Fiber CSA, myonuclear number, and MND size were measured using confocal microscopy. By P-14, significant coexpression of MHC isoforms was present with no fiber displaying singular expression of MHCNeo. By P-28, singular expression was predominant. MND size was not different across fiber types at P-14. Significant fiber growth was evident by P-28 at all fiber types (fiber CSA increased by 61, 93, and 147% at fibers expressing MHCSlow, MHC2A, and MHC2X, respectively). The number of myonuclei per unit of fiber length was similar across fibers at P-14, but it was greater at fibers expressing MHC2X at P-28. The total number of myonuclei per fiber also increased between P-14 and P-28 at all fiber types. Accordingly, MND size increased significantly by P-28 at all fiber types, and it became larger at fibers expressing MHC2X compared with fibers expressing MHCSlow or MHC2A. These results suggest that MND size is not maintained during the considerable fiber growth associated with postnatal development of the Diam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号