首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dong  Ming  During  Heinjo J.  Werger  Marinus J. A. 《Plant Ecology》1997,131(2):233-239
Trientalis europaea plants were subjected to four levels of nutrient availability to test two hypotheses: (1) Clonal morphology of pseudoannuals with short-lived rhizomes is responsive to nutrient availability in terms of spacer length (a negative correlation expected) and branching intensity (a positive correlation expected), and (2) the size of the hibernacles of T. europaea shows a positive correlation with nutrient availability. The results support the first hypothesis, since the primary spacers of T. europaea were longer at lower nutrient levels while the branching intensity of the primary rhizomes increased at increasing nutrient supply. The second hypothesis was not confirmed, however; the plants produced fewer, but bigger hibernacles at lower levels of nutrient availability. The ecological significance of the results is discussed in the context of foraging for essential resources and habitat-related effects of hibernacle size on survival and establishment chances of daughter ramets.  相似文献   

2.
Piqueras  Jesús  Klimeš  Leoš 《Plant Ecology》1998,136(2):213-227
The clonal growth pattern and demography of clonal fragments (aggregation of ramets derived from a common parent ramet) in the pseudoannual plant Trientalis europaea were studied in field conditions from 1991 to 1993. During this period the population of clonal fragments declined, with a half-life of 7.4 years. Number and size of the clonal progeny and stolon length were positively related to the size of the mother ramet. Survival rates of ramets and tubers increased with size. The rate of clonal growth was low: after three years, about 70% of the clonal fragments had only one ramet. This suggests that the pseudoannual growth habit in T. europaea is more important as mechanism of perennation than of ramet multiplication.Field data were used in a simulation model of architecture and population dynamics of clonal fragments. About 10% of the clonal fragments survived to the end of the simulation (15 years) and the mean survival was 4.7 years. The model predicted a positive correlation between persistence of the clonal fragment and number of ramets produced. Sensitivity analysis showed that the production of a daughter ramet of at least the same size as the parent ramet was the most important pathway for the survival and the number of ramets of the clonal fragment, whereas the production of secondary ramets had a very small effect. This confirms the interpretation of the pseudoannual life-cycle as a mechanism of ramet replacement in this species. Sensitivity analysis also revealed that changes in survival probabilities of the smallest ramets had the largest impact on clonal fragment dynamics. This reflects the important role of the smallest size class of ramets as a source of new vegetative propagules, maintaining a hierarchy in the size structure of the population.  相似文献   

3.
Herbivory and ramet performance in the clonal herb Trientalis europaea L.   总被引:1,自引:0,他引:1  
1 The intensity of leaf damage caused by invertebrate herbivores and grazing by vertebrates and their effects on clonal growth, survival and reproduction were examined in a population of the forest herb Trientalis europaea during 4 years.
2 Levels of herbivory were low and varied between years in the studied population. Larger ramets were exposed to a greater risk of both grazing and leaf defoliation. Ramets that suffered leaf damage in 1 year experienced an increased probability of leaf damage in succeeding years. The probability of suffering herbivore attack was independent among the ramets belonging to the same clonal fragment, suggesting that clonal propagation might operate as a risk-spreading strategy in this species.
3 Leaf damage did not affect any measure of plant performance, probably due to the low amounts of leaf area removed by invertebrate herbivores. In contrast, vertebrate grazing affected all phases of the pseudo-annual life cycle of T. europaea . Grazing prevented flowering and fruiting, increased ramet mortality during summer and decreased tuber production. Furthermore, grazed ramets produced shorter stolons and smaller tubers, which in turn had a lower winter survival and produced smaller ramets in the following growing season. The large impact of grazing was due to the consumption of the whole of the single shoot of ramets of T. europaea . Although regrowth was possible, secondary shoots were significantly smaller and assimilation was delayed.
4 Tubers originating from grazed ramets were placed shallower than tubers from ungrazed ramets. This could be due to an alteration in the growth pattern of stolons of the grazed ramets.  相似文献   

4.
克隆植物蛇莓对光照强度和养分条件的适应性可塑性 表型可塑性可帮助植物缓冲环境压力并使其表型与当地环境相匹配,但目前仅少数性状的可塑性被广泛认为是适应性的。为充分理解可塑性的适应性意义,仍需进一步研究更多的植物功能性状及其环境因子。本研究将匍匐茎克隆植物蛇莓(Duchesnea indica)的21个基因型种植于不同的光照和养分条件下,并利用选择梯度分析检测了形态和生理可塑性对光照强度和养分有效性变化的适应性值。在遮荫条件下,蛇莓适合度(果实数、分株数和生物量)降低,节间缩短变细,成熟叶叶绿素含量降低,但叶柄长度、比叶面积、老叶叶绿素含量均增加。在低养分条件下,植株叶柄缩短,叶面积缩小变厚,叶绿素含量降低,但果实数量和根冠比增加。选择梯度分析表明,叶柄长度和老叶叶绿素含量对光照变化的可塑性是适应性的,老叶和成熟叶叶绿素含量对养分变化的可塑性也是适应性的。因此,不同性状的可塑性适应值取决于特定的生态背景。该研究的发现有助于理解克隆植物表型可塑性响应环境变化的适应性意义。  相似文献   

5.
This paper examines morphological plasticity of clonal plants of contrasting habitats and of contrasting architectures in response to nutrient supply. The hypotheses were tested that plants from rich habitats possess greater plasticity in response to variation in resource supply than species from poor habitats, and that rhizomatous species are less plastic in their response than stoloniferous species. Two sympodial rhizomatous herbs (Carex flacca, C. hirta) and two monopodial stoloniferous herbs (Trifolium fragiferum, T. repens) were subjected to four levels of nutrient supply in a garden experiment. One of the two species of each genus (C. hirta, T. repens) is from fertile and the other from infertile habitats. We measured 1) whole plant characters: total plant dry weight, number of modules (product of a single apical meristem) and number of ramets; 2) ramet characters: ramet leaf area and ramet height; and 3) spacer characters: branches per module, length per module and length per module internode.All measured characters in the Trifolium species significantly responded to treatment: the values for all measured characters increased with higher levels of fertilization. The differences in plant characters between fertilization levels were larger in Trifolium repens than in T. fragiferum in terms of whole plant characters, ramet characters and stolon internode length. The two Carex species did not differ in their responses to treatment in terms of most characters measured. In ramet characters and in some whole plant characters the species from fertile habitats were more plastic than those from infertile habitats. In spacer characters this pattern was not found. Foraging could not be demonstrated unequivocally.Morphological plasticity in the stoloniferous (Trifolium) species was much larger than in the rhizomatous (Carex) species. This seems in accordance with a foremost storage function of rhizomes, as against a foremost explorative function of stolons.  相似文献   

6.
We introduce a spatially explicit model that evaluates how the trade-offs between the life strategies of two interacting plant species affect the outcome of their interaction along environmental severity gradients. In our model, we represent the landscape as a two-dimensional lattice, with environmental severity increasing from left to right. Two species with different strategies, a competitor and a stress-tolerant, interact in the lattice. We find that facilitation expands the realized niche of the competitor into harsh environments by suppressing the stress-tolerant species. Most of their coexisting range is dominated by a positive effect of one species on another, with a reciprocal negative effect from the species receiving the benefits on its benefactor (“+, −”), whereas mutualistic (“+, +”) interactions are only found in the harshest part of the environmental gradient. Contrarily as assumed by models commonly used in facilitation research (e.g. dual-lattice models), our results indicate that “+, +” interactions are not dominant, and that their differences with “+, −” interactions along environmental severity gradients depend on the strategies of the interacting species. By integrating the trade-off between competitive ability and stress tolerance, our model provides a new framework to investigate the interplay of facilitative and competitive interactions along environmental gradients and their impacts on processes such as population dynamics and community organization.  相似文献   

7.
Whereas the "law of the minimum" (LM) states that plant growth is limited by a single resource at any one time, the "multiple limitation hypothesis" (MLH) proposes that optimum plant behavior results from balancing resource costs and benefits so that all resources limit plant growth simultaneously. We tested the hypothesis that neither the LM nor the MLH account for plant responses to all mineral nutrients. Fronds of the aquatic plant Lemna minor were grown in nutrient solutions with increasing levels of four nutrients: nitrogen, phosphorus, potassium, and magnesium. Neither LM or MLH adequately predicted plant responses to all of these nutrients: 23 of the 60 responses analyzed were classified as belonging to the LM; 20 cases were classified as undefined; and 17 cases as MLH. The type of response strongly depended on the specific pair of nutrients considered. The validity of the MLH model would depend on the accompanying resource limiting plant growth and on the severity of the stress. We propose that a "nutrient-specific" analysis, considering the biology of each mineral nutrient rather than grouping plant resources as a whole, is more appropriate than general models in understanding plant responses to nutrient availability.  相似文献   

8.
Question: The majority of studies investigating the impact of climate change on local plant communities ignores changes in regional processes, such as immigration from the regional seed pool. Here we explore: (i) the potential impact of climate change on composition of the regional seed pool, (ii) the influence of changes in climate and in the regional seed pool on local community structure, and (iii) the combinations of life history traits, i.e. plant functional types (PFTs), that are most affected by environmental changes. Location: Fire‐prone, Mediterranean‐type shrublands in southwestern Australia. Methods: Spatially explicit simulation experiments were conducted at the population level under different rainfall and fire regime scenarios to determine the effect of environmental change on the regional seed pool for 38 PFTs. The effects of environmental and seed immigration changes on local community dynamics were then derived from community‐level experiments. Classification tree analyses were used to investigate PFT‐specific vulnerabilities to climate change. Results: The classification tree analyses revealed that responses of PFTs to climate change are determined by specific trait characteristics. PFT‐specific seed production and community patterns responded in a complex manner to climate change. For example, an increase in annual rainfall caused an increase in numbers of dispersed seeds for some PFTs, but decreased PFT diversity in the community. Conversely, a simulated decrease in rainfall reduced the number of dispersed seeds and diversity of PFTs. Conclusions: PFT interactions and regional processes must be considered when assessing how local community structure will be affected by environmental change.  相似文献   

9.
The positive effect of disturbance on plant community invasibility is one of the more consistent results in invasion ecology. It is generally attributed to a coincident increase in available resources (due to the disturbance) that allows non-resident plant species to establish (Davis MA, Grime JP Thompson K, J Ecol 88:528–534, 2000). However, most research addressing this issue has been in artificial or highly modified plant communities. Our goal in this study was to investigate the interactive effects of resource availability and plant mortality disturbance on the invasion of natural plant communities. We conducted a series of experiments that examined the response of Bromus tectorum L., a highly invasive annual grass, to experimentally created gradients of resource availability [nitrogen (N) and water] and resident plant species mortality. We found that B. tectorum biomass was co-limited by N and water. Biomass at the end of the growing season was a saturating function (i.e., increased to a maximum) of water, which determined maximum biomass, and N, which determined the rate at which maximum biomass was attained. Despite that fact that plant mortality increased N availability, it had a negative impact on invasion success. Plant mortality also decreased foliar cover, standing dead biomass, and soil cover by litter. In harsh environments, removing foliar and soil cover may increase germination and seedling stress by increasing soil temperatures and water loss. Across all treatments, B. tectorum success decreased with decreasing foliar cover and standing dead biomass. This, in combination with the strong limitation of B. tectorum biomass by water in this experiment, suggests that our plant mortality disturbance removed soil cover that may have otherwise aided B. tectorum invasion into this semi-arid plant community by reducing water stress.  相似文献   

10.
The traditional dichotomy of seed versus safe site limitation of plant populations is an oversimplification. While most plant models implicitly assume that the number of safe sites colonized will increase directly with increased seed production by each plant, the number of sites colonized may also strongly depend on patterns of seed dispersal relative to the parent plant, since the majority of a plant’s seeds are deposited very close to it and so not all safe sites are equally accessible. I created a series of spatially explicit individual based plant population models exploring how seed versus safe site limitation is jointly affected by the number of seeds produced per plant and mean dispersal distances. While increased dispersal distance led to reduced seed limitation (more saturation of available safe sites) when a parent plant’s site was temporarily unsuitable following its death, increased dispersal distances could increase seed limitation, especially at low per-plant fecundities, if safe sites did not turn over through time. Models comparing localized to global seed dispersal indicated substantially different degrees of seed limitation for constant per-plant fecundities. Thus seed addition experiments need to be designed to add seeds in realistic spatial patterns to yield meaningful results.  相似文献   

11.
克隆植物中国沙棘生长对外源植物激素的响应   总被引:1,自引:0,他引:1  
关于植物克隆生长调节问题,目前集中于外在机制的研究。为了探讨中国沙棘克隆生长调节的内在机制,采用3×3回归设计进行田间试验,期望了解不同生长性状对IAA和CTK用量及其配比的响应规律。结果表明:(1)生长性状对激素用量的响应规律呈典型的钟形曲面模式,即各生长指标均存在一个产量峰值,峰值以前生长指标随IAA、CTK用量的增大而提高,峰值以后生长指标随IAA、CTK用量的增大而下降。(2)不同生长指标对激素用量及其配比的响应规律具有一定差异,较高的IAA比例有利于促进树高生长,较高的CTK比例有利于促进地径和冠幅生长,而几乎相等的IAA和CTK用量有利于种群生物量积累。(3)在激素用量适宜的情况下,中国沙棘生长潜力得到充分发挥,形成高大的个体,较多的子株,有利于提高种群对生境资源的占据和利用,并提高排斥其他植物种类入侵的能力;当激素用量过高或过低时,中国沙棘以降低生长量为代价,形成矮小的个体,减少子株数量,有利于削弱个体之间的竞争。这一结果为了解中国沙棘克隆生长内在调节机制提供了线索。(4)根据不同生长指标的激素效应方程,求出了相应的IAA和CTK的最佳用量和最佳配比,以及合理施激素区域和最低成本线。(5)克隆子株数量增幅与地径和冠幅生长量增幅呈极显著正相关、与种群生物量增幅呈显著正相关,即适宜的IAA和CTK用量既可加速个体生长、也能促进克隆子株的产生。  相似文献   

12.
13.
Angus  J. F.  Bowden  J. W.  Keating  B. A. 《Plant and Soil》1993,155(1):57-66
Models of the yield responses of crops to applied nutrients are a recent addition to the methods available for making fertilizer recommendations. They have a place in integrating nutrient information with information on other factors which affect yield and its response to added nutrients. This review deals with nitrogen models classified into three groups: those which predict yield-response curves based on empirical factors; those which simulate the yield response from complex simulation models of many processes regulating crop growth and the soil environment; and those which aim to simulate yield and selected processes based on simplified functional relationships which apply to a target region or industry. Three case studies representing the three classes of model are drawn from research on dryland wheat in different parts of Australia. They show examples in which models provide information which is unobtainable from experimental procedures and which provide information useful to farmers in making decisions about fertilizers.Suggestions are made for future developments in crop-nutrient modelling including further comparisons of models, linkage of models with tissue tests, modelling co-limiting nutrients, deciding on the appropriate level of detail within a model and the need for methods for calibrating and testing models on attributes other than yield alone.  相似文献   

14.
15.
Adaptive evolution of phenotypic plasticity requires that plastic genotypes have the highest global fitness. We studied selection by spatial heterogeneity of interspecific competition and flooding, and by temporal heterogeneity of flooding on morphological plasticity of 52 genotypes of the clonal shore plant Ranunculus reptans. Competition reduced clone size, rosette size, leaf length and stolon internode thickness. Flooding had similar effects and reduced competition. Differences in selection between environments imply potential for either local adaptation or for indirect evolution of phenotypic plasticity. We also detected direct selection for plastic reductions in internode length in response to flooding and for a plastic increase in internode length in response to competition. Plastic responses of some morphological traits to flooding were in line with selection thereon, suggesting that they indeed are adaptive and might have evolved in response to direct selection on plasticity.  相似文献   

16.
Question: What is the relationship between soil fertility and plant species richness in the ‘fertile islands’ occurring beneath two species of legume (Cercidium praecox and Prosopis laevigata)? Location: Tehuacán‐Cuicatlán region, central Mexico. Methods: Plant richness was measured in three micro‐environments (below canopies of C. praecox, below canopies of P. laevigata and in areas without canopies). The concentration of soil nutrients (C, N and P), C and N in the microbiota, and processes of ecosystem functioning (net C mineralization rate and N mineralization) were measured. The relationship between soil variables and plant richness were assessed with ANCOVAs. Results: Soil nutrients and species richness increases markedly under fertility islands. There were higher concentrations of C and N in the soil, faster rates of C mineralization, and higher species richness under P. laevigata canopies. The relationship between soil fertility and species richness was always positive except for total N, ammonium and net C mineralization rate under C. praecox, and for available P under P. laevigata. Conclusions: The sign of the relationship between soil fertility and species richness varies according to the nutrient and the micro‐environment. Positive relationships could result from between species complementarity and facilitation. Negative relationships could be explained by a specific limitation threshold for some soil resources (P and N for plants and C for the soil microbiota) which eliminate the possibilities of between species complementarity and facilitation above that threshold. As in all observational studies, these relationships should be considered only correlational.  相似文献   

17.
Sediment deposition is the main mechanism of nutrient delivery to tidal freshwater marshes (TFMs). We quantified sediment nutrient accumulation in TFMs upstream and downstream of a proposed water withdrawal project on the Mattaponi River, Virginia. Our goal was to assess nutrient availability by comparing relative rates of carbon (C), nitrogen (N), and phosphorus (P) accumulated in sediments with the C, N, and P stoichiometries of surface soils and above ground plant tissues. Surface soil nutrient contents (0.60–0.92% N and 0.09–0.13% P) were low but within reported ranges for TFMs in the eastern US. In both marshes, soil nutrient pools and C, N, and P stoichiometries were closely associated with sedimentation patterns. Differences between marshes were more striking than spatial variations within marshes: both C, N, and P accumulation during summer, and annual P accumulation rates (0.16 and 0.04 g P m–2 year–1, respectively) in sediments were significantly higher at the downstream than at the upstream marsh. Nitrogen:P ratios <14 in above ground biomass, surface soils, and sediments suggest that N limits primary production in these marshes, but experimental additions of N and/or P did not significantly increase above ground productivity in either marsh. Lower soil N:P ratios are consistent with higher rates of sediment P accumulation at the downstream site, perhaps due to its greater proximity to the estuarine turbidity maximum.  相似文献   

18.
Questions: Do current models that predict shifting effects of herbivores on plant diversity with varying nutrient conditions apply to stressful systems like salt marshes? Do herbivores affect different components of the diversity as nutrient availability varies? Location: Salt marsh–salty steppe transition zone at the SW Atlantic Mar Chiquita coastal lagoon (37°44′52″S, 57°26′6″W), Argentina. Methods: We experimentally evaluated the separate and interactive effect of nutrients and rodent (Cavia aperea) herbivory, using exclosures and applying fertilizer (mostly nitrogen), following a factorial design in 50 cm × 50 cm plots. Results: We found a negative effect of herbivory on diversity in the resource‐poor scenario (due to a reduction in species richness), but a positive effect when nutrients were added, by reducing the abundance of the dominant plant (and hence increasing evenness). Conclusions: Our experimental results contribute to the limited factorial evidence evaluating the role of nutrients and herbivory on the diversity of terrestrial plant communities, even in highly stressful environments like salt marsh–salty steppe transition zones. Our results also support the model that predicts negative effects of herbivores on plant diversity in low‐nutrient conditions and positive effects in nutrient‐enriched scenarios, and also support the mechanism assumed to act in these situations.  相似文献   

19.
Effect of nitrate availability on nitrate reduction was examined in inter-connected ramets of invasive clonal plant Eichhornia crassipes grown with two nitrate supply regimes during different clonal growth stage. Increase of nitrate availability accelerated nitrate reductase activity (NRA) in parent and offspring ramets of E. crassipes, and there was greatly different pattern in inter-connected ramets during clonal growth stage. Leaf NRA was lower in offspring than that in parent ramets in phase 1, while significantly higher leaf NRA in offspring ramets was detected during phase 2. The results indicated NRA in inter-connected ramets of E. crassipes was highly dependent on nitrate availability and growth stage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号